Supplementary

Symmetric cubic surfaces

TypeGroup nameGAP idNormalizer idNormalizer solvable?Centralizer idCentralizer solvable?Normalizer mod group (id)Normalizer mod group solvable?Conjugacy classes (Atlas)Conjugacy classes (Carter)

1

\(C_3^{\times 3} \rtimes S_4\)

[648, 704]

[1296, 3490]

true

[ 1, 1 ]

true

[2, 1]

true

[‘1A’, ‘3A’, ‘3D’, ‘6A’, ‘2A’, ‘3C’, ‘9A’, ‘6C’, ‘6E’, ‘2B’, ‘6F’, ‘4B’]

[‘emptyset’, ‘3A2’, ‘2A2’, ‘E6(a2)’, ‘4A1’, ‘A2’, ‘E6(a1)’, ‘D4’, ‘A1+A5’, ‘2A1’, ‘2A1+A2’, ‘A1+A3’]

2

\(S_5\)

[120, 34]

[240, 189]

false

[ 2, 1 ]

true

[2, 1]

true

[‘1A’, ‘3D’, ‘6E’, ‘4B’, ‘2B’, ‘2A’, ‘5A’]

[‘emptyset’, ‘2A2’, ‘A1+A5’, ‘A1+A3’, ‘2A1’, ‘4A1’, ‘A4’]

3

\(H_3(3) \rtimes C_4\)

[108, 15]

[432, 520]

true

[ 3, 1 ]

true

[4, 2]

true

[‘1A’, ‘4A’, ‘6A’, ‘2A’, ‘3A’, ‘3D’, ‘12A’]

[‘emptyset’, ‘D4(a1)’, ‘E6(a2)’, ‘4A1’, ‘3A2’, ‘2A2’, ‘E6’]

4

\(H_3(3)\rtimes C_2\)

[54, 8]

[1296, 2891]

true

[ 3, 1 ]

true

[24, 12]

true

[‘1A’, ‘3A’, ‘3D’, ‘2A’, ‘6A’]

[‘emptyset’, ‘3A2’, ‘2A2’, ‘4A1’, ‘E6(a2)’]

5

\(S_4\)

[24, 12]

[96, 226]

true

[ 4, 2 ]

true

[4, 2]

true

[‘1A’, ‘4B’, ‘2A’, ‘2B’, ‘3D’]

[‘emptyset’, ‘A1+A3’, ‘4A1’, ‘2A1’, ‘2A2’]

6

\(S_3 \times C_2\)

[12, 4]

[72, 46]

true

[ 12, 4 ]

true

[6, 1]

true

[‘1A’, ‘6E’, ‘2A’, ‘3D’, ‘2B’]

[‘emptyset’, ‘A1+A5’, ‘4A1’, ‘2A2’, ‘2A1’]

7

\(C_8\)

[8, 1]

[32, 43]

true

[ 8, 1 ]

true

[4, 2]

true

[‘1A’, ‘8A’, ‘4A’, ‘2A’]

[‘emptyset’, ‘D5’, ‘D4(a1)’, ‘4A1’]

8

\(S_3\)

[6, 1]

[216, 162]

true

[ 36, 10 ]

true

[36, 10]

true

[‘1A’, ‘3D’, ‘2A’]

[‘emptyset’, ‘2A2’, ‘4A1’]

9

\(C_4\)

[4, 1]

[192, 988]

true

[ 96, 67 ]

true

[48, 48]

true

[‘1A’, ‘4A’, ‘2A’]

[‘emptyset’, ‘D4(a1)’, ‘4A1’]

10

\(C_2 \times C_2\)

[4, 2]

[192, 1472]

true

[ 96, 226 ]

true

[48, 48]

true

[‘1A’, ‘2A’, ‘2B’]

[‘emptyset’, ‘4A1’, ‘2A1’]

11

\(C_2\)

[2, 1]

[1152, 157478]

true

[ 1152, 157478 ]

true

[576, 8654]

true

[‘1A’, ‘2A’]

[‘emptyset’, ‘4A1’]

Subgroup lattice

Here is the subgroup lattice, where an edge indicates subconjugacy in \(W(E_6)\).