Symmetric cubic surfaces
| Type | Group name | GAP id | Normalizer id | Normalizer solvable? | Centralizer id | Centralizer solvable? | Normalizer mod group (id) | Normalizer mod group solvable? | Conjugacy classes (Atlas) | Conjugacy classes (Carter) |
|---|---|---|---|---|---|---|---|---|---|---|
1 | \(C_3^{\times 3} \rtimes S_4\) | [648, 704] | [1296, 3490] | true | [ 1, 1 ] | true | [2, 1] | true | [‘1A’, ‘3A’, ‘3D’, ‘6A’, ‘2A’, ‘3C’, ‘9A’, ‘6C’, ‘6E’, ‘2B’, ‘6F’, ‘4B’] | [‘emptyset’, ‘3A2’, ‘2A2’, ‘E6(a2)’, ‘4A1’, ‘A2’, ‘E6(a1)’, ‘D4’, ‘A1+A5’, ‘2A1’, ‘2A1+A2’, ‘A1+A3’] |
2 | \(S_5\) | [120, 34] | [240, 189] | false | [ 2, 1 ] | true | [2, 1] | true | [‘1A’, ‘3D’, ‘6E’, ‘4B’, ‘2B’, ‘2A’, ‘5A’] | [‘emptyset’, ‘2A2’, ‘A1+A5’, ‘A1+A3’, ‘2A1’, ‘4A1’, ‘A4’] |
3 | \(H_3(3) \rtimes C_4\) | [108, 15] | [432, 520] | true | [ 3, 1 ] | true | [4, 2] | true | [‘1A’, ‘4A’, ‘6A’, ‘2A’, ‘3A’, ‘3D’, ‘12A’] | [‘emptyset’, ‘D4(a1)’, ‘E6(a2)’, ‘4A1’, ‘3A2’, ‘2A2’, ‘E6’] |
4 | \(H_3(3)\rtimes C_2\) | [54, 8] | [1296, 2891] | true | [ 3, 1 ] | true | [24, 12] | true | [‘1A’, ‘3A’, ‘3D’, ‘2A’, ‘6A’] | [‘emptyset’, ‘3A2’, ‘2A2’, ‘4A1’, ‘E6(a2)’] |
5 | \(S_4\) | [24, 12] | [96, 226] | true | [ 4, 2 ] | true | [4, 2] | true | [‘1A’, ‘4B’, ‘2A’, ‘2B’, ‘3D’] | [‘emptyset’, ‘A1+A3’, ‘4A1’, ‘2A1’, ‘2A2’] |
6 | \(S_3 \times C_2\) | [12, 4] | [72, 46] | true | [ 12, 4 ] | true | [6, 1] | true | [‘1A’, ‘6E’, ‘2A’, ‘3D’, ‘2B’] | [‘emptyset’, ‘A1+A5’, ‘4A1’, ‘2A2’, ‘2A1’] |
7 | \(C_8\) | [8, 1] | [32, 43] | true | [ 8, 1 ] | true | [4, 2] | true | [‘1A’, ‘8A’, ‘4A’, ‘2A’] | [‘emptyset’, ‘D5’, ‘D4(a1)’, ‘4A1’] |
8 | \(S_3\) | [6, 1] | [216, 162] | true | [ 36, 10 ] | true | [36, 10] | true | [‘1A’, ‘3D’, ‘2A’] | [‘emptyset’, ‘2A2’, ‘4A1’] |
9 | \(C_4\) | [4, 1] | [192, 988] | true | [ 96, 67 ] | true | [48, 48] | true | [‘1A’, ‘4A’, ‘2A’] | [‘emptyset’, ‘D4(a1)’, ‘4A1’] |
10 | \(C_2 \times C_2\) | [4, 2] | [192, 1472] | true | [ 96, 226 ] | true | [48, 48] | true | [‘1A’, ‘2A’, ‘2B’] | [‘emptyset’, ‘4A1’, ‘2A1’] |
11 | \(C_2\) | [2, 1] | [1152, 157478] | true | [ 1152, 157478 ] | true | [576, 8654] | true | [‘1A’, ‘2A’] | [‘emptyset’, ‘4A1’] |
Subgroup lattice
Here is the subgroup lattice, where an edge indicates subconjugacy in \(W(E_6)\).