Maximally inflected quintics

back to all Wronski data
Frequency vectors: degree followed by number of curves with the given number of isolated points isolated points.
deg \ #i 0 1 2 3 4 5 6 7 8 9 10
4 0 0 3 2
5 0 0 0 12 18 9 3
6 0 0 0 0 55 132 132 88 39 12 4

The minimal number of isolated points is $d-2$ by Kharlamov-Sottile, and the maximal number is the genus $\binom{d-1}{2}$.

Conjecture: The number of curves with minimal isolated points is the Fuß-Catalan number $\text{FC}_{3,d-2} = \frac{1}{2(d-2)+1}\binom{3(d-2)}{d-2}$, counting the number of $3$-ary trees with $d-2$ layers.

Conjecture: The number of curves with maximal isolated points is $d-2$. This is the orbit of the following tableau under promotion:
$1$$2$...$d-2$
$d-1$$d$...$2(d-2)$
$2d-3$$2d-2$...$3(d-2)$


IP = number of isolated points
OS = orbit size (under promotion)
ED = number of extended descents
Sottile index Picture Young tab Isolated pts. Promotion orbit size Ext. descents Chord diagram notes
03
(praying mantis)
147
258
369

StandardTableau([[1,4,7],[2,5,8],[3,6,9]])

IP: 3 OS: 3 ED: 6 self-evacuative
39
(left squished
praying mantis)
136
247
589

StandardTableau([[1,3,6],[2,4,7],[5,8,9]])

IP: 3 OS: 3 ED: 6
40
(right squished
praying mantis)
125
368
479

StandardTableau([[1,2,5],[3,6,8],[4,7,9]])

IP: 3 OS: 3 ED: 6
06
(the mouse)
146
257
389

StandardTableau([[1,4,6],[2,5,7],[3,8,9]])

IP: 3 OS: 9 ED: 5 if we pick 1 to be the flex at $\infty$, we get a self-evacuative tableau
21
(asterisk)
135
246
789

StandardTableau([[1,3,5],[2,4,6],[7,8,9]])

IP: 3 OS: 9 ED: 5 $p^8(\text{mouse})$
22
123
468
579

StandardTableau([[1,2,3],[4,6,8],[5,7,9]])

IP: 3 OS: 9 ED: 5 $p^2(\text{mouse})$
41
(autograph)
(and a closeup)
135
246
789

StandardTableau([[1,3,5],[2,4,6],[7,8,9]])

IP: 3 OS: 9 ED: 5 $p^8(\text{mouse})$
42
(lefty
autograph)
127
358
469

StandardTableau([[1,2,7],[3,5,8],[4,6,9]])

IP: 3 OS: 9 ED: 5 $p(\text{mouse})$
07
(the co-R curve)
124
358
679

StandardTableau([[1,2,4],[3,5,8],[6,7,9]])

IP: 3 OS: 9 ED: 5 $p^7(\text{mouse})$
08
(the R curve)
134
257
689

StandardTableau([[1,3,4],[2,5,7],[6,8,9]])

IP: 3 Orbits size: 9 ED: 5 $p^3(\text{mouse})$
33
(warrior I)
134
257
689

StandardTableau([[1,3,4],[2,5,7],[6,8,9]])

IP: 3 OS: 9 ED: 5 $p^3(\text{mouse})$
34
(warrior II)
124
358
679

StandardTableau([[1,2,4],[3,5,8],[6,7,9]])

IP: 3 OS: 9 ED: 5 $p^7(\text{mouse})$
02
(Ben Lomond)
124
357
689

StandardTableau([[1,2,4],[3,5,7],[6,8,9]])

IP: 4 OS: 9 ED: 5 if we pick 1 to be the flex at $\infty$, we get a self-evacuative tableau
13
(plough)
136
248
579

StandardTableau([[1,3,6],[2,4,8],[5,7,9]])

IP: 4 OS: 9 ED: 5 in BL
14
135
268
479

StandardTableau([[1,3,5],[2,6,8],[4,7,9]])

IP: 4 OS: 9 ED: 5 in BL
17
(matterhorn)
135
247
689

StandardTableau([[1,3,5],[2,4,7],[6,8,9]])

IP: 4 OS: 9 ED: 5 In BL
18
(Kallur)
124
368
579

StandardTableau([[1,2,4],[3,6,8],[5,7,9]])

IP: 4 OS: 9 ED: 5 in BL
27
135
268
479

StandardTableau([[1,3,5],[2,6,8],[4,7,9]])

IP: 4 OS: 9 ED: 5 in BL
28
136
248
579

StandardTableau([[1,3,6],[2,4,8],[5,7,9]])

IP: 4 OS: 9 ED: 5 in BL
35
(grebe)
136
248
579

StandardTableau([[1,3,6],[2,4,8],[5,7,9]])

IP: 4 OS: 9 ED: 5 in BL
36
(co-grebe)
135
268
479

StandardTableau([[1,3,5],[2,6,8],[4,7,9]])

IP: 4 OS: 9 ED: 5 in BL
01
(the mesa)
123
458
679
IP: 4 OS: 9 ED: 4 in sandcrawler
09
(sandcrawler)
134
256
789
IP: 4 OS: 9 ED: 4 own orbit
10
(sandcrawler
retreat)
123
458
679
IP: 4 OS: 9 ED: 4 in sandcrawler
24
1

?

9
IP: 4
23
1

?

9
IP: 4 Note: 23 and 24 should be
vertically symmetric, so one
of these pictures should be backwards
32
(zorro)
1

?

9
IP: 4
31
(co-zorro)
1

?

9
IP: 4
37
1

?

9
IP: 4
38
1

?

9
IP: 4
05
124
368
579
IP: 5
29
124
368
579
IP: 5
30
1
2
89
IP: 5
15
134
268
579
IP: 5
16
1
8
679
IP: 5
11
124
368
579
IP: 5
12
135
247
689
IP: 5
25
135
267
489
IP: 5
26
123
457
689
IP: 5 OS: 9 ED: 4
04
(vendetta)
125
348
679

StandardTableau([[1,2,5],[3,4,8],[6,7,9]])

IP: 6 OS: 3 ED: 3
19
134
267
589

StandardTableau([[1,3,4],[2,6,7],[5,8,9]])

IP: 6 OS: 3 ED: 3
20
123
456
789

StandardTableau([[1,2,3],[4,5,6],[7,8,9]])

IP: 6 OS: 3 ED: 3