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1. Talk 1: Quasicategories

Abstract. Definition of infinity-categories as quasi-categories, the existence of mapping spaces,
interpretation. Presentable infinity categories. Bousfield localization. All of this will have to be
presented very tersely, mostly as a reminder.

Goal: Set up the basics of infinity categories

1.1. Quasicategories. Let ∆ denote the category whose objects are finite totally ordered sets
[n] := {0 < 1 < · · · < n}, and whose morphisms are order-preserving functions [n] → [m].

Definition 1.1. If C is a category, a simplicial object in C is a functor ∆op → C , and a cosimplicial
object is a functor ∆ → C .

Simplicial varieties appeared in Grothendieck’s work as a way to keep track of covers and descent
data, and later appeared in Deligne’s work as a combinatorial way to encode the process of resolving
singularities. Given a group or group object G, the multiplication and identity maps give rise to a
natural cosimplicial object

G → G×G ⇆ · · ·
called the bar construction.

Definition 1.2. The category of simplicial sets is the functor category sSet := Fun(∆op,Set).

Given a simplicial set

∆op → Set

[n] 7→ Xn,

we call Xn the set of n-simplices.

Example 1.3. Any set Y gives rise to a constant simplicial set Y , given by sending [n] 7→ Y , and
every morphism in ∆ to the identity on Y .

Example 1.4. We denote by ∆n the simplicial set

∆n := Hom∆(−, [n]) : ∆op → Set.

By the Yoneda lemma, we have a natural bijection

HomsSet(∆
n, X•) ∼= Xn

for any X• ∈ sSet.

Example 1.5. If C is a small 1-category, it gives rise to a simplicial set N•C , called the nerve of
C , with the following data:
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• 0-simplices = objects of C
• 1-simplices = morphisms in C

• 2-simplices = pairs of composable morphisms x
f−→ y

g−→ z in C
...
• n-simplices = strings of n-composable morphisms

Here the degeneracy maps (NC ) → (NC )n+1 insert an identity, while the face maps (NC )n →
(NC )n−1 compose maps.

In C , composition happens strictly, by which we mean there is no notion of homotopy between

maps — if x
f−→ y

g−→ z is a composite of maps, and h : x → z, then either h = g ◦ f , or it is not
equal, and this is encoded by the data of a 2-cell:

y

x z.

gf

h

We think about this 2-cell as a witness for the composition.

Q: Given a simplicial set, when can you tell whether it arose as the nerve of a 1-category?

A: Given any diagram of the form • → • → •, it has to fill in uniquely to a 2-cell. But we also need
to fill in composites of three morphisms uniquely (draw a tetrahedron). To that end, let Λk

n be the
simplicial set obtained from ∆n by deleting the kth face. This is called a horn.

Proposition 1.6. A simplicial set X• is the nerve of a 1-category if and only if it admits unique
inner horn filling, meaning for any 0 < k < n, there is a unique lift:

Λk
n X•

∆n

Example 1.7. Let X be a topological space. Then it gives rise to a simplicial set called its
fundamental ∞-groupoid Π∞X, with the data

• 0-simplices = points x ∈ X
• 1-simplices = paths x to y in X
• 2-simplices = homotopies between paths
• 3-simplices = homotopies between homotopies between paths
...

Note that a 2-cell is no longer unique! There can be many homotopies between paths. In particular
composition of paths isn’t well-defined, in the sense that many paths can function naturally as
a composite. We might define g ◦ f to be any path together with a 2-cell making the diagram
commute:

y

x z.

gf

In order to specify a composite now, we need to give the data not only of the 1-cell but also of the
2-cell! This is the vibe of higher-categorical composition. Note that horns don’t fill uniquely here.
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Exercise 1.8. If you’re familiar with the singular chains construction

| − | : sSet ⇆ Top: Sing(−),

convince yourself that Sing(−) is the same as Π∞(−).

Definition 1.9. A quasicategory is any simplicial set with (non-unique!) inner horn filling.

Definition 1.10. A Kan complex is a quasi-category which also has outer horn filling, meaning we
have a lift

Λk
n X•

∆n

not only for 0 < k < n, but also for k = 0, k = n. For n = 2, this means we are also allowed to fill
the horns:

•

• •

•

• •

Exercise 1.11. Show a Kan complex is the nerve of a 1-groupoid if and only if its horn filling is
unique.

The functor

Top → Kan

X 7→ Π∞(X)

is an equivalence of ∞-categories (this is the homotopy hypothesis), hence we can think about
spaces as Kan complexes without much loss of generality. We use S to denote the ∞-category of
spaces.

1.2. Mapping spaces. We want to make precise the model of quasi-categories as (∞, 1)-categories.
The vibe of higher categories is that homs in 1-categories are 0-categories (sets). Homs in 2-
categories are 1-categories, homs in 3-categories are 2-categories, etc. Hence homs in (∞, 1)-
categories should be (∞, 0)-categories. From the models we’re working in:

(∞, 1)-categories = quasi-categories
(∞, 0)-categories = Kan complexes,

we want to argue that, for any quasicategory C , and any pair of objects (0-simplices) x, y ∈ C ,
there is a mapping space MapC (x, y) which is a Kan complex.

Definition 1.12. For x, y ∈ C , where C is a quasicategory, we denote by MapC (x, y) the pullback
in simplicial sets:

MapC (x, y) Fun(∆1,C )

{x, y} C × C .

⌟
(ev0,ev1)
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Here Fun(∆1,C ) denotes an internal hom from the interval ∆1 to C . The rightmost vertical map
is what’s called a bifibration (the proof that this map is a bifibration is [Lur09, p. 2.4.7.11]), which
in particular means that MapC (x, y) is a Kan complex.

Remark 1.13. Alternatively we may define MapC (x, y) as the simplicial set whose n-simplices are
given by the set of all

z : ∆n+1 → C ,

with the {n+1}-vertex mapping to y, and the vertices {0, . . . , n}mapping to x. Technically speaking
this is the space of right morphisms but when C is an ∞-category this models the mapping space
(it is canonically isomorphic in the homotopy category). As an exercise, verify that MapC (x, y) is
indeed a Kan complex from the definition.

1.3. Presentable ∞-categories. Modulo some set-theoretic technicalities, we can now be content
with the existence of a model for infinity-categories. All notions of functors, colimits, adjunctions,
etc. should now be understood in the higher categorical sense, i.e. up to higher coherence.

Definition 1.14. [Lur09, p. 5.4.2.1] An ∞-category is accessible if it is generated under κ-filtered
colimits by a small category.

Example 1.15. The category S of spaces is presentable, since it admits all colimits and every space
is built out of finite CW complexes.

Remark 1.16. By [Lur09, p. 5.4.3.6], a small ∞-cat is accessible if and only if it is idempotent
complete.1 so finitely generated free R-modules fail to contain retracts (projectives) so they’re not
idempotent complete and hence not accessible.

Definition 1.17. Given any ∞-category C , we denote by P(C ) := Fun(C op,S) the category of
(∞-)presheaves.

Example 1.18. By the previous two examples, P(C ) is presentable for any C . This is the coYoneda
lemma — that any presheaf is a colimit of representable ones.

Definition 1.19. We say an ∞-category C is presentable if it is accessible and admits all colimits
(cocomplete).

Theorem 1.20. (Adjoint functor theorem) Let F : C → D be a functor between presentable cate-
gories. Then

• F admits a right adjoint if and only if F preserves all colimits
• F admits a left adjoint if and only if it preserves all limits and κ-filtered colimits

Really hard to write down functors explicitly in quasi-categories, since we are writing down a map
of simplicial sets, which is a lot of data. AFT is nice because it lets us get functors without writing
them explicitly, but they are still characterized by being adjoints.

Notation 1.21. We denote by PrL the category of presentable ∞-categories and colimit-preserving
functors between them. Note every functor in PrL is a left adjoint.

1Idempotent complete has a number of definitions, in particular it implies that idempotent endomorphisms f : X →
X (i.e. f ◦ f = f) correspond bijectively to retracts of X, i.e. composites Y ↪−→ X → Y . If C is idempotent complete
then it is closed under retracts.
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1.4. Localization.

Definition 1.22. [Lur09, p. 5.2.7.2] A functor f : C → D is a localization if it admits a fully faithful
right adjoint.

In many cases a localization is given by inverting a class of morphisms in C . In particular let
S ⊆ morC be a class of morphisms in C , then we can try to invert S by cooking up a new category
C [S−1].

Definition 1.23. [Lur09, p. 5.5.4.1] Let S ⊆ morC . We say z ∈ C is S-local if for every s : x → y
in S, the induced map

MapC (y, z) → MapC (x, z)

is an equivalence.

Remark 1.24. Let C0 ⊆ C be the full subcategory of S-local objects. If this admits a left adjoint,
it makes sense to call that adjoint LS , that is, S-localization, since it inverts every morphism in S.
This is where presentable categories give us an advantage. In general arguing for the existence of
a left adjoint isn’t easy, however if C is presentable, then the adjoint functor theorem tells us that
we just have to check the inclusion C0 ⊆ C preserves limits and filtered colimits.

Let C0 ⊆ C be the full subcategory of S-local objects. If this admits a left adjoint, it makes sense
to call that adjoint LS , that is, S-localization, since it inverts every morphism in S.

Proposition 1.25. [Lur09, p. 5.5.4.15] If C is presentable and S ⊆ morC is small, then the
inclusion of the full subcategory of S-local objects admits a left adjoint.2

Example 1.26. In the next talk, our primary application of this machinery will be looking at the
presheaf category P(C ), which is presentable by Example 1.18. We can look at full subcategories of
presheaves which satisfy a certain sheaf condition and argue this is a reflective subcategory hence
we will have an adjoint we call sheafification.

Remark 1.27. Given a class of arrows S ⊆ morC , we can always form C [S−1] by adjoining formal
inverses to S and considering all composites of morphisms in C and formal inverses (zig-zags).
This is called Dwyer–Kan localization or hammock localization. This satisfies the correct universal
property of localization, but we might encounter size issues. Bousfield localization is a particular
example of Dwyer–Kan localization, but where we are able to guarantee that we don’t encounter
any size issues since the localization is a subcategory of the original category.
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2The terminology for this is that C0 ⊆ C is a reflective subcategory.
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