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1. Talk 2: Motivic spaces

Abstract. The construction of the unstable A1-homotopy category over a base. Functorialities,
f∗, f

∗. Thom spaces. Homotopy purity

1.1. Nisnevich sheaves.

Definition 1.1. We call a square

U ×X V V

U X

p

i

a distinguished Nisnevich square if p is étale, i is an open immersion, and p is an isomorphism over
X − U .

Example 1.2. Let ϕ : R → S be an étale ring map, and let f ∈ R so that R/f
∼−→ S/ϕ(f) is an

isomorphism of rings. This gives a distinguished square

Spec(Sϕ(f)) Spec(S)

Spec(Rf ) Spec(R).

⌟

Definition 1.3. We say that F ∈ P(SmS) is Nisnevich excisive if it sends distinguished Nisnevich
squares to homotopy pushout squares of spaces.

Theorem 1.4. (Voevodsky) We have that F ∈ P(SmS) is a Nisnevich sheaf if and only it is
Nisnevich excisive (see [AHW17, p. 3.2.5] to read about this).

This reduces checking descent on squares, of which there are a small number, hence we have that
ShvNis(SmS) ⊆ P(SmS) is a reflective subcategory, admitting a left adjoint which we call LNis.

Example 1.5. Algebraic K-theory is a Nisnevich sheaf. We’ll see this more on Thursday.

Remark 1.6. The sheaf category ShvNis(SmS) ⊆ P(SmS) is an ∞-topos, and over a nice base
scheme S it is hypercomplete, meaning in particular that it supports a Whitehead’s theorem and
equivalences can be checked on homotopy groups.
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1.2. A1-invariance.

Definition 1.7. We denote by PA1(SmS) ⊆ P(SmS) the full subcategory of A1-invariant presheaves.
That is, exactly those presheaves F for which the projection π : X×A1 → X induces an equivalence

π∗ : F (X)
∼−→ F (X × A1)

for every X ∈ SmS .

Example 1.8. (Not every representable is A1-invariant) Representable presheaves need not be
A1-invariant. For example:

• Gm is A1 invariant assuming the base S is reduced. This is because it represents units,
which are A1-invariant.

• A1 is not A1-invariant, since it represents global sections.

Proposition 1.9. The inclusion PA1(Smk) ⊆ P(Smk) is a reflective subcategory, and hence admits
a left adjoint, which we denote by

LA1 : P(Smk) → PA1(Smk).

Proof. A presheaf F is A1-invariant if and only if the projection X×A1 → X induces an equivalence

F (X)
∼−→ F (X × A1)

for every X ∈ Smk. Via the ∞-categorical Yoneda lemma, this is equivalent to saying that

Map(hX , F )
∼−→ Map(hX×A1 , F )

is an equivalence. The collection of maps
{
X × A1 → X

}
X∈Smk

, under the Yoneda embedding,

forms a class S ⊆ P (Smk), and it is clear to see that a presheaf is A1-invariant if and only it is S-
local. It now suffices to see that the property of being S-local can be checked on a set of morphisms.
This follows by Smk admitting a small skeleton. □

Notation 1.10. We denote by ∆n the algebraic n-simplex

∆n := Spec(Z[t0, . . . , tn]/(
∑

ti − 1)).

These give a cosimpicial scheme ∆• ∈ Fun(∆,Sch).

Definition 1.11. We define the singular chains construction

Sing: P(SmS) → P(SmS)

by the formula

(SingF )(X) = colim∆opF (X ×∆n)

Proposition 1.12. We have that Sing(F ) is A1-invariant for any F .

Proof idea. We want to prove for any X ∈ SchS that the projection map π : X × A1 → X induces
an equivalence

π∗ : (SingF )(X × A1) → (SingF )(X).

Let z : X → X×A1 denote the zero section, so we’d like to exhibit a simplicial homotopy id ≃ z∗π∗.
We first show that id ≃ zπ as maps of cosimplicial varieties

X × A1 ×∆• → X × A1 ×∆•.

We then see a presheaf F preserves simplicial homotopies (any functor does), as does geometric
realization. □

Proposition 1.13. (Singular construction) The functor LA1 can be identified with Sing.
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Proof idea. Show both constructions are adjoint to the inclusion PA1(SmS) ⊆ P(SmS). □

In particular this implies that LA1 preserves finite products, since it is a sifted colimit of right
adjoints.

2. Motivic spaces and motivic localization

Definition 2.1. We define the category of motivic spaces Spc(k) as the intersection

Spc(k) = ShvNis(Smk) ∩ PA1(Smk) ⊆ P(Smk),

that is, the full subcategory of presheaves which are both Nisnevich sheaves and are A1-invariant.

Problem: Nisnevich sheafifying an A1-invariant presheaf needs not preserve A1-invariance, and
A1-localizing a sheaf may break the sheaf condition. There’s an explicit example in [MV99, p. 2.7].

To that end, we define motivic localization as the infinite composition of both functors.

Definition 2.2. We define Lmot : P(Smk) → Spc(k) by the formula

Lmot := colimn→∞(LA1 ◦ LNis)
◦n.

Proposition 2.3. We have that Lmot preserves finite products. [Hoy14, p. 3.6]

2.1. Some motivic spaces. For X ∈ Smk we denote by abuse of notation X ∈ Spc(k) to mean
the motivic localization of the representable functor associated to X. Given a simplicial set S, we
also use S to denote the constant presheaf at S, considered as a motivic space.

We denote by Spc(k)∗ the pointed category of motivic spaces, given as the slice category under the
terminal object Spc(k)∗/.

We have that Spc(k)∗ is symmetric monoidal under the smash product, defined by

X ∧ Y :=
X × Y

X ∨ Y
.

Since motivic spaces satisfy descent along Zariski covers, any colimits in Smk will become colimits
in Spc(k). In particular we have the following pushout diagram:

Gm A1

A1 P1.
⌜

Since each copy of A1 is contractible, we conclude that

P1 ≃ ΣGm = S1 ∧Gm.

So we have two flavors of sphere here — one coming from algebraic geometry (e.g. Gm) and one
coming from topology (S1). To that end we introduce bigraded notation for spheres:

S2,1 = P1

S1,1 = Gm

S1,0 = S1.

Exercise 2.4.
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(1) Show the following diagram is a pushout

X × Y X

Y Σ(X ∧ Y )

(2) Argue that An − 0 ≃ S2n−1,n.

Note that this implies that

An

An − 0
= Σ(An − 0) = S2n,n.

2.2. Functoriality. The goal here is to argue that the construction Spc(S) is natural in S in some
ways. We follow the exposition in [Hoy17, §4].

Given f : T → S, we obtain an induced pullback map

SmS → SmT

X 7→ X ×S T,

and this extends to a map of presheaves:

f∗ : P(SmT ) → P(SmT ),

via (f∗F )(X) = F (X ×S T ).

Exercise 2.5. The functor f∗ preserves Nisnevich excisiveness and A1-invariance, hence extends to
a functor

f∗ : Spc(T ) → Spc(S).

Note 2.6. We have that f∗ always admits a left adjoint f∗, which if f is smooth is given at the
level of presheaves by precomposition with SmT → SmS . In this case we have a further left adjoint
f♯ ⊣ f∗ ⊣ f∗.

Remark 2.7. We have pointed versions of the categories Spc∗(S), and these functors and adjunc-
tions lift there as well.

2.3. Thom spaces. Let p : V → X be an algebraic vector bundle. Then we define ThX(V ) to be
the fiberwise Thom space of the bundle. Explicitly, it is a motivic space over X given by

ThX(V ) :=
V

V −X
,

where X ↪−→ V under the zero section.

Example 2.8. The trivial vector bundle over the point An
k → Spec(k) has Thom space An/(An−0)

which we have seen is the motivic sphere S2n,n. More generally, we think about Thom spaces as
“twisted sphere bundles.”

Given a vector bundle V → X, we denote by

ΣV := ThX(V ) ∧ (−) : Spc∗(X) → Spc∗(X)

the associated Thom transformation.

Proposition 2.9. We will see (probably next lecture) that the Thom transformation ΣV can be
identified with p♯s∗, where s : X → V is the zero section.
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2.4. Purity. One of the key results is purity, which essentially says that in motivic spaces, we can
treat every closed immersion as though it is the zero section of a vector bundle.

Theorem 2.10. (Purity) Let i : Z ↪−→ X be a closed immersion. Then there is a natural weak
equivalence in Spc(S) of the form

X

X − Z
≃ ThZ(Ni).

sketch. Essentially deformation to the normal cone. We take an A1-family of closed immersions
Z × A1 into a space DZX = BlZ×0X × A1 − BlZ×0X − 0 so that at time t = 1 it is the normal
embedding Z ↪−→ X and at t = 0 it is the zero section Z ↪−→ NZX. We then show the inclusions

NZX

NZX − Z
→ DZX

DZX − Z × A1

X

X − Z
→ DZX

DZX − Z × A1

are A1-weak equivalences. □

Remark 2.11. One of the main advantages of purity is that it allows us to identify compactly

supported cohomology
[

X
X−Z , E

]
=: EZ(X) with the ordinary cohomology of Z twisted by the

normal bundle, which can be untwisted if the cohomology theory is appropriately oriented. This
gives us long exact sequences on Chow groups, algebraic K-theory, etc. where there is a shift in
the degree by the codimension of Z ↪−→ X. What is happening here is a combination of compactly
supported cohomology, purity, and orientation data.
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