IWOAT SUMMER SCHOOL ON STABLE MOTIVIC HOMOTOPY THEORY, SPRING 2024

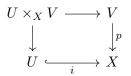
THOMAS BRAZELTON

1. Talk 2: Motivic spaces

ABSTRACT. The construction of the unstable \mathbb{A}^1 -homotopy category over a base. Functorialities, f_*, f^* . Thom spaces. Homotopy purity

1.1. Nisnevich sheaves.

Definition 1.1. We call a square



a distinguished Nisnevich square if p is étale, i is an open immersion, and p is an isomorphism over X - U.

Example 1.2. Let $\phi: R \to S$ be an étale ring map, and let $f \in R$ so that $R/f \xrightarrow{\sim} S/\phi(f)$ is an isomorphism of rings. This gives a distinguished square

Definition 1.3. We say that $F \in P(Sm_S)$ is *Nisnevich excisive* if it sends distinguished Nisnevich squares to homotopy pushout squares of spaces.

Theorem 1.4. (Voevodsky) We have that $F \in P(Sm_S)$ is a Nisnevich sheaf if and only it is Nisnevich excisive (see [AHW17, p. 3.2.5] to read about this).

This reduces checking descent on squares, of which there are a small number, hence we have that $Shv_{Nis}(Sm_S) \subseteq P(Sm_S)$ is a reflective subcategory, admitting a left adjoint which we call L_{Nis} .

Example 1.5. Algebraic K-theory is a Nisnevich sheaf. We'll see this more on Thursday.

Remark 1.6. The sheaf category $\operatorname{Shv}_{\operatorname{Nis}}(\operatorname{Sm}_S) \subseteq \operatorname{P}(\operatorname{Sm}_S)$ is an ∞ -topos, and over a nice base scheme S it is hypercomplete, meaning in particular that it supports a Whitehead's theorem and equivalences can be checked on homotopy groups.

Date: June 23, 2024.

1.2. \mathbb{A}^1 -invariance.

Definition 1.7. We denote by $P_{\mathbb{A}^1}(Sm_S) \subseteq P(Sm_S)$ the full subcategory of \mathbb{A}^1 -invariant presheaves. That is, exactly those presheaves F for which the projection $\pi: X \times \mathbb{A}^1 \to X$ induces an equivalence

$$\pi^* \colon F(X) \xrightarrow{\sim} F(X \times \mathbb{A}^1)$$

for every $X \in \mathrm{Sm}_S$.

Example 1.8. (Not every representable is \mathbb{A}^1 -invariant) Representable presheaves need not be \mathbb{A}^1 -invariant. For example:

- \mathbb{G}_m is \mathbb{A}^1 invariant assuming the base S is reduced. This is because it represents units, which are \mathbb{A}^1 -invariant.
- \mathbb{A}^1 is not \mathbb{A}^1 -invariant, since it represents global sections.

Proposition 1.9. The inclusion $P_{\mathbb{A}^1}(\mathrm{Sm}_k) \subseteq P(\mathrm{Sm}_k)$ is a reflective subcategory, and hence admits a left adjoint, which we denote by

$$L_{\mathbb{A}^1} \colon \mathrm{P}(\mathrm{Sm}_k) \to \mathrm{P}_{\mathbb{A}^1}(\mathrm{Sm}_k).$$

Proof. A presheaf F is \mathbb{A}^1 -invariant if and only if the projection $X \times \mathbb{A}^1 \to X$ induces an equivalence $F(X) \xrightarrow{\sim} F(X \times \mathbb{A}^1)$

for every $X \in \text{Sm}_k$. Via the ∞ -categorical Yoneda lemma, this is equivalent to saying that

$$\operatorname{Map}(h_X, F) \xrightarrow{\sim} \operatorname{Map}(h_{X \times \mathbb{A}^1}, F)$$

is an equivalence. The collection of maps $\{X \times \mathbb{A}^1 \to X\}_{X \in \mathrm{Sm}_k}$, under the Yoneda embedding, forms a class $S \subseteq P(\mathrm{Sm}_k)$, and it is clear to see that a presheaf is \mathbb{A}^1 -invariant if and only it is *S*-local. It now suffices to see that the property of being *S*-local can be checked on a *set* of morphisms. This follows by Sm_k admitting a small skeleton. \Box

Notation 1.10. We denote by Δ^n the algebraic n-simplex

$$\Delta^n := \operatorname{Spec}\left(\mathbb{Z}[t_0, \dots, t_n]/(\sum t_i - 1)\right).$$

These give a cosimplicial scheme $\Delta^{\bullet} \in \operatorname{Fun}(\Delta, \operatorname{Sch})$.

Definition 1.11. We define the *singular chains* construction

Sing:
$$P(Sm_S) \rightarrow P(Sm_S)$$

by the formula

$$(\operatorname{Sing} F)(X) = \operatorname{colim}_{\Delta^{\operatorname{op}}} F(X \times \Delta^n)$$

Proposition 1.12. We have that Sing(F) is \mathbb{A}^1 -invariant for any F.

Proof idea. We want to prove for any $X \in \operatorname{Sch}_S$ that the projection map $\pi: X \times \mathbb{A}^1 \to X$ induces an equivalence

$$\pi^* \colon (\operatorname{Sing} F)(X \times \mathbb{A}^1) \to (\operatorname{Sing} F)(X).$$

Let $z: X \to X \times \mathbb{A}^1$ denote the zero section, so we'd like to exhibit a simplicial homotopy id $\simeq z^* \pi^*$. We first show that id $\simeq z\pi$ as maps of cosimplicial varieties

$$X \times \mathbb{A}^1 \times \Delta^{\bullet} \to X \times \mathbb{A}^1 \times \Delta^{\bullet}.$$

We then see a presheaf F preserves simplicial homotopies (any functor does), as does geometric realization.

Proposition 1.13. (Singular construction) The functor $L_{\mathbb{A}^1}$ can be identified with Sing.

Proof idea. Show both constructions are adjoint to the inclusion $P_{\mathbb{A}^1}(Sm_S) \subseteq P(Sm_S)$.

In particular this implies that $L_{\mathbb{A}^1}$ preserves finite products, since it is a sifted colimit of right adjoints.

2. MOTIVIC SPACES AND MOTIVIC LOCALIZATION

Definition 2.1. We define the category of *motivic spaces* Spc(k) as the intersection

$$\operatorname{Spc}(k) = \operatorname{Shv}_{\operatorname{Nis}}(\operatorname{Sm}_k) \cap \operatorname{P}_{\mathbb{A}^1}(\operatorname{Sm}_k) \subseteq \operatorname{P}(\operatorname{Sm}_k),$$

that is, the full subcategory of presheaves which are both Nisnevich sheaves and are \mathbb{A}^1 -invariant.

Problem: Nisnevich sheafifying an \mathbb{A}^1 -invariant presheaf needs not preserve \mathbb{A}^1 -invariance, and \mathbb{A}^1 -localizing a sheaf may break the sheaf condition. There's an explicit example in [MV99, p. 2.7].

To that end, we define *motivic localization* as the infinite composition of both functors.

Definition 2.2. We define $L_{\text{mot}} \colon P(\text{Sm}_k) \to \text{Spc}(k)$ by the formula

$$L_{\text{mot}} := \operatorname{colim}_{n \to \infty} (L_{\mathbb{A}^1} \circ L_{\text{Nis}})^{\circ n}.$$

Proposition 2.3. We have that L_{mot} preserves finite products. [Hoy14, p. 3.6]

2.1. Some motivic spaces. For $X \in \text{Sm}_k$ we denote by abuse of notation $X \in \text{Spc}(k)$ to mean the motivic localization of the representable functor associated to X. Given a simplicial set S, we also use S to denote the constant presheaf at S, considered as a motivic space.

We denote by $\operatorname{Spc}(k)_*$ the pointed category of motivic spaces, given as the slice category under the terminal object $\operatorname{Spc}(k)_{*/}$.

We have that $\operatorname{Spc}(k)_*$ is symmetric monoidal under the smash product, defined by

$$X \wedge Y := \frac{X \times Y}{X \vee Y}.$$

Since motivic spaces satisfy descent along Zariski covers, any colimits in Sm_k will become colimits in Spc(k). In particular we have the following pushout diagram:

$$\begin{array}{ccc} \mathbb{G}_m \longrightarrow \mathbb{A}^1 \\ \downarrow & & \downarrow \\ \mathbb{A}^1 \longrightarrow \mathbb{P}^1. \end{array}$$

Since each copy of \mathbb{A}^1 is contractible, we conclude that

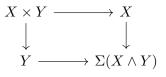
$$\mathbb{P}^1 \simeq \Sigma \mathbb{G}_m = S^1 \wedge \mathbb{G}_m.$$

So we have two flavors of sphere here — one coming from algebraic geometry (e.g. \mathbb{G}_m) and one coming from topology (S^1) . To that end we introduce bigraded notation for spheres:

$$S^{2,1} = \mathbb{P}^1$$
$$S^{1,1} = \mathbb{G}_m$$
$$S^{1,0} = S^1.$$

Exercise 2.4.

(1) Show the following diagram is a pushout



(2) Argue that $\mathbb{A}^n - 0 \simeq S^{2n-1,n}$.

Note that this implies that

$$\frac{\mathbb{A}^n}{\mathbb{A}^n - 0} = \Sigma(\mathbb{A}^n - 0) = S^{2n,n}.$$

2.2. Functoriality. The goal here is to argue that the construction Spc(S) is natural in S in some ways. We follow the exposition in [Hoy17, §4].

Given $f: T \to S$, we obtain an induced pullback map

$$Sm_S \to Sm_T
X \mapsto X \times_S T,$$

and this extends to a map of presheaves:

$$f_* \colon \mathrm{P}(\mathrm{Sm}_T) \to \mathrm{P}(\mathrm{Sm}_T),$$

via $(f_*F)(X) = F(X \times_S T).$

Exercise 2.5. The functor f_* preserves Nisnevich excisiveness and \mathbb{A}^1 -invariance, hence extends to a functor

$$f_* \colon \operatorname{Spc}(T) \to \operatorname{Spc}(S).$$

Note 2.6. We have that f_* always admits a left adjoint f^* , which if f is smooth is given at the level of presheaves by precomposition with $\operatorname{Sm}_T \to \operatorname{Sm}_S$. In this case we have a further left adjoint $f_{\sharp} \dashv f^* \dashv f_*$.

Remark 2.7. We have pointed versions of the categories $\text{Spc}_*(S)$, and these functors and adjunctions lift there as well.

2.3. Thom spaces. Let $p: V \to X$ be an algebraic vector bundle. Then we define $\operatorname{Th}_X(V)$ to be the fiberwise *Thom space* of the bundle. Explicitly, it is a motivic space over X given by

$$\operatorname{Th}_X(V) := \frac{V}{V - X},$$

where $X \hookrightarrow V$ under the zero section.

Example 2.8. The trivial vector bundle over the point $\mathbb{A}^n_k \to \operatorname{Spec}(k)$ has Thom space $\mathbb{A}^n/(\mathbb{A}^n-0)$ which we have seen is the motivic sphere $S^{2n,n}$. More generally, we think about Thom spaces as "twisted sphere bundles."

Given a vector bundle $V \to X$, we denote by

$$\Sigma^V := \operatorname{Th}_X(V) \land (-) \colon \operatorname{Spc}_*(X) \to \operatorname{Spc}_*(X)$$

the associated *Thom transformation*.

Proposition 2.9. We will see (probably next lecture) that the Thom transformation Σ^V can be identified with $p_{\sharp}s_*$, where $s: X \to V$ is the zero section.

2.4. **Purity.** One of the key results is *purity*, which essentially says that in motivic spaces, we can treat every closed immersion as though it is the zero section of a vector bundle.

Theorem 2.10. (Purity) Let $i: Z \hookrightarrow X$ be a closed immersion. Then there is a natural weak equivalence in Spc(S) of the form

$$\frac{X}{X-Z} \simeq \mathrm{Th}_Z(Ni).$$

sketch. Essentially deformation to the normal cone. We take an \mathbb{A}^1 -family of closed immersions $Z \times \mathbb{A}^1$ into a space $D_Z X = \mathrm{Bl}_{Z \times 0} X \times \mathbb{A}^1 - \mathrm{Bl}_{Z \times 0} X - 0$ so that at time t = 1 it is the normal embedding $Z \hookrightarrow X$ and at t = 0 it is the zero section $Z \hookrightarrow N_Z X$. We then show the inclusions

$$\frac{N_Z X}{N_Z X - Z} \to \frac{D_Z X}{D_Z X - Z \times \mathbb{A}^1}$$
$$\frac{X}{X - Z} \to \frac{D_Z X}{D_Z X - Z \times \mathbb{A}^1}$$

are \mathbb{A}^1 -weak equivalences.

Remark 2.11. One of the main advantages of purity is that it allows us to identify compactly supported cohomology $\left[\frac{X}{X-Z}, E\right] =: E_Z(X)$ with the ordinary cohomology of Z twisted by the normal bundle, which can be untwisted if the cohomology theory is appropriately oriented. This gives us long exact sequences on Chow groups, algebraic K-theory, etc. where there is a shift in the degree by the codimension of $Z \hookrightarrow X$. What is happening here is a combination of compactly supported cohomology, purity, and orientation data.

References

- [AHW17] Aravind Asok, Marc Hoyois, and Matthias Wendt. "Affine representability results in A¹-homotopy theory, I: vector bundles". In: *Duke Math. J.* 166.10 (2017), pp. 1923–1953. ISSN: 0012-7094. DOI: 10.1215/00127094-0000014X. URL: https://doi-org.proxy.library.upenn.edu/10.1215/00127094-0000014X.
- [Hoy14] Marc Hoyois. "A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula". In: *Algebr. Geom. Topol.* 14.6 (2014), pp. 3603–3658. ISSN: 1472-2747,1472-2739. DOI: 10.2140/agt.2014.14.3603. URL: https://doi.org/10.2140/agt.2014.14.3603.
- [Hoy17] Marc Hoyois. "The six operations in equivariant motivic homotopy theory". en. In: Advances in Mathematics 305 (Jan. 2017), 197–279. ISSN: 00018708. DOI: 10.1016/j. aim.2016.09.031.
- [MV99] Fabien Morel and Vladimir Voevodsky. "A1-homotopy theory of schemes". en. In: Publications mathématiques de l'IHÉS 90.1 (Dec. 1999), 45–143. ISSN: 0073-8301, 1618-1913. DOI: 10.1007/BF02698831.