
AN ENRICHED DEGREE OF THE WRONSKI MAP
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Abstract. Given mp different p-planes in general position in (m + p)-dimensional space, a
classical problem is to ask how many p-planes intersect all of them. For example when m = p = 2,

this is precisely the question of “lines meeting four lines in 3-space” after projectivizing. The

Brouwer degree of the Wronski map provides an answer to this general question, first computed
by Schubert over the complex numbers and Eremenko and Gabrielov over the reals. We provide

an enriched degree of the Wronski map for all m and p even, valued in the Grothendieck–Witt
ring of a field, using machinery from A1-homotopy theory. We further demonstrate in all parities

that the local contribution of an m-plane is a determinantal relationship between certain Plücker

coordinates of the p-planes it intersects.

MSC : 14N10, 14F42

1. Introduction

Given m functions f1(t), . . . , fm(t) of degree equal to m+ p− 1, we define their Wronskian

Wr(f1, . . . , fm)(t) :=

∣∣∣∣∣∣∣∣∣
f1(t) f2(t) · · · fm(t)
f ′1(t) f ′2(t) · · · f ′m(t)
...

...
. . .

...

f
(m−1)
1 (t) f

(m−1)
2 (t) · · · f

(m−1)
m (t)

∣∣∣∣∣∣∣∣∣ .
This is a polynomial of degree at most mp. Let km+p−1[t] denote the vector space of polynomials of
degree at mostm+p−1 over a field k. We observe that if s is a root of the Wronskian, then them-plane
span {f1, . . . , fm} ⊆ km+p−t[t] intersects the p-plane Ep(s) = span

{
(t− s)m+p−1, . . . , (t− s)m

}
nontrivially. Thus the fiber of the Wronski counts certain m-planes intersecting mp different p-
planes. For example when m = p = 2, we recover the classical statement that there are two lines
meeting four lines in three-space.

We could also envision these polynomials fi as defining a rational curve by P1 → Pm−1, given
by t 7→ [f1(t) : . . . : fm(t)]. In this case s is a root of the Wronski if and only if the vectors
φ(s), φ′(s), . . . , φ(m−1)(s) do not span all of Pm−1.1 We say that φ inflects at such a point. Thus
the fiber of the Wronski counts rational curves of degree (m+ p− 1) with mp prescribed inflection
points. Viewing the polynomials fi as spanning an m-plane in the (m+ p)-dimensional vector space
of polynomials over k of degree at most (m+p−1), we can consider the Wronski map as a morphism

Date: March 11, 2023.
1This is analogously phrased as inflection of a linear series V ⊆ Γ(P1,O(m + p − 1)). For an investigation of

arithmetically-enriched inflection on elliptic and hyperelliptic curves, see [CL, 5].
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between mp-dimensional varieties

(1) Wr : Grk(m,m+ p) → Pmpk = Proj(kmp[t]).

In 1886, Schubert [24] formulated the number of m-planes meeting mp general p-planes in (m+ p)-
dimensional space as

(2) nC =
1!2! · · · (p− 1)!(mp)!

m!(m+ 1)! · · · (m+ p− 1)!
.

This admits a combinatorial description in that it counts the number of standard Young tableaux of
size m× p. It is also the Brouwer degree of the complex Wronski map (Equation 1 when k = C).
Over the reals, orientation data prevents producing a well-defined integer value for the Brouwer
degree of the real Wronski, nonetheless by working on an affine open cell, Eremenko and Gabrielov
computed the Brouwer degree of the real Wronski map (Equation 1 when k = R) [8, 9], which also
admits a combinatorial description, being the number of semi-shifted standard Young tableaux of
size m× p [10, 28].

nR = ±

{
1!2!···(p−1)!(m−1)!(m−2)!···(m−p+1)!(mp/2)!

(m−p+2)!(m−p+4)!···(m+p−2)!(m−p+1
2 )!(m−p+3

2 )!···(m+p−1
2 )!

m+ p odd

0 m+ p even.

We attach the first few values of these for the reader’s reference:

p
m

2 3 4 5

2 2 5 14 42
3 5 42 462 6006
4 14 462 24024 1662804
5 42 6006 1662804 701149020

Figure 1. Values of nC

p
m

2 3 4 5

2 0 1 0 2
3 1 0 2 0
4 0 2 0 12
5 2 0 12 0

Figure 2. Values of |nR|

In this paper we unify these two computations into a single enriched Brouwer degree in the case
when m and p are both even. The algebrao-geometric analogue of the Brouwer degree that we use is
called the A1-Brouwer degree, first defined by Morel [19], which is valued in the Grothendieck–Witt
group of symmetric bilinear forms over k. This tool has been instrumental in the development of
A1-enumerative geometry (or enriched enumerative geometry). This program has grown in recent
years due to seminal work of Levine [15], Kass and Wickelgren [13], Bachmann and Wickelgren [1],
among others.

Theorem A. (As Theorem 3.29) Let k be any field in which (m+ p− 1)! is invertible, and let m
and p both be even. Then the A1-degree of the Wronski Wr : Grk(m,m+ p) → Pmpk computed on
an open affine cell is

degA
1

Wr =
nC
2
H,

where nC is the Brouwer degree of the Wronski over the complex numbers, and H denotes the
hyperbolic form ⟨1,−1⟩.

Given a closed point W = span {f1, . . . , fm} with Wronskian having roots at distinct scalars
s1, . . . , smp ∈ k, we may compute the local degree of the Wronski map in any parities.
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Theorem B. (As Theorem 4.3) Let k be any field in which (m + p − 1)! is invertible, and let
W ∈ Grk(m,m+ p) be a closed point whose Wronskian is of the form Wr(W )(t) =

∏mp
i=1(t− si) for

distinct si ∈ k. Then we have that

degA
1

W (Wr) = ⟨C · detB⟩ ,

where C is a fixed constant depending only on m, p, and the si’s, and B is a matrix of distinguished
Plücker coordinates of the p-planes Ep(s1), . . . , Ep(smp).

The ℓth column of B consists of mp distinguished Plücker coordinates of the plane Ep(sℓ), and
each row corresponds to the same coordinate. Thus considering the columns as vectors over k, we
have that detB is a signed volume of vectors determined by the p-planes that span {f1, . . . , fm}
intersects.

As the Wronski map also counts rational curves with prescribed inflection data, we provide evidence
that the local A1-degree encodes information about the geometry of the associated rational curve.
In Corollary 4.10 we demonstrate that the local degree at a planar quartic aligns with an enriched
Welschinger invariant in the sense of [11].

1.1. Outline. In Section 2, we provide some historical background for studying the Brouwer degree
of the Wronski map, before exploring in greater detail the technical machinery. We discuss the
rational normal curve, Grassmann duality, and Plücker coordinates, before providing relevant
background from A1-enumerative geometry. We discuss relative orientations of vector bundles and
how the formalism of A1-enumerative geometry allows one to associate to them a well-defined Euler
number valued in Grothendieck–Witt of a ground field.

In Section 3, we compare the Wronski map to a section of an appropriate vector bundle over an
affine chart on the Grassmannian, and demonstrate that their Brouwer degrees agree up to some
global constant. In the case where m and p are both even, we can compute the global A1-degree
of the Wronski map on an affine patch using the fact that the Euler classes of relatively oriented
vector bundles with odd rank summands are hyperbolic.

Finally, in Section 4, we provide an arithmetic formula for the local A1-degree of the Wronski map
that holds in all parities. We demonstrate that this local index at an m-plane can be interpreted as
a “signed volume” of the p-planes that this m-plane intersects. This agrees with and generalizes the
local index computed by [26]. We provide some very preliminary evidence towards a connection
between the local A1-degree of the Wronski map and arithmetic Welschinger invariants a la [11].

1.2. Acknowledgements. Thank you to Kirsten Wickelgren for suggesting and supervising this
problem, and for Mona Merling for being a constant source of mathematical support. We are
immensely grateful to Frank Sottile for inspiring conversations about this work and related topics.
Finally, we have benefited from discussions about this work with many people, including Connor
Cassady, Andrew Kobin, Marc Levine, Stephen McKean, and Sabrina Pauli, to name a few. We
acknowledge support from an NSF Graduate Research Fellowship (DGE-1845298).

2. Preliminaries

We will begin by delving into the Wronski map, understanding its geometric interpretation as
counting planes meeting planes of the correct codimension osculating the rational normal curve. By
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mapping a plane of covectors to the plane it annihilates, we have a natural duality on Grassmannians,
and it will benefit us to be able to translate information through this duality, and discuss how
it relates to things like Plücker coordinates. After this, we establish some of the foundations of
A1-enumerative geometry, from which we collect the tools to explore the local degree of the Wronski
in greater detail.

2.1. The rational normal curve. Over the complex numbers, the degree of the Wronski map
provides a count of planes which meet a collection of planes, which are said to osculate the rational
normal curve. We will define these terms, and provide a rough outline of this argument over any
field here, but for a more rigorous version of this statement over the complex numbers, we refer the
reader to [25, §10.1].

We may view affine space Am+p
k as the space km+p−1[t] of polynomials of degree at most m+ p− 1

with coefficients in k by considering a rational point (a0, . . . , am+p−1) ∈ Ank as a polynomial

a0+a1t+ . . .+am+p−1t
m+p−1 ∈ k[t]. We then let γ : A1

k → Am+p
k denote the rational normal curve,

also referred to the moment curve γ, defined to be the image of the map

s 7→ (1, s, s2, s3, . . . , sm+p−1),

where as above we are identifying affine space with a space of polynomials. That is

γ(s) = 1 + st+ s2t2 + . . .+ sm+p−1tm+p−1 ∈ km+p−1[t].

We may define the derivative of the rational normal curve by deriving termwise, to obtain

γ′(s) = (0, 1, 2s, 3s2, . . . , (m+ p− 1)sm+p−2),

which corresponds to the polynomial

γ′(s) = t+ 2st2 + 3s2t3 + . . .+ (m+ p− 1)sm+p−2tm+p−1 ∈ km+p−1[t].

Higher derivatives are defined analogously. One may check that, for any s, the elements γ(s), γ′(s),
. . ., γ(m+p−1)(s) yield a basis of km+p−1[t]. Thus we obtain an osculating flag F•(s) along the
rational curve whose i-plane at any time s is the span:

(1) Fi(s) := span
{
γ(s), γ′(s), . . . , γ(i−1)(s)

}
.

In this setting, we say that the i-plane Fi(s) osculates the rational normal curve at the point
γ(s). We will see in Remark 2.5 that Fm(s) is dual in a sense to the planes Ep(s) defined in the
introduction.

The monomial basis for polynomials provides an isomorphism between km+p−1[t] and its dual
km+p−1[t]

∗, given by sending a polynomial g to g∗, where g∗(f) is defined to be the dot product of

the coefficients of g and f . Under this isomorphism we may view each γ(i)(s) as a covector, from
which perspective it admits an interesting interpretation.

Proposition 2.2. Considering γ(i)(s) as a covector, we see that it has the interpretation of mapping
a polynomial to its ith derivative evaluated at s:(

γ(i)(s)
)∗

(f) = f (i)(s).
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Proof. We may compute explicitly for 0 ≤ j ≤ m+ p− 1 that

γ(j)(s) =

m+p−1∑
r=j

r!

(r − j)!
sr−jtr ∈ km+p−1[t].

Therefore for any f(t) =
∑m+p−1
i=0 ait

i, we have that(
γ(j)(s)

)∗
(f) =

m+p−1∑
r=j

r!

(r − j)!
ars

r−j = f (j)(s).

□

We note that we may write the Wronskian as a determinant of matrices built out of the rational
normal curve and the input polynomials. Let f1(t), . . . , fm(t) ∈ km+p−1(t) be m linearly independent
polynomials of degree at most m+ p− 1, so that their span defines a point on Grk(m,m+ p). Let

fi(t) =
∑m+p−1
j=0 ai,jt

j , and define a matrix M comprised of the coefficients of the polynomials fi:

M =


coefficients of f1
coefficients of f2

...
coefficients of fm

 =


a1,0 a1,1 · · · a1,m+p−1

a2,0 a2,1 · · · a2,m+p−1

...
...

. . .
...

am,0 am,1 · · · am,m+p−1

 .

Let Γ(s) denote the matrix km → km+p−1[t] whose jth column is given by the coefficients of the

polynomial γ(j−1)(s) ∈ km+p−1[t]

Γ(s) =
(
γ(s) γ′(s) · · · γ(m−1)(s)

)
.

Phrased differently, the columns of Γ(s) are the basis vectors spanning the m-plane Fm(s) osculating
the rational normal curve at γ(s).

Proposition 2.3. In the previous notation, one may express the Wronskian of f1, . . . , fm evaluated
at a point s as a determinant:

det(M · Γ(s)) = Wr(f1, . . . , fm)(s).

Proof. Multiplying a row of M with a column of Γ(s) is the same as taking the dot product of
γ(i)(s) with fj(t), yielding f

(i)(s) by Proposition 2.2. It follows then that the determinant of the
product of M and Γ(s) yields the Wronskian evaluated at s. □

Corollary 2.4. Consider f1, . . . , fm as covectors, let H be the p-plane defined by their simultaneous
vanishing, and let s ∈ k be a fixed scalar. Then the Wronskian Wr(f1, . . . , fm)(t) vanishes at s if
and only if H meets Fm(s) non-trivially.

Proof. Linear dependence in the columns of M · Γ(s) implies that there is a non-trivial linear combi-
nation of the covectors γ(s), . . . , γ(m−1)(s) which vanishes on each fi(t). This linear combination
provides a point on the intersection of Fm(s), which is the span of these covectors, and on H, the
plane of covectors annihilating span {f1, . . . , fm}. □

We can rephrase this result slightly to state that the plane defined by the span of f1, . . . , fm intersects
a p-plane dual to Fm(s) nontrivially. In order to make this precise, we must discuss a natural duality
arising on Grassmannian varieties.
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2.2. Grassmann Duality. Let Grk (m, (km+p−1[t])
∗) denote the collection of m-planes in the

space of linear forms on km+p−1[t], and let span {h1, . . . , hm} denote a point on this Grassmannian.
We may consider the action of the hi’s on km+p−1[t]. The subspace of km+p−1[t] given by those
polynomials f so that h1(f) = 0 is a subspace of codimension 1. The vanishing locus of m linearly
independent linear forms imposes m linearly independent conditions, and thus produces a subspace
of km+p−1[t] of codimension m. That is to say, each such point {h1, . . . , hm} canonically defines a
p-plane in km+p−1[t]. This yields a canonical (i.e. basis-independent) isomorphism

Grk (m, (km+p−1[t])
∗) ∼= Grk(p, km+p−1[t]).

This isomorphism is called Grassmann duality. It is an important property of Grassmannians, and
for instance can be used to explain the fact that d(m, p) = d(p,m). Grassmann duality is a crucial
tool for our geometric interpretation of the Wronski map, and shall be used heavily in this paper.

Remark 2.5. Wemay define a flag E•(s) in km+p−1 where Ei(s) = span
{
(t− s)m+p−1, . . . , (t− s)m+p−i−1

}
is the space of those polynomials which vanish at s to order ≥ m+ p− i. Then for a polynomial f ,
the following are equivalent:

(1) f ∈ Ei(s)
(2) (t− si)

m+p−i|f(t)
(3) f , viewed as a linear form, annihilates Fm+p−i(s), the osculating plane to the rational

normal curve at s.

Thus the flags E•(s) and F•(s) are dual [25, Theorem 10.8]. This allows us to revisit Corollary 2.4 to
say that Wr(f1, . . . , fm)(t) vanishes at s if and only if the m-plane W = span {f1, . . . , fm} intersects
Ep(s) non-trivially. This perspective allows us to develop a geometric intuition for the Wronski.

Proposition 2.6. (Geometric interpretation of the Wronski map) Let s1, . . . , smp be distinct scalars

in k. ThenWr−1 (
∏mp
i=1(t− si)) consists of thosem-planes which intersect each of Ep(s1), . . . , Ep(smp)

non-trivially.

In particular this tells us that the Brouwer degree of the Wronski map provides a solution to an
enumerative problem.

2.3. Schubert cells and the Plücker embedding. Frequently the Grassmannian can be under-
stood better once it has been embedded in projective space. Viewing the vectors spanning a plane
as a wedge power, we can sit the Grassmannian inside a suitably large projective space.

Definition 2.7. The Plücker embedding for the Grassmannian Grk(m, km+p−1[t]) is defined to be
the closed embedding

Pl : Gr(m, km+p−1[t]) /↪→ Proj (∧mkm+p−1[t])

span {f1, . . . , fm} 7→ [f1 ∧ · · · ∧ fm] .

Notation 2.8. We denote by
(
[m+p]
m

)
the following set of integer sequences:(

[m+ p]

m

)
= {(α1, . . . , αm) : 1 ≤ α1 < α2 < · · · < αm ≤ m+ p} .
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Provided we have chosen a basis e1, . . . , em+p for km+p−1[t], we see that the projective space

Proj (∧mkm+p−1[t]) = P(
m+p
m )−1 inherits a basis consisting of the coordinates

Pα = eα1
∧ eα2

∧ · · · ∧ eαm
,

where α is varying over all multiindices in
(
[m+p]
m

)
. Given any W = span {f1, . . . , fm} on Grk(m,m+

p), we may embed it in projective space, where it must be expressible as a k-linear sum over the
Pα’s. We refer to the coefficients appearing in this sum as the Plücker coordinates of W , and denote
them by zα(W ):

f1 ∧ · · · ∧ fm =
∑

α∈([m+p]
m )

zα(W )Pα.

How do we compute these zα(W )’s? We remark that we may write the coefficients of f1, . . . , fm in
the basis e1, . . . , em+p, yielding an m× (m+ p) matrix over k. The coefficient zα(W ) associated to
a multiindex α = (α1, . . . , αm) is precisely the determinant of the m×m-minor of this matrix given
by the αith columns. As the image of the Plucker embedding is a projective space, any ambiguities
arising in expressing W as a matrix are resolved; that is, the Plücker coordinates corresponding to
W are well-defined.

Remark 2.9. It is a classical fact that the Plücker embedding is injective; that is, a point on the
Grassmannian can be recovered from its Plücker coordinates.

Grassmann duality translates to duality on Plücker coordinates as well. In order to demonstrate
this, we must first define the dual of a multiindex.

Definition 2.10. Let α ∈
(
[m+p]
m

)
be a multiindex (α1, . . . , αm). Denote by αc ∈

(
[m+p]
p

)
the

complement of α in (1, . . . ,m + p). Then we define the dual multiindex α∗ whose entries are
m+ p+ 1− (αc)i.

Example 2.11. If m = 2 and p = 3, let α = (1, 4). Then αc = (2, 3, 5), and α∗ = (1, 3, 4).

Proposition 2.12. Consider the Grassmann duality isomorphism

Grk(m, km+p−1[t]
∗)

∼−→ Grk(p, km+p−1[t]),

given by sending an m-plane of covectors to the p-plane it annihilates. Let α ∈
(
[m+p]
m

)
, and fix a

basis {ei} of km+p−1[t] with dual basis {e∗i }. Then for any W ∗ ∈ Grk(m, km+p−1[t]
∗), where W is

the plane it annihilates, we have that

zα(W
∗) = zα∗(W ).

That is, the αth Plücker coordinate of W ∗ in the dual basis e∗i is the α∗th Plücker coordinate of W
in the basis {ei}.

Example 2.13. We have that zα(Fm(s)) = zα∗(Ep(s)) for any scalar s and any multiindex α.

2.4. Background from A1-enumerative geometry. Solving an enumerative problem can often
be reduced to the computation of a certain characteristic number of a vector bundle, under certain
orientation data and expected dimension assumptions. We first begin with a moduli space of possible
solutions to the enumerative problem (for the example of lines on a cubic surface, our moduli space
would simply be the Grassmannian of lines in projective 3-space). Following this, we construct
an appropriate vector bundle over the moduli space together with a section of the bundle whose

7



zeros are precisely the solutions to the enumerative problem at hand, and which are assumed to
be isolated points. In the presence of certain orientation data for the bundle, the solution to our
enumerative problem is the Euler class of the bundle, which by the Poincaré–Hopf theorem can be
thought of as a sum of local indices of the section at points in its zero locus. On a coordinate patch
which is compatible with our orientation data, these local indices can be computed as local Brouwer
degrees of our section at points in the vanishing locus. Over the complex numbers, the local Brouwer
degree at any simple zero will be equal to 1, which we read as a Boolean value informing us that this
point on the moduli space is a solution to the enumerative problem (at non-simple points, it will
encode the multiplicity of the solution as a natural number). Over other fields, a richer definition of
Brouwer degree can produce a wider variety of data at a single solution to an enumerative problem,
often revealing deep information about the ambient geometry that was invisible in the complex
setting.

The algebrao-geometric analogue of the Brouwer degree that we use is called the A1-Brouwer degree,
first defined by Morel [19], which is valued in the Grothendieck–Witt group of symmetric bilinear
forms over k. This tool has been instrumental in the development of A1-enumerative geometry (or
enriched enumerative geometry). This program has grown in recent years due to seminal work of
Levine [15], Kass and Wickelgren [13], Bachmann and Wickelgren [1], among others. Recent results
include an enriched Bézout’s theorem [17], an enriched count of lines on a quintic threefold [22], and
a count of conics meeting eight lines [6]. For further reading on this field we refer the reader to the
survey papers [3, 23].

In order to compute local A1-degrees of sections of vector bundles, we will first need some analogue
of charts from differential topology. This is provided by Nisnevich coordinates, defined by [12,
Definition 17].

Definition 2.14. Let X be a smooth n-scheme, p ∈ X a closed point, and U ∋ p an open
neighborhood. Then we say that an étale map

φ : U → Ank ,
which induces an isomorphism on the residue field at p, defines Nisnevich coordinates near p. We
say this defines Nisnevich coordinates centered at p if φ(p) = 0.

Definition 2.15. Let X be a smooth n-scheme admitting Nisnevich coordinates φ : U → Ank =
Spec k[x1, . . . , xn] near a point p ∈ X. Affine space admits a standard trivialization, given by the
basis elements d

dx1
, . . . , d

dxn
on TAnk . Since φ is étale, it induces an isomorphism

TX|U
∼−→ TAnk ,

and by pulling back the basis elements d
dxi

, we obtain a basis for TX|U . We refer to these basis

elements as the distinguished trivialization of TX|U arising from the Nisnevich coordinates φ.

Example 2.16. If f : Ank → X is a Zariski open immersion, then by denoting U := im(f), the
function U → Ank given by y 7→ f−1(y) is étale, and moreover defines Nisnevich coordinates.

Definition 2.17. (c.f. [21], [12], [18, §4.3]) Suppose E → X is a vector bundle of rank n over a
smooth, projective n-scheme over a field k. Then we say E is relatively oriented over X if there is
an isomorphism

j : Hom (detTX,detE) ∼= L ⊗2,

for L → X a line bundle. Any such choice of isomorphism j is called a relative orientation.
8



Definition 2.18. For an open set U ⊆ X, and a relatively oriented bundle (E, j) we say a section
s ∈ Γ (U,Hom (detTX,detE)) is a square if its image in Γ(U,L ⊗2) is a square, meaning it is of
the form s′ ⊗ s′ for some s′ ∈ Γ(U,L ).

Now suppose we had Nisnevich coordinates φ : U → Ank near a point p ∈ X, and a relative orientation

j : Hom (detTX,detE)
∼−→ L ⊗2. As in Definition 2.15, the coordinates φ induce a trivialization of

TX|U , and by restricting U we may assume that there is a trivialization of the vector bundle E
over U , meaning an isomorphism ψ : E|U ∼= Ank .

Definition 2.19. In the situation above, we say the trivialization ψ is compatible with the Nisnevich
coordinates φ and the relative orientation (E, j) if the associated element in

Hom (det TX|U ,det E|U )

taking our distinguished basis of det TX|U to the distinguished basis of det E|U is a square.

If σ : X → E is a section, p is an isolated zero of σ, and U ∋ p an open neighborhood not containing
any other points of Z(σ), we can pull back the map ψ ◦ σU by φ to an endomorphism of affine space,
which we denote by (f1, . . . , fn), yielding the following diagram:

U E|U

Ank Ank .

φ

σ|U

ψ

(f1,...,fn)

Definition 2.20. The local index of σ at p is defined by

indpσ = degA
1

φ(p)(f1, . . . , fn),

where degA
1

φ(p)(f) is the local A1-Brouwer degree of f at φ(p), that is, it is a class in the Grothendieck–

Witt group GW(k).

For techniques and code for computing such local degrees, we refer the reader to [4].

Definition 2.21. [12, Definition 33] Let E → X be a relatively oriented vector bundle of rank r
over a smooth r-dimensional scheme X ∈ Schk, and let σ : X → E be a section of the bundle with
isolated zeros so that Nisnevich coordinates exist near every zero. We define the Euler number

e(E, σ) =
∑

p∈Z(σ)

indpσ,

where we are summing over closed points p where σ vanishes.

Proposition 2.22. ([1, Theorem 1.1]) The Euler class of a relatively oriented vector bundle e(E, σ)
over a smooth and proper scheme X is independent of the choice of section.

We can also ask about how we might wield Nisnevich coordinates to compute a global A1-degree of
a morphism between suitably nice smooth n-schemes. This notion is based off forthcoming work of
Kass, Levine, Solomon and Wickelgren [11], and was discussed briefly in the expository paper [23,
§8]. See also [20, p. 2.53] for the degree of an endomorphism of projective space, and [18] for the
degree of an endomorphism of Pn/Pn−1.
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Definition 2.23. ([11]) Let f : X → Y be a finite map of smooth n-schemes over a field k. We say
that f is oriented if Hom (detTX,det f∗TY ) is a relatively oriented vector bundle over X. Phrased
differently, a relative orientation for f is a choice of isomorphism

j : Hom(detTX,det f∗TY )
∼−→ L ⊗2,

for L → X a line bundle over X.

Definition 2.24. ([11]) Let U ⊆ X and V ⊆ Y be open sets such that f(U) ⊆ V . We say that
Nisnevich coordinates φ : U → Ank and ψ : V → Ank are compatible with the relative orientation j if
the distinguished section of

Γ(U,Hom(det TX|U ,det f
∗TY |U )

is a square.

Theorem 2.25. ([11], c.f. [23, p. 8.7]) For a finite oriented map f : X → Y of smooth k-schemes,
with Y an A1-connected scheme, we have a well-defined degree valued in GW(k), defined by

degA
1

(f) =
∑
p∈f−1(q) deg

A1

p (f).

3. The A1-degree of the Wronski map

Our strategy for computing the A1-degree of the Wronski is to exhibit a section σ of a particular
vector bundle V → Grk(m,m+ p), and on a suitable open chart, equate σ with the Wronski map
up to another morphism of constant A1-degree. In this way, we will be able to equate the local
index of the section σ with a constant multiple of the local A1-degree of the Wronski map in all
possible parities (Lemma 3.27). In the case when m and p are even, the bundle V will be relatively
orientable, and its Euler class will therefore be an integer multiple of the hyperbolic form in GW(k)
(Lemma 3.28), as will the global A1-degree of the Wronski map on an affine chart. Deferring to the
classical computation of Schubert, as we know the rank of this form over C, we are able to provide
the global A1-degree of the Wronski map in Theorem 3.29.

3.1. Nisnevich coordinates on the Grassmannian, distinguished bases. We will begin
by establishing the existence of Nisnevich coordinates on an arbitrary Grassmannian. Let W ∈
Grk(m,m+ p) be an arbitrary point, and pick a basis e1, . . . , em+p of km+p−1[t] so that

W = span {ep+1, . . . , em+p} .

Definition 3.1. We define a moving basis around W , denoted by {ẽ1, . . . , ẽm+p}, to be a basis of
km+p−1[t], parametrized by Ampk = Spec [xi,j ]1≤i≤m, 1≤j≤p:

(2) ẽi =

{
ei 1 ≤ i ≤ p

ei +
∑p
j=1 xi−p,jej p+ 1 ≤ i ≤ m+ p.

Consider the morphism

Ampk = Spec [xi,j ]1≤i≤m, 1≤j≤p → Grk(m,m+ p)

(xi,j)i,j 7→ span {ẽp+1, . . . , ẽm+p} .
10



Another way to phrase the image of this map is that (xi,j) is sent to

(3) RowSpace


x1,1 · · · x1,p 1 0 · · · 0
x2,1 · · · x2,p 0 1 · · · 0
...

. . .
...

...
...

. . .
...

xm,1 · · · xm,p 0 0 · · · 1

 .

where the columns correspond to the basis elements e1, . . . , em+p. This define a Zariski open
immersion by the content of the argument in [12, Lemma 40]. Letting U denote its image, we obtain
Nisnevich coordinates centered around W by Example 2.16.

Remark 3.4. We can provide a more classical description of the Nisnevich coordinates above. We
note that the m-plane W lives inside the ambient vector space, so we have a short exact sequence

W ↪−→ km+p−1[t] → km+p−1[t]/W.

Picking a splitting for this is equivalent to picking a complementary p-plane to W . We remark that,
due to the construction of the tangent space to the Grassmannian at W , we have an isomorphism

TWGrk(m, km+p−1[t]) ∼= Hom(W,km+p−1[t]/W ).

By fixing such a complementary plane (i.e. choosing a basis e1, . . . , ep), we can identify Hom(W,km+p−1[t]/W )
with Ampk , by sending a homomorphism to its graph. This graph is precisely given by the matrix in
Equation 3. In this sense, our open cell U is the subspace of m-planes in the Grassmannian which
only intersect the p-plane span {e1, . . . , ep} trivially (c.f. [7, §3.2.2]).

Remark 3.5. We remark that the xi,j ’s can be recovered as particular Plücker coordinates. Let
W denote the m-plane corresponding to (xi,j). Consider the k × k minor of columns (j, p +

1, . . . , p̂+ i, . . . , p+m). Expanding along the first column, we see that everything vanishes until we
hit the ith row, at which point the determinant yields (−1)ixi,j . That is,

xi,j = (−1)ip
(j,p+1,̂p+i,...,p+m)

(W ).

Here the Plücker coordinates are taken with respect to the basis {e1, . . . , em+p}. For concision we
will introduce new notation to correspond to this multiindex:

(6) α(i, j) := (j, p+ 1, . . . , p̂+ i, . . . , p+m).

Nisnevich coordinates defined by a moving basis induce distinguished basis elements on the tangent
space TGrk(m,m+ p)|U . In order to describe these distinguished basis elements, we first must
discuss the structure of the tangent space of the Grassmannian.

Definition 3.7. The tautological bundle on the Grassmannian, denoted S → Grk(m,m+ p), is the
m-plane bundle whose fiber over the point W is the vector space W itself.

The line bundle O(1) on the Grassmannian, defined to be the pullback of O(1) under the Plücker
embedding, is precisely detS = ∧mS. Including the tautological bundle into the trivial rank mp
bundle, we obtain the quotient bundle, defined as the cokernel

0 → S → Ampk ↠ Q → 0.

We can therefore express the tangent bundle of the Grassmannian by

(8) TGrk(m,m+ p) ∼= Hom(S,Q) = S∗ ⊗Q.
11



Proposition 3.9. Given Nisnevich coordinates U → Ampk corresponding to a moving basis
ẽ1, . . . , ẽm+p, then one has the following distinguished bases over U :

(1) {ẽp+1, . . . , ẽp+m} is a distinguished basis for the tautological bundle S|U
(2) Letting φ̃i denote the cobasis element to ẽi, we see that {φ̃p+1, . . . , φ̃m+p} provides a

distinguished basis for the dual tautological bundle S∗|U .
(3) {ẽ1, . . . , ẽp} provides a distinguished basis for the quotient bundle Q|U .
(4) The tensor products of vectors

{φ̃j ⊗ ẽi : 1 ≤ i ≤ p and p+ 1 ≤ j ≤ m+ p}

provide a distinguished basis for the tangent bundle TGrk(m,m+ p)|U .

Lemma 3.10. If m and p are both even, there is a global orientation of the tangent bundle
TGrk(m,m+ p) which is compatible with any Nisnevich coordinates defined by moving bases.

Proof. This is a direct generalization of [26, Lemma 8]. Let (e1, . . . , em+p) and (e′1, . . . , e
′
m+p) denote

two bases of km+p−1[t], and let {ẽi}, {ẽ′i} denote the associated moving bases parametrizing open
cells U and U ′ of the Grassmannian. If U ∩ U ′ ̸= ∅, we have that

span{ẽp+1, . . . , ẽm+p} = span{ẽ′p+1, . . . , ẽ
′
m+p} on U ∩ U ′.(11)

Letting φ̃i and φ̃
′
i denote the dual basis elements, respectively, we obtain canonical trivializations

for TGrk(m,m+ p)|U∩U ′ , given by:

{φ̃j ⊗ ẽi : 1 ≤ i ≤ p, p+ 1 ≤ j ≤ m+ p},
{φ̃′

j ⊗ ẽ′i : 1 ≤ i ≤ p, p+ 1 ≤ j ≤ m+ p}.

Denote by B the change of basis matrix from {ẽ1, . . . , ẽp} and
{
ẽ′1, . . . , ẽ

′
p

}
on the quotient bundle

Q|U∩U ′ , and denote by A the change of basis matrix on S∗|U∩U ′ from the basis {φ̃p+1, . . . , φ̃m+p}
to
{
φ̃′
p+1, . . . , φ̃

′
m+p

}
. Then the change of basis matrix on TGrk(m,m+ p)|U∩U ′ is given by A⊗B.

The determinant of this matrix is det(A)m det(B)p. As m and p are both even, this is a square in
O(U ∩ U ′)×. □

3.2. Relative orientations of bundles over the Grassmannian; even-even parity. We will
discuss a bundle V over the Grassmannian, which is relatively orientable in the case where m and p
are both even. We will additionally construct a section σ : Grk(m,m+ p) → V, whose local degree
at any simple zero is related to the local A1-degree of the Wronski map in any parities.

Notation 3.12. We denote by V the mp-dimensional line bundle

(13) V =

mp⊕
i=1

m∧
S∗ → Grk(m,m+ p).

Proposition 3.14. The vector bundle V → Grk(m,m+ p) is relatively orientable if and only if m
and p are both even.
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Proof. For our bundle V, we compute that

Hom(detTGr(m,m+ p),detV) ∼= Hom(O(m+ p),

mp∏
i=1

det(E)) ∼= Hom(O(m+ p),O(mp))

∼= O(−m− p)⊗O(mp) ∼= O(mp−m− p).

We note that O(mp−m− p) is a square of a line bundle if and only if mp−m− p ≡ 0 (mod 2),
that is, m and p are both even. □

Proposition 3.15. If m and p are both even, then there is a relative orientation of the vector
bundle V → Grk(m,m+ p) which is compatible with Nisnevich coordinates defined by moving bases.

Proof. Take two cells U and U ′ on Grk(m,m + p) with non-empty intersection, parametrized
respectively by the moving bases ẽi and ẽ

′
i, and assume as before that

span {ẽp+1, . . . , ẽm+p} = span
{
ẽ′p+1, . . . , ẽ

′
m+p

}
on U ∩ U ′.

The trivializations {φ̃p+1, . . . , φ̃m+p} and
{
φ̃′
p+1, . . . , φ̃

′
m+p

}
on the dual tautological bundle S∗|U∩U ′

induce associated trivializations φ̃p+1∧· · ·∧φ̃m+p and φ̃
′
p+1∧· · ·∧φ̃′

m+p, respectively, for ∧mS∗|U∩U ′ .
If A denotes the change of basis matrix on S∗|U∩U ′ as above, then det(A) denotes the change of basis
on ∧mS∗|U∩U ′ . Since V = ⊕mpi=1∧mS∗, we have that the change of basis on V|U∩U ′ is given by a block
sum of mp copies of det(A). Thus the change of basis matrix in Hom(detTGrk(m,m+ p),detV) ∼=
(detTGrk(m,m+ p))∗ ⊗ detV over U ∩ U ′ is given by

det (A⊗B)
−1 ⊗ det

(
mp⊕
i=1

det(A)

)
= det(A)−m det(B)−p det(A)mp.

As m and p are both even, this is a square. □

3.3. Interpreting the Wronski map as a section of a line bundle. We now construct a section
σ of the bundle V which is intimately related to the Wronski. For this section we fix s1, . . . , smp
to be distinct scalars in k — the reader is invited to think of these scalars as timestamps on A1

k,
yielding positions on the rational normal curve at each time, as well as osculating planes.

Recall from Proposition 2.2 the covector
(
γ(j)(s)

)∗
, which mapped a polynomial f to f (j)(s). We

would like to consider these covectors as j ranges from 0 to m− 1, and as s varies over our set of
scalars {s1, . . . , smp}. To that end, it will be beneficial to introduce some more compact notation.

Notation 3.16. We denote by σi,j the covector
(
γ(j−1)(si)

)∗
, given by

σi,j : km+p−1[t] → k

f 7→ f (j−1)(si).

Note the indexing on σi,j : the index i is running from 1 to mp, keeping track of the time on the
rational normal curve, while j is running from 1 to m, indicating the extent to which the input is
being differentiated.

Remark 3.17. For a fixed i, the covectors {σi,1, σi,2, . . . , σi,m} cut out a p-plane under Grassmannian
duality. This plane is precisely Ep(si), as defined in Remark 2.5.
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Notation 3.18. We denote by σi the wedge of covectors σi,1 ∧ · · · ∧ σi,m. This is a section of O(1)
over the Grassmannian, that is, σi : Grk(m,m+p) → ∧mS∗. Letting i vary from 1 to mp, we obtain
mp sections of ∧mS∗, that is, a section of our bundle V. We denote by σ this section:

σ :=

mp⊕
i=1

σi =

mp⊕
i=1

(
∧mj=1σi,j

)
: Grk(m,m+ p) → V =

mp⊕
i=1

∧mS∗.

We may also write σ = σ(s1, . . . , smp) if we wish to indicate dependence of σ on the initial choice of
scalars si.

Proposition 3.19. We see that W = span {f1, . . . , fm} is a zero of σi if and only if the Wronskian
Wr(f1, . . . , fm)(t) vanishes at si.

Proof. We observe that σi(W ) vanishes if and only if (σi,1 ∧ · · · ∧ σi,m)(f1 ∧ · · · ∧ fm) = 0. This
evaluation of wedges of covectors can be computed as

σi(W ) = (σi,1 ∧ · · · ∧ σi,m)(f1 ∧ · · · ∧ fm)

=

∣∣∣∣∣∣∣∣∣
f1(si) f2(si) · · · fm(si)
f ′1(si) f ′2(si) · · · f ′m(si)

...
...

. . .
...

f
(m−1)
1 (si) f

(m−1)
2 (si) · · · f

(m−1)
m (si)

∣∣∣∣∣∣∣∣∣
= Wr(f1, . . . , fm)(si).

□

Corollary 3.20. Consider the class of the polynomial Φ(t) =
∏mp
i=1(t− si) in projective space Pmpk .

We have that the following are equivalent for a point W = span {f1, . . . , fm} ∈ Grk(m,m+ p):

(1) W has nonempty intersection with each of Ep(s1), . . . , Ep(smp).
(2) W is a zero of the section σ : Grk(m,m+ p) → V.
(3) Wr(f1, . . . , fm)(t), as a polynomial in t, has a root at each si for 1 ≤ i ≤ mp.
(4) W lives in the fiber Wr−1 (Φ(t)).

3.4. Big open cells. Let Y ⊆ Pmpk denote the collection of monic polynomials in Proj kmp[t] of
degree equal to mp. This defines an open affine cell of projective space, of dimension mp. Denote
by X = Wr−1(Y ) the preimage of this cell in the Grassmannian.

Remark 3.21. We refer to X as the big open cell, and remark a few properties about it.

(1) This is is a coordinate patch parametrized around the point span
{
tp, . . . , tm+p−1

}
, and

therefore X ∼= Ampk .
(2) This is the big open cell as defined in [8, p.5], from where we took the terminology.
(3) A point W ∈ Grk(m,m+ p) lies in the open cell X if and only its Wronskian is of degree

mp.

By this very last point, if Φ(t) :=
∏mp
i=1(t − si), then in order to study the fiber Wr−1(Φ(t)), it

suffices to restrict our attention to the big open cell X. Let W ∈ X be an arbitrary point, and fix
ep+1, . . . , ep+m to be monic polynomials which span W . Extending this to a basis e1, . . . , em+p of
km+p−1[t], we can parametrize an open cell U ∼= Ampk centered around W . For degree reasons, we
observe that U ⊆ X, so that we have an induced map Wr|U : U → Y .

14



Remark 3.22. Let W ∈ X, and let U be an affine cell parametrized around W by a moving basis.
Then the restricted Wronski map Wr|U : U → Y admits an orientation induced by the trivializations
of TU and TY .

Thus we see that Wr|U is a map of the form Ampk → Ampk . What does this map look like? If (xij) is
a point on Ampk ∼= U , we have that its Wronskian is a degree mp polynomial of the form

Wr (ẽp+1(x), . . . , ẽp+m(x)) (t) =

mp∑
i=0

hit
i.

This is by definition a point [h0 : . . . : hmp] in projective space. In order to take the affine chart
Y we must divide out by hmp, which we know to be non-zero by Remark 3.21 since W lies on X.
Moreover since we picked the ep+i’s to be monic, we know exactly what hmp is! By only picking
out the highest degree terms in the Wronskian, we can observe that hmp is the coefficient on the
monomial Wr

(
tp, tp+1, . . . , tm+p−1

)
, which is well-defined over k via our hypothesis that (m+p−1)!

is invertible over k. It is well-known that this is the Vandermonde V (p, p + 1, . . . ,m + p − 1) [2,

Lemma 1], and a simple induction argument shows that this is equal to
∏m−1
i=1 i!. We will now

compare the local section σ to the Wronski map. In order to do this, we must first introduce some
notation.

Notation 3.23. We define the following maps from Ampk to itself:

• By abuse of notation, denote by Vm,p : Ampk → Ampk the map which multiplies each coordinate

by the scalar
∏m−1
i=1 i!.

• Denote by evs : Ampk → Ampk the map which sends a tuple (a0, . . . , am+p−1), viewed as a

polynomial g(t) =
∑mp−1
i=0 ait

i to the tuple (g(s1), . . . , g(smp)).
• Finally, denote by trs the translation map

trs : Ampk → Ampk
(x1, . . . , xmp) 7→

(
x1 + Vm,ps

mp
1 , . . . , xmp + Vm,ps

mp
mp

)
.

Lemma 3.24. Let W ∈ X, and let U be an open cell parametrized around X, determined by a
monomial basis as above. Then the following diagram commutes:

V|U

U Ampk

Y Amp Amp

⊕mp
i=1(ẽp+1∧···∧ẽm+p)σ|U

Wr|U

Vm,p
evs

trs

Proof. Fix e1, . . . , emp as desired, and begin with a point (xij) on the affine space U . Let its Wronski
be written as

Wr (ẽp+1(x), . . . , ẽp+m(x)) =

mp∑
i=0

hit
i,
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where we have that hmp =
∏m−1
i=1 i! as above. Landing in Y , we have that (xi,j) is mapped to the

mp-tuple (
h0
hmp

, . . . ,
hmp−1

hmp

)
.

Applying the map Vm,p, we multiply each factor through by hmp (which we remark is a constant
which is independent of (xij)), which clears denominators and maps us to

(h0, h1, . . . , hmp−1) .

Applying the evaluation map evs, we arrive at(
mp−1∑
i=0

his
i
1,

mp−1∑
i=0

his
i
2, . . . ,

mp−1∑
i=0

his
i
mp

)
.

Finally applying our translation map, we obtain(
mp∑
i=0

his
i
1, . . . ,

mp∑
i=0

his
i
mp

)
= (Wr (ẽp+1(x), . . . , ẽp+m(x)) (s1), . . . ,Wr (ẽp+1(x), . . . , ẽp+m(x)) (smp)) .

However we remark that by Proposition 3.19 this is exactly what we obtain by applying σ to the
point (xij) and trivializing V over U . □

Remark 3.25. The global A1-degree of the map Vm,p is
〈(∏m−1

i=1 i!
)mp〉

, since we are simply

multiplying the scalar
∏m−1
i=1 i! into each of the mp coordinates. The global degree of the translation

map trs is just ⟨1⟩, since translation is A1-homotopic to the identity.

Lemma 3.26. The global A1-degree of the evaluation map evs1,...,smp is precisely

degA
1

ev(s1,...,smp) = ⟨V (s)⟩ ,
where V (s) := V (s1, . . . , smp) denotes the Vandermonde determinant. As a result, since this is a
rank one element of GW(k), this is the local A1-degree at any root of ev(s1,...,smp).

Proof. Let ev(s1,...,smp) = (ev1, . . . , evmp), and let (a0, . . . , amp−1) correspond to a0 + a1t + . . . +

amp−1t
mp−1 + tmp. Then we can see

∂evj

∂ai
= si−1

j . □

Lemma 3.27. Let s1, . . . , smp be distinct, and let Φ(t) =
∏mp
i=1(t− si). For any [W ] ∈ Wr−1(Φ(t)),

we have that

indWσ =

〈
V (s) ·

(
m−1∏
i=1

i!

)mp〉
· degA

1

W Wr.

Proof. The proof follows from applying the local degree to the commutative diagram in Lemma 3.24,
and deferring to the computation in Lemma 3.26. □

An explicit formula for indWσ at any simple root will be provided in Section 4.

Lemma 3.28. If V is relatively orientable, then its Euler class e(V) ∈ GW(k) is an integer multiple
of the hyperbolic element H.

For a proof of this lemma, see [15, p. 4.3] as well as the discussion in [26, Section 4].
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Theorem 3.29. Let m and p be even. Then the A1-degree of the Wronski map computed on the
big open cell X is

degA
1

Wr|X =
d(m, p)

2
H.

Proof. Let s1, . . . , smp be distinct, and let V (s) = V (s1, . . . , smp) denote their Vandermonde deter-
minant. Via Lemma 3.27 the degree of the Wronski is precisely

degA
1

Wr =
∑

W∈Z(Wr)

degA
1

W Wr =

〈
V (s) ·

(
m−1∏
i=1

i!

)mp〉 ∑
W∈Z(σ)

indWσ

=

〈
V (s) ·

(
m−1∏
i=1

i!

)mp〉
e(V, σ).

By Lemma 3.28, the Euler class is a multiple of H, and since we know the rank of the bilinear form

degA
1

Wr in the case where m and p are both even via the classical computation of Schubert, we
can determine which integer multiple of the hyperbolic element it must be.

Finally we remark that the choice of orientation of an affine patch is well-defined up to a square
class in the ground field (this is precisely the issue we see in [8] where the Brouwer degree of the
Wronski is well-defined up to a sign). Since the degree produced here is hyperbolic, this ambiguity
vanishes, since ⟨a⟩H = H for any a ∈ k×. □

This global count unifies the real and complex degrees of the Wronski map into one computation in
these parities — that is, we recover the complex degree by taking the rank of this form, and the real
degree by taking the signature. Contained within the local degree of the Wronski map is further
geometric information, which we can now explore.

4. A formula for the local index

In this section we will provide a formula for the local degree degA
1

W Wr, when the Wronski map
has a simple root at the point W . To parametrize an affine open cell around W , we first fix a
basis e1, . . . , em+p of km+p−1[t] so that W = span {ep+1, . . . , em+p}. Let φk denote the dual basis
element to ek. We may then rewrite the covectors σℓ,1, . . . , σℓ,m in this dual basis. That is, for any
1 ≤ j ≤ m, we write

(1) σℓ,j :=

m+p∑
k=1

e
(j−1)
k (sℓ)φk,

It is easy to see by acting on ek by σℓ,j , that e
(j−1)
k (sℓ) will be the coefficient on φk. By Equation 1,

we have that span {σℓ,1, . . . , σℓ,m} = Fm(sℓ), thus by a forgivable abuse of notation we refer to the
matrix of coefficients of these vectors as Fm(sℓ):
(2)

Fm(sℓ) =


e1(sℓ) e′1(sℓ) · · · e

(m−1)
1 (sℓ)

e2(sℓ) e′2(sℓ) · · · e
(m−1)
2 (sℓ)

...
...

. . .
...

em+p(sℓ) e′m+p(sℓ) · · · e
(m−1)
m+p (sℓ)

 =
(
coeffs of σℓ,1 · · · coeffs of σℓ,m

)
.
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We will define the following notation to identify a distinguished minor of this matrix. Namely we
want to take minors consisting of all the bottom m rows except one, and one row from higher in the
matrix. Explicitly, let 1 ≤ γ ≤ m and 1 ≤ k ≤ p. Then we denote by α(γ, κ) the multiindex

α(γ, k) := {k, p+ 1, . . . , p+ γ − 1, p+ γ + 1, . . . , p+m} .

In particular this gives us zα(γ,k)(Fm(sℓ)),which is the α(γ, k)th Plücker coordinate of Fm(sℓ):

zα(γ,k)(Fm(sℓ)) = det



ek(sℓ) e′k(sℓ) · · · e
(m−1)
k (sℓ)

ep+1(sℓ) e′p+1(sℓ) · · · e
(m−1)
p+1 (sℓ)

ep+2(sℓ) e′p+2(sℓ) · · · e
(m−1)
p+2 (sℓ)

...
...

. . .
...

ep+γ−1(sℓ) e′p+γ−1(sℓ) · · · e
(m−1)
p+γ−1(sℓ)

ep+γ+1(sℓ) e′p+γ+1(sℓ) · · · e
(m−1)
p+γ+1(sℓ)

...
...

. . .
...

em+p(sℓ) e′m+p(sℓ) · · · e
(m−1)
m+p (sℓ)


= Wr

(
ek, ep+1, . . . , êp+γ , . . . , em+p

)
(sℓ).

We recall that the fiber of the Wronski map over
∏mp
i=1(t − si) counts the number of m-planes

meeting Ep(s1), . . . , Ep(smp) non-trivially. Here we can state a new geometric interpretation for the
local index of the Wronski — namely it picks up a determinantal relation between distinguished
Plücker coordinates of the planes Fm(si) (under duality these can be considered as distinguished
Plücker coordinates of the Ep(si)’s). We remark that while our computation of the global degree of
the Wronski only held when m and p were both even, the following result holds in all parities and
over arbitrary fields, subject to the ongoing assumption that (m+ p− 1)!−1 ∈ k.

Theorem 4.3. Let W be a simple preimage of the Wronski map in the fiber Wr−1 (
∏mp
i=1(t− si)),

and let e1, . . . , emp be a basis chosen so that W = span {ep+1, . . . , em+p}. Then we have that

degA
1

W Wr = ⟨C · detB⟩ ,

where C is the global constant

C = V (s1, . . . , smp)

(
m−1∏
i=1

i!

)mp
(−1)m(m−1)p/2,
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where V (s1, . . . , smp) is the Vandermonde determinant of the si’s, and B is the mp ×mp-matrix
defined by

B =



zα(1,1)(Fm(s1)) zα(1,1)(Fm(s2)) · · · zα(1,1)(F (smp))
zα(1,2)(Fm(s1)) zα(1,2)(Fm(s2)) · · · zα(1,2)(F (smp))

...
...

. . .
...

zα(1,p)(Fm(s1)) zα(1,p)(Fm(s2)) · · · zα(1,p)(F (smp))
zα(2,1)(Fm(s1)) zα(2,1)(Fm(s2)) · · · zα(2,1)(F (smp))

...
...

. . .
...

zα(2,p)(Fm(s1)) zα(2,p)(Fm(s2)) · · · zα(2,p)(F (smp))
...

...
. . .

...
zα(m,p)(Fm(s1)) zα(m,p)(Fm(s2)) · · · zα(m,p)(F (smp))


,

where these Plücker coordinates are written in the basis {φi}.

Proof. Since Z(σ) = Z(Wr), we may suppose that σ has a simple zero at the top point W =
span {ep+1, . . . , em+p} ∈ Grk(m,m+ p), and rewrite the covectors of σ in the associated cobasis, as
in Equation 1. Then we have an affine coordinate chart U around W , and we can trivialize V over
U by direct sums of φ̃p+1 ∧ · · · ∧ φ̃m+p We then obtain functions F1, . . . , Fmp on U defined by

(4) ∧mj=1σℓ,j = Fℓ · φ̃p+1 ∧ · · · ∧ φ̃m+p.

The Fi’s are local representations of σ in the chart U , centered around W . As W is a simple zero,
then in order to compute indWσ it suffices to compute the partial derivatives of the functions Fi at
the origin of U (which is the point W = ep+1 ∧ · · · ∧ em+p). By the definition of the moving basis in
Equation 2, we have a change of basis formula2

(5) φk =

{
φ̃k +

∑m
n=1 xn,kφ̃p+n 1 ≤ k ≤ p

φ̃k p+ 1 ≤ k ≤ m+ p.

For any fixed ℓ, we may then write

(6)

m∧
j=1

σℓ,j =

m∧
j=1

(
m+p∑
k=1

e
(j−1)
k (sℓ)φk

)

=

m∧
j=1

(
p∑
k=1

e
(j−1)
k (sℓ)

(
φ̃k +

m∑
n=1

xn,kφ̃p+n

)
+

m+p∑
q=p+1

e(i−1)
q (sℓ)φ̃q

)
.

Since we will be evaluating this at ep ∧ · · · ∧ em+p−1 we only need to worry about terms which are
of the form φ̃p+1 ∧ · · · ∧ φ̃m+p−1. In particular we can forget about the φ̃k terms for 1 ≤ k ≤ p, and

2By allowing φi to act on ẽj , we get the coefficient of φ̃j in φi.
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we obtain

(7)

m∧
j=1

 p∑
k=1

e
(j−1)
k (sℓ)

(
m∑
n=1

xn,kφ̃p+n

)
+

m+p∑
k=p+1

e
(i−1)
k (sℓ)φ̃k


=

m∧
j=1

(
p∑
k=1

m+p∑
n=p+1

e
(j−1)
k (sℓ)xn−p,kφ̃n +

m+p∑
q=p+1

e(j−1)
q (sℓ)φ̃q

)

=

m∧
j=1

(
m+p∑
n=p+1

(
e(j−1)
n (sℓ) +

p∑
k=1

e
(j−1)
k (sℓ)xn−p,k

)
φ̃n

)
=det(C) · φ̃p+1 ∧ · · · ∧ φ̃m+p,

where Cj,γ is the coefficient on φ̃p+γ in the jth exterior power above. Explicitly,

Cj,γ = e
(j−1)
p+γ (sℓ) +

p∑
k=1

e
(j−1)
k (sℓ)xγ,k.

Since we will evaluate partials at the origin, we only need to pick out linear terms in the xγ,k’s, so
we can forget higher order terms as well as constant terms. Thus, we see that

det(C) =
∑
σ∈Sm

sgn(σ)

m∏
γ=1

(
e
(σ(γ)−1)
p+γ (sℓ) +

p∑
k=1

e
(σ(γ)−1)
k (sℓ)xγ,k

)
.

For a fixed xγ,k the constant coefficient on xγ,k is

(8)

∂Fℓ
∂xγ,k

∣∣∣∣
0

=
∑
σ∈Sm

sgn(σ)e
(σ(γ)−1)
k (sℓ)

∏
1≤a≤m
a ̸=γ

e
(σ(a)−1)
p+a (sℓ),

and we can recognize this as a Plücker coordinate!

∂Fℓ
∂xγ,k

∣∣∣∣
0

= Wr(ep+1, . . . , ep+γ−1, ek, ep+γ+1, . . . , em+p)(sℓ)

= (−1)γ−1Wr
(
ek, ep+1, . . . , êp+γ , . . . , em+p

)
(sℓ)

= (−1)γ−1zα(γ,k) (Fm(sℓ)) .

In particular by Remark 3.5 we have that (−1)γzα(γ,k)(Fm(sℓ)) is the (γ, k)th affine coordinate of
the plane Fm(sℓ). Varying over all (γ, k) and ℓ, we obtain the local index as

indWσ =

〈
det

(
∂Fℓ
∂xγ,k

)
(γ,k),ℓ

〉
=
〈
det(−1)γ−1

(
zα(γ,k)(Fm(sℓ))

)
(γ,k),ℓ

〉
.

As γ and k vary, we can pull a (−1)γ−1 out of p different rows, where γ is varying from 1 to m. So

we have to pull out (−1)p(
∑m

γ=1 γ−1) = (−1)m(m−1)p/2. This is the coefficient on (−1) we are seeing
in the constant for C. Finally by Lemma 3.27 we have that the local degree of the Wronski and the
index of σ agree up to these Vandermonde constants. □
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Reality check 4.9. In [26, Proposition 9], the authors demonstrated a formula for the local index
of an analogous section in the specific case where m = 2 and p = n− 1 for n odd. For the section
σ = ⊕2n−2

i=1 αi ∧ βi, they expressed αi =
∑
j αi,jφj and βi =

∑
j bi,jφj , and demonstrated that the

local index at W = en ∧ en+1 is given by (both in their notation and in the notation from this
paper):

indWσ =

〈
det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · (ai,1bi,n+1 − ai,n+1bi,1) · · ·
...

· · · (ai,jbi,n+1 − ai,n+1bi,j) · · ·
...

· · · (ai,n−1bi,n+1 − ai,n+1bi,n−1) · · ·
· · · (ai,nbi,1 − ai,1bi,n) · · ·

...
· · · (ai,nbi,j − ai,jbi,n) · · ·

...
· · · (ai,nbi,n−1 − ai,n−1bi,n) · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〉

We note that each of the entries in the ith column of this matrix B is obtained by taking the matrix(
ai,n bi,n
ai,n+1 bi,n+1

)
, swapping out a row for something suitable (as in our construction above), and

then taking a determinant. Rewriting this local index in the notation from this paper, we can see
that it takes the following form:

indWσ =

〈
det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · zα(1,1)(F2(si)) · · ·
...

· · · zα(1,j)(F2(si) · · ·
...

· · · zα(1,n−1)(F2(si)) · · ·
· · · (−1)zα(2,1)(F2(si)) · · ·

...
· · · (−1)zα(2,j)(F2(si)) · · ·

...
· · · (−1)zα(2,n−1)(F2(si)) · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〉
.

4.1. Maximally inflected curves. Given an m-plane W = span {f1, . . . , fm} with Wronskian
Wr(f1, . . . , fm)(t) =

∏mp
i=1(t− si), we can consider it as a rational curve φ : P1 → Pm−1, given by

mapping t 7→ [f1(t) : . . . : fm(t)]. The statement that the Wronskian vanishes at si is equivalent to
the statement that the vectors φ(s), φ′(s), . . . , φm−1(s) do not span Pm−1 at time t = si (c.f. [14,
25]). Equivalently one says that the curve ramifies or inflects at time si. The degree of the Wronski
map then admits another interpretation: it counts how many rational curves of degree ≤ m+ p− 1
have prescribed inflection at times t = s1, . . . , smp. With our refined local index in hand, we can

ask the following question: How does the local degree degA
1

W Wr of the Wronski map relate to the
topology (or geometry) of the associated rational curve φ?
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Curve

# isolated points 2 2 2 3 3
Local A1-index over R +1 +1 +1 −1 −1.

Figure 3. Maximally inflected real quartics, [14, p. 23]

We don’t claim any general answer to this question. Indeed studying topological constraints on
inflected curves is a difficult problem in general. In the case when m = 3 and p = 1, 2, 3, we are
looking at planar cubics, quartics, and quintics, respectively. Kharlamov and Sottile [14] have
studied real inflection data in this setting (by the Shapiro–Shapiro conjecture, when the inflection
points are real, the rational curve will be real as well). We can present some very preliminary
observations that tie our local degree to their work.

In the case of quartics, there are five different quartics with six flexes (this five is the complex degree
of the Wronski map whose domain is GrC(2, 5)). The graphs of these, pulled from [14], are included
below.3 While the curves look topologically distinct due to the nodal singularities, it is perhaps
more telling to look at the number of isolated points (real ordinary points with complex conjugate
tangent directions).

Welschinger [27] remarked that (−1)#I is a revealing invariant to consider for planar curves, where
I is the set of isolated points. Kass–Levine–Solomon–Wickelgren have extended this to define an
arithmetic Welschinger invariant valued in GW(k) [11] (see also [16] and [23]). We may compute that
Welschinger’s original invariant agrees with the local index of σ following the formula in Theorem 4.3.

Corollary 4.10. When (f1 : f2 : f3) defines a real planar quartic, we have that

sgn degA
1

span{f1,f2,f3} Wr = (−1)#I ,

where (−1)#I is Welschinger’s invariant.

It is possible that the arithmetic Welschinger invariant provides a local A1-degree for the Wronski
map, which could potentially shine light on the classification of maximally inflected curves in higher
degrees and higher dimensions. We plan to explore this idea in greater detail in a future paper.
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