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Abstract We provide an expository introduction to A1-enumerative geometry, which uses the machinery
of A1-homotopy theory to enrich classical enumerative geometry questions over a broader range of fields.
Included is a discussion of enriched local degrees of morphisms of smooth schemes, following Morel,
A1-Milnor numbers, as well as various computational tools and recent examples.

Introduction

In the late 1990’s Fabien Morel and Vladimir Voevodsky investigated the question of whether techniques from
algebraic topology, particularly homotopy theory, could be applied to study varieties and schemes, using the
affine lineA1 rather than the interval [0, 1] as a parametrizing object. This idea was influenced by a number of
preceding papers, including work of Karoubi and Villamayor [KV71] and Weibel [Wei89] on 𝐾-theory, and
Jardine’s work on algebraic homotopy theory [Jar81a; Jar81b]. In work with Suslin developing an algebraic
analog of singular cohomology which was A1-invariant [SV96], Voevodsky laid out what he considered
to be the starting point of a homotopy theory of schemes parametrized by the affine line [Voe98]. This
relied upon Quillen’s theory of model categories [Qui67], which provided the abstract framework needed to
develop homotopy theory in broader contexts. Following this work, Morel [Mor99] and Voevodsky [Voe98]
constructed equivalent unstable A1-homotopy categories, laying the groundwork for their seminal paper
[MV99] which marked the genesis of A1-homotopy theory. Since its inception, this field of mathematics has
seen far-reaching applications, perhaps most notably Voevodsky’s resolution of the Bloch-Kato conjecture,
a classical problem from number theory [Voe11].

The machinery of A1-homotopy theory works over an arbitrary field 𝑘 (in fact over arbitrary schemes, and
even richer mathematical objects), allowing enrichments of classical problems which have only been explored
over the real and complex numbers. Recent work in this area has generalized classical enumerative problems
over wider ranges of fields, forming a body of work which we are referring to as A1-enumerative geometry.
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2 Thomas Brazelton

Beginning with a recollection of the topological degree for a morphism between manifolds in Section 1.1,
we pursue an idea of Barge and Lannes to produce a notion of degree valued in the Grothendieck–Witt ring
of a field 𝑘 , defined in Section 1.2. We produce such a naive degree for endomorphisms of the projective
line in Section 1.3, however in order to produce such a degree for smooth 𝑛-schemes in general, we will
need to develop some machinery from A1-homotopy theory. A brief detour is taken to establish the setting
in which one can study motivic spaces, defining the unstable motivic homotopy category in Section 1.4, and
establishing some basic, albeit important computations involving colimits of motivic spaces in Section 1.5.
This discussion culminates in the purity theorem of Morel and Voevodsky, stated in Section 1.6, which is
requisite background for defining the local A1-degree following Morel.

In Section 2, we are finally able to define the localA1-degree of a morphism of schemes, which is a powerful,
versatile tool in enriching enumerative geometry problems over arbitrary fields. At this point, we survey
a number of recent results in A1-enumerative geometry. We discuss the Eisenbud–Khimshiashvili–Levine
signature formula in Sections 2.1 and 2.2, and we see its relation to the A1-degree, as proved in [KW19].
An enriched version of the A1-Milnor number is provided in Section 2.3, which provides an enriched count
of nodes on a hypersurface, following [KW16]. The problem of counting lines on a cubic surface, and
the associated enriched results [KW17] are discussed in Section 2.4. Finally, in Section 2.5 we provide an
arithmetic count of lines meeting four lines in three-space, following [SW18].

Throughout these conference proceedings, various exercises (most of which were provided by Wickelgren in
her 2018 lectures) are included. Detailed solutions may be found on the author’s website.
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1 Preliminaries

1.1 Enriching the topological degree

A continuous map 𝑓 : 𝑆𝑛 → 𝑆𝑛 from the 𝑛-sphere to itself induces a homomorphism on the top homology
group 𝑓∗ : 𝐻𝑛 (𝑆𝑛) → 𝐻𝑛 (𝑆𝑛), which is of the form 𝑓∗ (𝑥) = 𝑑𝑥 for some 𝑑 ∈ Z. This integer 𝑑 defines the
(global) degree of the map 𝑓 . If 𝑓 and 𝑔 are homotopic as maps from the 𝑛-sphere to itself, they will induce
the same homomorphism on homology groups. Therefore, taking [𝑆𝑛, 𝑆𝑛] to denote the set of homotopy
classes of maps, we can consider degree as a function

degtop : [𝑆𝑛, 𝑆𝑛] → Z.

Throughout these notes, we will use the notation degtop to refer to the topological (integer-valued) degree.
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For any continuous map of 𝑛-manifolds 𝑓 : 𝑀 → 𝑁 , we could define a naive notion of the “local degree”
around a point 𝑝 ∈ 𝑀 via the following procedure: suppose that 𝑞 ∈ 𝑁 has the property that 𝑓 −1 (𝑞) is
discrete, and let 𝑝 ∈ 𝑓 −1 (𝑞). Pick a small ball 𝑊 containing 𝑞, and a small ball 𝑉 ⊆ 𝑓 −1 (𝑊) satisfying
𝑉 ∩ 𝑓 −1 (𝑞) = {𝑝}. Then we may see that the spaces𝑉

/
(𝑉 r {𝑝}) ' (𝑉

/
𝜕𝑉) ' 𝑆𝑛 are homotopy equivalent.

Similarly, we have that𝑊
/
(𝑊 r {𝑞}) ' 𝑆𝑛. We obtain the following diagram:

𝑆𝑛 𝑆𝑛

𝑉
/
(𝑉 r {𝑝}) 𝑊

/
(𝑊 r {𝑞}).

'

𝑔

𝑓

' (1)

Thus we could define the local (topological) degree of 𝑓 around our point 𝑝, denoted degtop
𝑝 ( 𝑓 ), to be the

induced degree map on the 𝑛-spheres, that is, degtop
𝑝 ( 𝑓 ) := degtop (𝑔) in the diagram above. If 𝑓 −1 (𝑞) =

{𝑝1, . . . , 𝑝𝑚} is a discrete set of isolated points, we may relate the global degree to the local degree via the
following formula

degtop ( 𝑓 ) =
𝑚∑︁
𝑖=1

degtop
𝑝𝑖 ( 𝑓 ).

One may prove that the left hand side is independent of 𝑞, and thus that the choice of 𝑞 is arbitrary in
calculating the global degree from local degrees. In differential topology, when discussing the degree of
a locally differentiable map 𝑓 between 𝑛-manifolds, we have a simple formula for the local degree at a
simple zero. We pick local coordinates (𝑥1, . . . , 𝑥𝑛) in a neighborhood of our point 𝑝𝑖 , and local coordinates
(𝑦1, . . . , 𝑦𝑛) around a regular value 𝑞. Then we can interpret 𝑓 locally as a map 𝑓 = ( 𝑓1, . . . , 𝑓𝑛) : R𝑛 → R𝑛.
Suppose that the Jacobian Jac( 𝑓 ) is nonvanishing at the point 𝑝𝑖 . Then we define

degtop
𝑝𝑖 ( 𝑓 ) = sgn(Jac( 𝑓 ) (𝑝𝑖)) =

{
+1 if Jac( 𝑓 ) (𝑞𝑖) > 0
−1 if Jac( 𝑓 ) (𝑞𝑖) < 0.

When working over a field 𝑘 , Barge and Lannes1 defined a notion of degree for a map P1
𝑘
→ P1

𝑘
. Their insight

was, rather than taking the sign of the Jacobian as in differential topology, to instead remember the value of
Jac( 𝑓 ) (𝑝𝑖) as a square class in 𝑘×/(𝑘×)2. Over the reals this recovers the sign, but over a general field we
may have vastly more square classes. We encode this value as a rank one symmetric bilinear form over 𝑘 ,
and we will soon see that this idea can be used to define a local degree at 𝑘-rational points, and that by using
field traces we can extend the definition of local degree to hold for points with residue fields a finite separable
extension of 𝑘 . These degrees, rather than being integers, are elements of the Grothendieck–Witt ring of 𝑘 ,
denoted GW(𝑘), defined below.

1.2 The Grothendieck–Witt Ring

Over a field 𝑘 , we may form a semiring of isomorphism classes of non-degenerate symmetric bilinear forms
(or quadratic forms if we assume char(𝑘) ≠ 2) on vector spaces over 𝑘 , using the operations ⊗𝑘 and ⊕. Group

1 Unpublished. See the note by Morel on [Mor06, p.1037].
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completing this semiring with respect to ⊕, we obtain the Grothendieck–Witt ring GW(𝑘). For any 𝑎 ∈ 𝑘×,
we let 〈𝑎〉 ∈ GW(𝑘) denote the following rank one bilinear form:

〈𝑎〉 : 𝑘 × 𝑘 → 𝑘

(𝑥, 𝑦) ↦→ 𝑎𝑥𝑦.

Symmetric bilinear forms are equivalent if they differ only by a change of basis. For example, if 𝑏 ≠ 0 we
can see that

〈
𝑎𝑏2〉 (𝑥, 𝑦) = 〈𝑎〉 (𝑏𝑥, 𝑏𝑦), so we identify 〈𝑎〉 =

〈
𝑎𝑏2〉 in GW(𝑘), since these bilinear forms

agree up to a vector space automorphism of 𝑘 . We may describe GW(𝑘) to be a ring generated by elements
〈𝑎〉 for each 𝑎 ∈ 𝑘×

/
(𝑘×)2, subject to the following relations [Mor12, Lemma 4.9]

1. 〈𝑎〉 〈𝑏〉 = 〈𝑎𝑏〉
2. 〈𝑎〉 + 〈𝑏〉 = 〈𝑎𝑏(𝑎 + 𝑏)〉 + 〈𝑎 + 𝑏〉, for 𝑎 + 𝑏 ≠ 0

3. 〈𝑎〉 + 〈−𝑎〉 = 〈1〉 + 〈−1〉. We conventionally denote this element as H := 〈1〉 + 〈−1〉, called the hyperbolic
element of GW(𝑘).

Exercise 1 In the statements above, (1) and (2) imply (3).

Proposition 1 We have a ring isomorphism GW(C) � Z, given by taking the rank.

Proof We remark that 〈𝑎〉 = 〈𝑏〉 for any 𝑎, 𝑏 ∈ C×, thus we only have one isomorphism class of non-
degenerate symmetric bilinear forms in rank one. �

The isomorphism GW(C) � Z relates to a general fact that theA1-degree of a morphism of complex schemes
recovers the size of the fiber, counted with multiplicity.

Proposition 2 The rank and signature provide a group isomorphism GW(R) � Z × Z.

Proof The Gram matrix of a symmetric bilinear form on R𝑛 is an 𝑛 × 𝑛 real symmetric matrix 𝐴. After
diagonalizing our matrix 𝐴, we can always find a change of basis in which the eigenvalues lie in the set
{−1, 0, 1}. A non-degenerate symmetric bilinear form guarantees that no eigenvalues will vanish, so all of
these eigenvalues will be ±1. We may define the signature of 𝐴 as the number of 1’s appearing on the
diagonalized matrix minus the number of -1’s, and by Sylvester’s law of inertia this determines an invariant
on our matrix 𝐴. Thus we obtain an injective map

GW(R) → Z × Z
𝐴 ↦→ (rank(𝐴), sig(𝐴)).

The image of this map is the subgroup {(𝑎 + 𝑏, 𝑎 − 𝑏) : 𝑎, 𝑏 ∈ Z}, which one may verify is isomorphic to
Z × Z. �

The multiplication on GW(R) does not agree with that of Z × Z, in the sense that GW(R) � Z × Z is not a
ring isomorphism. However one may verify that the map

GW(R) → Z[𝑡]
(𝑡2 − 1)

,
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given by sending 〈1〉 ↦→ 1 and 〈−1〉 ↦→ 𝑡, is in fact a ring isomorphism, and hence provides the multiplicative
structure of GW(R).

Proposition 3 The rank and determinant provide a group isomorphism GW(F𝑞) � Z × F×𝑞
/
(F×𝑞)2.

Proof sketch We may still use the rank of our matrix as an invariant for GW(F𝑞). Additionally, we might
use the determinant of our matrix to distinguish between symmetric bilinear forms. However note that, for
any similar matrix 𝐶𝑇 𝐴𝐶, it has determinant det(𝐶𝑇 𝐴𝐶) = det(𝐴) det(𝐶)2. Therefore, we can view the
determinant as a well-defined map det : GW(F𝑞) → F×𝑞

/
(F×𝑞)2. After group completion, we obtain a map

GW(F𝑞)
(rank,det)
−−−−−−−→ Z × F×𝑞

/
(F×𝑞)2, which we verify is a group isomorphism. For more details, see [Lam05,

II, Theorem 3.5]. �

One may use GW(F𝑞) to understand GW(Q𝑝) by applying the following result.

Theorem 1 [Lam05, VI, Theorem 1.4] (Springer’s Theorem) Let 𝐾 be a complete discretely valued field, and
𝜅 be its residue field, with the assumption that char(𝜅) ≠ 2. Then there is an isomorphism of groups

GW(𝐾) � GW(𝜅) ⊕ GW(𝜅)
Z[H,−H] .

Corollary 1 We have a group isomorphism GW(C((𝑡))) = Z ⊕ Z
/

2.

We should see how the Grothendieck–Witt ring interacts with extensions of fields. For a separable field
extension 𝐾 ⊂ 𝐿, and an element 𝛽 ∈ GW(𝐿), we can view the composition

𝑉 ×𝑉
𝛽
−→ 𝐿

Tr𝐿/𝐾−−−−→ 𝐾

as an element of GW(𝐾) by post-composing with the trace map 𝐿 → 𝐾 , and considering 𝑉 as a 𝐾-vector
space. This provides us a natural homomorphism between Grothendieck–Witt rings2

Tr𝐿/𝐾 : GW(𝐿) → GW(𝐾).

At the level of A1-homotopy theory, this trace comes from a transfer on stable homotopy groups — for more
detail see [Mor12, §4]. Now that we have seen some computations involving the Grothendieck–Witt ring, we
can develop in detail the notion of degree for maps of schemes.

1.3 Lannes’ formula

Let 𝑓 : P1
𝑘
→ P1

𝑘
be a non-constant endomorphism of the projective line over a field of characteristic 0.

We can then pick a rational point 𝑞 ∈ P1
𝑘
, with fiber 𝑓 −1 (𝑞) = {𝑝1, . . . , 𝑝𝑚} such that Jac( 𝑓 ) (𝑝𝑖) ≠ 0 for

each 𝑖, where the Jacobian is computed by picking the same affine coordinates on both copies of P1
𝑘
. Since

2 When the field extension is assumed to be finite but the separability condition is dropped, a more general notion of transfer is
given by Scharlau’s transfer [Lam05, VII §1].
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Jac( 𝑓 ) (𝑝𝑖) ∈ 𝑘 (𝑝𝑖) is only defined in a residue field, we must precompose with the trace map in order to
define the local A1-degree

degA
1

𝑝𝑖
𝑓 := Tr𝑘 (𝑝𝑖)/𝑘 〈Jac( 𝑓 ) (𝑝𝑖)〉 . (2)

We can then define the global A1-degree of 𝑓 as the following sum, which is independent of our choice of
rational point 𝑞 with discrete fiber (this fact is attributable to Lannes and Morel, although a detailed proof
may be found in [KW19, Proposition 14]):

degA
1
𝑓 :=

𝑚∑︁
𝑖=1

Tr𝑘 (𝑝𝑖)/𝑘 〈Jac( 𝑓 ) (𝑝𝑖)〉 .

Exercise 2 Compute the A1-degrees of the following maps:

1. P1
𝑘
→ P1

𝑘
, given by 𝑧 ↦→ 𝑎𝑧, for 𝑎 ∈ 𝑘×.

2. P1
𝑘
→ P1

𝑘
, given by 𝑧 ↦→ 𝑧2.

Maps of schemes P1
𝑘
→ P1

𝑘
are precisely rational functions 𝑓

𝑔
. Assuming that 𝑓 and 𝑔 are relatively prime,

we can determine the classical topological (integer-valued) degree of this rational function as

degtop
(
𝑓

𝑔

)
= max{degtop ( 𝑓 ), degtop (𝑔)}.

To the rational function 𝑓

𝑔
, one may associated a bilinear form, called the Bézout form, which is denoted

Béz
(
𝑓

𝑔

)
. This is done by introducing two variables 𝑋 and 𝑌 , and remarking that we have the following

equality
𝑓 (𝑋)𝑔(𝑌 ) − 𝑓 (𝑌 )𝑔(𝑋)

𝑋 − 𝑌 =
∑︁

1≤𝑖, 𝑗≤𝑛
𝐵𝑖 𝑗𝑋

𝑖−1𝑌 𝑗−1,

where 𝑛 = degtop
(
𝑓

𝑔

)
, and where 𝐵𝑖 𝑗 ∈ 𝑘 . We can see that this defines a symmetric bilinear form 𝑘𝑛×𝑘𝑛 → 𝑘 ,

whose Gram matrix is given by the coefficients 𝐵𝑖 𝑗 .

Exercise 3 Compute the Bézout bilinear forms of the maps given in Exercise 2.

Theorem 2 (Cazanave) We have that

Béz
(
𝑓

𝑔

)
= degA

1
(
𝑓

𝑔

)
.

This is stated in [KW20, Theorem 2], but is attributable to [Caz12].

This provides us with an efficient way to compute the A1-degree of rational maps while circumventing the
tedium of computing the local A1-degree at each point in a fiber.
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1.4 The unstable motivic homotopy category

One of the primary ideas in A1-homotopy theory is to replace the unit interval in classical homotopy theory
with the affine line A1

𝑘
= Spec (𝑘 [𝑡]). To this end, one might develop a naive A1-homotopy of maps of

schemes 𝑓 , 𝑔 : 𝑋 → 𝑌 as a morphism
ℎ : 𝑋 × A1

𝑘 → 𝑌,

such that ℎ(𝑥, 0) = 𝑓 (𝑥) and ℎ(𝑥, 1) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋 . This was first introduced by Karoubi and Villamayor
[KV71]. This notion of naive A1-homotopy is not generally the most effective, partially due to the following
observation.

Exercise 4 [Aso19] Prove that naiveA1-homotopy fails to be a transitive relation on hom-sets by considering
three morphisms Spec 𝑘 → Spec 𝑘 [𝑥, 𝑦]/(𝑥𝑦) identifying the points (0, 1), (0, 0), and (1, 0).

We will build a model category in which we have a class of A1-weak equivalences, and we will denote
by [−,−]A1 the weak equivalence classes of morphisms. In particular, naive A1-homotopy equivalences
are tractable examples of A1-weak equivalences. Nonetheless, naive A1-homotopy generates an equivalence
relation, and in practice the naive homotopy classes of maps [𝑋,𝑌 ]𝑁 are often easier to compute than their
genuine counterparts [𝑋,𝑌 ]A1 . In fact, the naive homotopy classes of maps [P1

𝑘
, P1
𝑘
]𝑁 are equipped with an

addition, induced by pinch maps, which endows this set with a monoid structure. It was demonstrated by
Cazanave that the map

[P1
𝑘 , P

1
𝑘 ]𝑁 → [P

1
𝑘 , P

1
𝑘 ]A1

is a group completion [Caz12].

In order to study the homotopy theory of schemes, we must develop a model structure which encodes a
notion of A1-weak equivalence. In particular we must force A1 to be contractible — as we have remarked,
the initial motivation for forming such a model category was to treatA1 as if it were akin to the interval [0, 1]
in the category of topological spaces. Morel and Voevodsky initially formulated the theory of the “homotopy
category of a site with an interval”; for this classical treatment see [MV99, §2.3].

We remark that the category of smooth 𝑘-schemes Sm𝑘 does not admit all colimits, and therefore cannot be
endowed with a model structure. To rectify this issue, we pass to the category of the simplicial presheaves
via the Yoneda embedding

Sm𝑘 → sPre(Sm𝑘 ) = Fun(Smop
𝑘
, sSet)

𝑋 ↦→ Map(−, 𝑋).

This new category is cocomplete (it admits all small colimits), and moreover can be equipped with the projec-
tive model structure arising from the classical model structure on simplicial sets. Given our model structure,
we are now permitted to identify a class of morphisms which we would like to call weak equivalences, and
perform Bousfield localization in order to formally invert them. For exposition on Bousfield localization and
related results, we refer the reader to [Law20].

The analog of open covers in a categorical setting is provided by a Grothendieck topology 𝜏. The category Sm𝑘
can be equipped with a Grothendieck topology in order to make it a site, after which, we will apply Bousfield
localization to render the class of 𝜏-hypercovers (our analog of open covers) into weak equivalences. We
remark that by [DHI04, Theorem 6.2], this localization exists, and we denote it by 𝐿𝜏 : sPre(Sm𝑘 ) → Sh𝜏,𝑘 .
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The fibrant objects in Sh𝜏,𝑘 are those simplicial presheaves which are homotopy sheaves in the 𝜏 topology
[AE17, p. 20]. We therefore think about the localization 𝐿𝜏 as a way to encode the topology 𝜏 into the
homotopy theory of sPre(Sm𝑘 ).
Due to the wealth of properties granted to us by simplicial presheaves, the category Sh𝜏,𝑘 inherits a left proper
combinatorial simplicial model category structure, and in particular we are allowed to perform Bousfield
localization again in order to force A1 to be contractible. We identify a set of maps {𝑋 ×A1 → 𝑋}, indexed
over the set of isomorphism classes of objects in Sm𝑘 , as our desired weak equivalences, then perform a final
Bousfield localization 𝐿A1 with respect to this set. Finally, we define

SpcA
1

𝜏,𝑘 := 𝐿A1Sh𝜏,𝑘 = 𝐿A1𝐿𝜏sPre(Sm𝑘 ).

This category has a model structure by construction, and we refer to its homotopy category as the unstable
motivic homotopy category. Throughout these notes and in much of the literature, it is assumed we are using
the Nisnevich topology (which is defined and contrasted with other choices of topologies below), and we will
write SpcA

1

𝑘
:= SpcA

1

Nis,𝑘 . Our primary objects of study in SpcA
1

𝑘
will be the fibrant objects of this category,

which we refer to as A1-spaces. These admit a tangible recognition as precisely those presheaves which are
valued in Kan complexes, satisfy Nisnevich descent, and are A1-invariant [AE17, Remark 3.58]. For more
detail, see [AE17, §3].

There are many equivalent constructions of SpcA
1

𝑘
, one notable one arising from the universal homotopy

theory on the category of smooth schemes, as described by [Dug01]. By freely adjoining homotopy colimits,
we obtain a universal category𝑈 (Sm𝑘 ) which we may localize at the collections of maps

{hocolim𝑈• → 𝑋 : {𝑈𝛼} is a hypercover of 𝑋}
{𝑋 × A1 → 𝑋}.

This procedure produces a model category𝑈 (Sm𝑘 )A1 which is Quillen equivalent to SpcA
1

𝑘
.

Remark 1 In more modern language, one may build SpcA
1

𝑘
using (∞, 1)-categories rather than model cate-

gories. Such a perspective may be found throughout the literature, for example in [BH17; Rob15].

One may study the categories SpcA
1

𝑘,𝜏
arising from other choices of Grothendieck topologies, and indeed the

homotopy theories arising from each selection behave quite differently and merit individual study. A small
inexhaustive list of possible topologies includes the Zariski, Nisnevich, and étale topologies.

Definition 1 Suppose that 𝑋 and 𝑌 are smooth over a field 𝑘 . Then we say 𝑓 : 𝑋 → 𝑌 is étale at 𝑥 if the
induced map on cotangent spaces

( 𝑓 ∗Ω𝑌 /𝑘 )𝑥
'−→ Ω𝑋/𝑘,𝑥

is an isomorphism [BLR90, §2.2, Corollary 10]. If we have the additional structure of coordinates on our
base and target spaces, this is equivalent to the condition that Jac( 𝑓 ) ≠ 0 in 𝑘 (𝑥).

For example, any open immersion 𝑋 ◦↩→ 𝑌 is a local isomorphism, and is therefore an étale map.

Definition 2 Let { 𝑓𝛼 : 𝑈𝛼 → 𝑋} be a family of étale morphisms. We say that it is
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1. an étale cover if this is a cover of 𝑋 , that is the underlying map of topological spaces is surjective

2. a Nisnevich cover if this is a cover of 𝑋 , and for every 𝑥 ∈ 𝑋 there exists an 𝛼 ∈ 𝐴 and 𝑦 ∈ 𝑈𝛼 such that
𝑦 ↦→ 𝑥 and it induces an isomorphism on residue fields 𝑘 (𝑦) �−→ 𝑘 (𝑥)

3. a Zariski cover if this is a cover of 𝑋 , and each 𝑓𝛼 is an open immersion.

Remark 2 Every Zariski cover is a Nisnevich cover, and every Nisnevich cover is an étale cover, however the
converses of these statements do not hold.

In the Nisnevich topology, we are also able to retain some of the advantages that the Zariski topology offers.
One of the primary advantages is that algebraic 𝐾-theory satisfies Nisnevich descent. Additionally we are
able to compute the Nisnevich cohomological dimension as the Krull dimension of a scheme [MV99, p.94].
Finally, we refer the reader to [AE17, Proposition 7.2], which allows us to treat morphisms of schemes locally
as morphisms of affine spaces, analogous to charts of Euclidean space in differential topology.

1.5 Colimits

Recall that the primary motivation in passing from Sm𝑘 to sPre(Sm𝑘 ) was the existence of colimits. Despite
the fact that Sm𝑘 does not admit all small colimits, it still admits some — as a class of examples, consider
colimits of schemes arising from Zariski open covers. The problem is that the Yoneda embedding 𝑦 :
Sm𝑘 → sPre(Sm𝑘 ) does not preserve colimits in general, thus in our efforts to rectify the failure of Sm𝑘 to
admit colimits, we have essentially forgotten about the colimits that it did in fact possess. This is part of
the motivation to localize at 𝜏-hypercovers — we see that colimits of schemes correspond to hypercovers
on the associated representable presheaves. By our discussion in the previous section, the localization 𝐿𝜏
can be considered as the localization precisely at the class of maps hocolim𝑈• → 𝑋 for any 𝜏-hypercover
𝑈• → 𝑋 . Thus colimits of schemes are recorded in the category SpcA

1

𝑘
as homotopy colimits corresponding

to hypercovers. For ease of reference, we summarize this in the following slogan.

Slogan Colimits of smooth schemes along 𝜏-covers yield homotopy colimits of motivic spaces. �

To illustrate this point, we consider the following example, where G𝑚 := Spec 𝑘
[
𝑥, 1
𝑥

]
denotes the multi-

plicative group scheme.

Example 1 Let 𝑓 : G𝑚 → A1
𝑘

be given by 𝑧 ↦→ 𝑧, and 𝑔 : G𝑚 → A1
𝑘

be given by 𝑧 ↦→ 1
𝑧
. Then the diagram

G𝑚 A1
𝑘

A1
𝑘

P1
𝑘

𝑓

𝑔

p

is a homotopy pushout of motivic spaces.

Proof We see that the two copies of the affine line form a Zariski open cover of P1
𝑘
, and hence a Nisnevich

open cover of schemes. This corresponds to a hypercover on the representable simplicial presheaves, and after
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localization at Nisnevich hypercovers, we see that the homotopy pushout of
(
A1
𝑘
← G𝑚 → A1

𝑘

)
is precisely

P1
𝑘
. �

For based topological spaces, recall we have a smash product, defined as

𝑋 ∧ 𝑌 = 𝑋 × 𝑌
/
((𝑋 × {𝑦}) ∪ ({𝑥} × 𝑌 )) .

We can think about the category of based topological spaces as the slice category ∗/x, where ∗ denotes
the one-point space, i.e. the terminal object. By similarly taking the slice category under the terminal object
∗ := Spec 𝑘 , we obtain a pointed version of SpcA

1

𝑘
, which is often denoted by SpcA

1

𝑘,∗.3 We can then define the
smash product as the homotopy cofiber of the canonical map between the coproduct of two pointed motivic
spaces into their product:

𝑋 ∨ 𝑌 𝑋 × 𝑌

∗ 𝑋 ∧ 𝑌 .
p

One may define the suspension as Σ𝑋 := 𝑆1 ∧ 𝑋 , which we may verify is the same as the homotopy cofiber
of 𝑋 → ∗. One may see that, since A1

𝑘
' Spec 𝑘 is contractible, we have that Example 1 implies that P1

𝑘
is

the homotopy cofiber of the unique map G𝑚 → Spec 𝑘 . Concisely, this example tells us that

P1
𝑘 ' ΣG𝑚.

Recall from topology that the spheres satisfy 𝑆𝑛 ∧ 𝑆𝑚 � 𝑆𝑛+𝑚. In developing a homotopy theory of schemes,
we would like to search for a class of objects satisfying an analogous property. From this motivation, we
uncover two types of spheres in SpcA

1

𝑘
. The first, denoted 𝑆1, is called the simplicial sphere, and can be

thought of as the union of three copies of the affine line, enclosing a triangle. As a simplicial presheaf, we
think of it as the constant presheaf at 𝑆1 = Δ1/𝜕Δ1. Our second sphere, often called the Tate sphere, is taken
to be the projective line P1

𝑘
' 𝑆1 ∧ G𝑚.

There are various conventions for the notation on spheres in A1-homotopy theory, and in the literature one
may see 𝑆𝑝+𝑞𝛼, 𝑆𝑝,𝑞 or 𝑆𝑝+𝑞,𝑞 to mean the same thing, depending on the context. In these notes, we will use
the convention that

𝑆𝑝+𝑞𝛼 := (𝑆1)∧𝑝 ∧ (G𝑚)∧𝑞 .

Exercise 5 Show that the diagram
𝑋 × 𝑌 𝑋

𝑌 Σ(𝑋 ∧ 𝑌 )
p

is a homotopy pushout diagram. The context for this example is left ambiguous as the result holds in SpcA
1

𝑘,∗
just as well as it does for pointed topological spaces.

Example 2 There is an A1-homotopy equivalence A𝑛
𝑘
r {0} ' (𝑆1)∧(𝑛−1) ∧ (G𝑚)∧𝑛.

3 We note that such a slice category must be taken at the level of model categories rather than homotopy categories in order to
have a tractable pointed homotopy theory.
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Proof Note that we may construct A𝑛
𝑘
r {0} as a homotopy pushout

(A1
𝑘
r {0}) × (A𝑛−1

𝑘
r {0}) A1

𝑘
× (A𝑛−1

𝑘
r {0})

(A1
𝑘
r {0}) × A𝑛

𝑘
A𝑛
𝑘
r {0} .

p

Applying the exercise above, we see that

A𝑛𝑘 r {0} ' Σ(A𝑛−1
𝑘 r {0}) ∧ (A1

𝑘 r {0}) = 𝑆
1 ∧ (A𝑛−1

𝑘 r {0}) ∧ G𝑚.

The result follows inductively. �

Notation For a morphism of motivic spaces 𝑓 : 𝑋 → 𝑌 , denote by 𝑌/𝑋 the homotopy cofiber of the map 𝑓 ,
that is, the homotopy pushout

𝑋 𝑌

∗ 𝑌/𝑋.

𝑓

p

Example 3 (Excision) Suppose that 𝑋 is a smooth scheme over 𝑘 , that 𝑍 /↩→ 𝑋 is a closed immersion, and
that 𝑈 ⊇ 𝑍 is a Zariski open neighborhood of 𝑍 inside of 𝑋 . Then we have a Nisnevich weak equivalence
(that is, a weak equivalence in the category ShNis,𝑘 )

𝑈

𝑈 r 𝑍

∼−→ 𝑋

𝑋 r 𝑍
.

We refer to this result informally as excision (not to be confused with excision in the sense of [AE17,
Proposition 3.53]), as we regard this weak equivalence as excising the closed subspace 𝑋 r𝑈 from the top
and bottom of the cofiber 𝑋/(𝑋 r 𝑍).

Proof We remark that (𝑋 r 𝑍) and 𝑈 form a Zariski open cover of 𝑋 , and that their intersection is
(𝑋 r 𝑍) ∩𝑈 = 𝑈 r 𝑍 . As Zariski covers are Nisnevich covers, one remarks that we have a homotopy pushout
diagram of motivic spaces

𝑈 r 𝑍 𝑋 r 𝑍

𝑈 𝑋.
p

The fact that the homotopy cofibers of the vertical maps in the diagram above are A1-weakly equivalent
follows from the following diagram:
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𝑈 r 𝑍 𝑋 r 𝑍 ∗

𝑈 𝑋 𝑋
𝑋r𝑍 .

p p

As the left and right squares are homotopy cocartesian, it follows formally that the entire rectangle is
homotopy cocartesian. �

Example 4 There is an A1-homotopy equivalence P𝑛
𝑘

/
P𝑛−1
𝑘
' (𝑆1)∧𝑛 ∧ (G𝑚)∧𝑛

Proof As P𝑛
𝑘
r {0} is the total space of O(1) on P𝑛−1

𝑘
, we have anA1-equivalence P𝑛

𝑘
r {0} ' P𝑛−1

𝑘
. Therefore,

one sees P𝑛
𝑘

/
P𝑛−1
𝑘
' P𝑛

𝑘

/
(P𝑛
𝑘
− {0}). Via excision, we are able to excise everything away from a standard

affine chart, from which we may see that P𝑛
𝑘

/
(P𝑛
𝑘
− {0}) ' A𝑛

𝑘

/
(A𝑛

𝑘
− {0}). Contracting A𝑛

𝑘
, we obtain

∗
/
(A𝑛

𝑘
− {0}) ' Σ(A𝑛

𝑘
− {0}). Therefore P𝑛

𝑘

/
P𝑛−1
𝑘
' Σ(A𝑛

𝑘
− {0}) ' (𝑆1)∧𝑛 ∧ (G𝑚)∧𝑛 after applying

Example 2. �

This last example is of particular interest, as it exhibits the cofiber P𝑛
𝑘

/
P𝑛−1
𝑘

as a type of sphere inA1-homotopy
theory. Given an endomorphism of such a motivic sphere, Morel defined a degree homomorphism

degA
1

:
[
P𝑛𝑘/P

𝑛−1
𝑘 , P𝑛𝑘/P

𝑛−1
𝑘

]
A1 → GW(𝑘),

which he proved was an isomorphism in degrees 𝑛 ≥ 2 [Mor06, Corollary 4.11].

Recall that to define a local Brouwer degree of an endomorphism between 𝑛-manifolds, we first had to pick
a ball containing a point 𝑝, and then identify the cofiber 𝑊/(𝑊 r {𝑝}) with the 𝑛-sphere 𝑆𝑛. This allowed
us to construct Diagram 1, after which we could apply the degree homomorphism [𝑆𝑛, 𝑆𝑛] → Z to define a
local degree. An analogous procedure will be available to us in A1-homotopy theory if, for a Zariski open
neighborhood 𝑈 around a 𝑘-rational point 𝑥, we are able to associate a canonical A1-weak equivalence
between𝑈/(𝑈 r {𝑥}) and P𝑛

𝑘
/P𝑛−1
𝑘

. Indeed this is possible via the theorem of purity.

1.6 Purity

One of the major techniques in A1-homotopy theory comes from the purity theorem. In manifold topology,
the tubular neighborhood theorem allows us to define a diffeomorphism between a tubular neighborhood of a
smooth immersion and an open neighborhood around its zero section in the normal bundle. In A1 homotopy
theory, the Nisnevich topology isn’t fine enough to define such a tubular neighborhood, however we can still
get an analog of the tubular neighborhood theorem which will allow us to define, among other things, local
A1-degrees of maps.

Definition 3 A Thom space of a vector bundle 𝑉 → 𝑋 is the cofiber

𝑉
/
(𝑉 r 𝑋),

where 𝑉 r 𝑋 denotes the vector bundle minus its zero section. In the literature, this may be denoted by
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Thom(𝑉, 𝑋) = Th(𝑉) = 𝑋𝑉 .

Remark 3 We may also describe the Thom space of a vector bundle via an A1-weak equivalence

Th(𝑉) ' Proj (𝑉 ⊕ O)
Proj (𝑉) .

Proof We have a map 𝑉 → 𝑉 ⊕ O sending 𝑣 ↦→ (𝑣, 1), and we may view this inside of projective space via
the inclusion 𝑉 ⊕ O ⊆ Proj (𝑉 ⊕ O). Via excision (Example 3), we have a Nisnevich weak equivalence

Proj (𝑉 ⊕ O)
Proj (𝑉 ⊕ O) r 0

' 𝑉

𝑉 r 0
,

where 0 denotes the image of the zero section. We remark that Proj (𝑉 ⊕ O) r 0 is the total space of O(−1)
on Proj (𝑉), thus we have an A1-weak equivalence Proj (𝑉 ⊕ O) r 0 ' Proj (𝑉). The result follows from
observing Proj (𝑉 ⊕O)

Proj (𝑉 ⊕O)r0 '
Proj (𝑉 ⊕O)

Proj (𝑉 ) . �

Theorem 5 (Purity theorem) Let 𝑍 /↩→ 𝑋 be a closed immersion in Sm𝑘 . Then we have an A1-equivalence

𝑋

𝑋 r 𝑍
' Th(𝑁𝑍 𝑋),

where 𝑁𝑍 𝑋 → 𝑍 denotes the normal bundle of 𝑍 in 𝑋 .

Proof The proof uses the deformation to the normal bundle of Fulton and MacPherson [Ful98]. Let 𝑓 denote
the composition of the maps

Bl𝑍×{0} (𝑋 × A1
𝑘 ) → 𝑋 × A1

𝑘 → A
1
𝑘 .

We define 𝐷𝑍 𝑋 to be the scheme Bl𝑍×{0} (𝑋 × A1
𝑘
) r Bl𝑍×{0} (𝑋 × {0}), and note that 𝑓 restricts to a map

𝑓

���
𝐷𝑍𝑋

: 𝐷𝑍 𝑋 → A1
𝑘
. We may compute the fiber of 𝑓 |𝐷𝑍𝑋 over 0 as

𝑓

���−1

𝐷𝑍𝑋
(0) = Proj

(
𝑁𝑍×{0} (𝑋 × A1

𝑘 )
)
r Proj

(
𝑁𝑍×{0} (𝑋 × {0})

)
= Proj (𝑁𝑍 𝑋 ⊕ O) r Proj (𝑁𝑍 𝑋)
= 𝑁𝑍 𝑋,

and the fiber over 1 as 𝑓
���−1

𝐷𝑍𝑋
(1) = 𝑋 . Since 𝑍 × A1

𝑘
determines a closed subscheme in 𝐷𝑍 𝑋 , we have that

the fiber over 0 is 𝑍 ⊆ 𝑁𝑍 𝑋 and the fiber over 1 is 𝑍 ⊆ 𝑋 . Thus we obtain morphisms of pairs

(𝑍, 𝑁𝑍 𝑋)
𝑖0−→ (𝑍 × A1

𝑘 , 𝐷𝑍 𝑋)

(𝑍, 𝑋) 𝑖1−→ (𝑍 × A1
𝑘 , 𝐷𝑍 𝑋),

(3)

corresponding to the inclusions of the fibers over the points 0 and 1, respectively. To prove the purity theorem,
it now suffices to show that the induced morphisms on cofibers are weak equivalences:
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𝑁𝑍 𝑋

𝑁𝑍 𝑋 r 𝑍
→ 𝐷𝑍 𝑋

𝐷𝑍 𝑋 r 𝑍 × A1
𝑘

𝑋

𝑋 r 𝑍
→ 𝐷𝑍 𝑋

𝐷𝑍 𝑋 r 𝑍 × A1
𝑘

.

Lemma 1 [AE17, Lemma 7.3] Suppose that P is a property of smooth pairs of schemes such that the following
properties hold:

1. If (𝑍, 𝑋) is a smooth pair of schemes and {𝑈𝛼 → 𝑋}𝛼∈𝐴 is a Zariski cover of 𝑋 such that P holds for the
pair

(𝑍 ×𝑋 𝑈𝛼1 ×𝑋 · · · ×𝑋 𝑈𝛼𝑛 ,𝑈𝛼1 ×𝑋 · · · ×𝑋 𝑈𝛼𝑛 )

for each (𝛼1, . . . , 𝛼𝑛), then P holds for (𝑍, 𝑋)
2. If (𝑍, 𝑋) → (𝑍,𝑌 ) is a morphism of smooth pairs inducing an isomorphism on 𝑍 such that 𝑋 → 𝑌 is

étale, then P holds for (𝑍, 𝑋) if and only if P holds for (𝑍,𝑌 )
3. P holds for the pair (𝑍,A𝑛

𝑘
× 𝑍), �

then P holds for all smooth pairs. �

To conclude the proof of purity, we let P be the property on the pair (𝑍, 𝑋) that the morphisms in Equation
3 induce homotopy pushout diagrams4

𝑍
𝑁𝑍𝑋
𝑁𝑍𝑋r𝑍

𝑍 × A1
𝑘

𝐷𝑍𝑋

𝐷𝑍𝑋r𝑍×A1
𝑘

p

𝑍 𝑋
𝑋r𝑍

𝑍 × A1
𝑘

𝐷𝑍𝑋

𝐷𝑍𝑋r𝑍×A1
𝑘

.

p

One may check that Lemma 1 holds for this property, and therefore since 𝑍 → 𝑍 ×A1
𝑘

is a weak equivalence,
a homotopy pushout along this map is also a weak equivalence. Thus we obtain a sequence of A1-weak
equivalences

𝑋

𝑋 r 𝑍

∼−→ 𝐷𝑍 𝑋

𝐷𝑍 𝑋 r 𝑍 × A1
𝑘

∼← 𝑁𝑍 𝑋

𝑁𝑍 𝑋 r 𝑍
= Th(𝑁𝑍 𝑋).

2 A1-enumerative geometry

As discussed above, Morel exhibited the global degree of maps of motivic spheres as

degA
1

: [P𝑛𝑘/P
𝑛−1
𝑘 , P𝑛𝑘/P

𝑛−1
𝑘 ]A1 → GW(𝑘).

4 Equivalently, one may say that 𝑖0 and 𝑖1 are weakly excisive morphisms of pairs [Hoy17, Definition 3.17].
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Recall that, for a scheme 𝑋 , we have functors to the category of topological spaces obtained by taking real and
complex points, that is, 𝑋 ↦→ 𝑋 (R) and 𝑋 ↦→ 𝑋 (C). Morel’s degree map satisfies a compatibility diagram
with the degree maps we recognize from algebraic topology5

[𝑆𝑛, 𝑆𝑛] [P𝑛R/P
𝑛−1
R , P𝑛R/P

𝑛−1
R ]A1 [𝑆2𝑛, 𝑆2𝑛]

Z GW(R) Z.

degtop

C-ptsR-pts

degA
1 degtop

ranksig

(4)

We can apply the purity theorem to develop a notion of local degree for a general map between schemes of
the same dimension. Suppose that 𝑓 : A𝑛

𝑘
→ A𝑛

𝑘
, and 𝑥 ∈ A𝑛

𝑘
is a 𝑘-rational preimage of a 𝑘-rational point

𝑦 = 𝑓 (𝑥). Further suppose that 𝑥 is an isolated point in 𝑓 −1 (𝑦), meaning that there exists a Zariski open set
𝑈 ⊆ A𝑛

𝑘
such that 𝑥 ∈ 𝑈 and 𝑓 −1 (𝑦) ∩𝑈 = 𝑥.

Definition 4 In the conditions above, the local A1-degree of 𝑓 at 𝑥 is defined to be the degree of the map

𝑈

/
(𝑈 r {𝑥})

𝑓
−→ A𝑛𝑘

/
(A𝑛𝑘 r {𝑦}),

under the A1-weak equivalences 𝑈
/
(𝑈 r {𝑥}) � Th(𝑇𝑥A𝑛𝑘 ) � P

𝑛
𝑘

/
P𝑛−1
𝑘

and A𝑛
𝑘

/
(A𝑛

𝑘
r {𝑦}) � P𝑛

𝑘

/
P𝑛−1
𝑘

provided to us by purity and by the canonical trivialization of the tangent space of affine space.

Dropping the assumption that 𝑘 (𝑥) = 𝑘 , but still assuming that 𝑦 is 𝑘-rational, we may equivalently define
degA

1

𝑥 𝑓 as the degree of the composite

P𝑛𝑘

/
P𝑛−1
𝑘 → P𝑛𝑘

/
(P𝑛𝑘 r {𝑥}) � 𝑈

/
(𝑈 r {𝑥})

𝑓
−→ A𝑛𝑘

/
(A𝑛𝑘 r {𝑦}) � P

𝑛
𝑘

/
P𝑛−1
𝑘 .

Proposition 4 These definitions of the local degree are equivalent. This was proven in [KW19, Prop. 12],
which is a generalization of a proof of Hoyois [Hoy14, Lemma 5.5].

Equation 2 admits the following generalization to endomorphisms of affine space.

Proposition 5 [KW19, Proposition 15] Let 𝑓 : A𝑛
𝑘
→ A𝑛

𝑘
, assume that 𝑓 is étale at a closed point 𝑥 ∈ A𝑛

𝑘
,

and assume that that 𝑓 (𝑥) = 𝑦 is 𝑘-rational and that 𝑥 is isolated in its fiber. Then the local degree is given
by

degA
1

𝑥 ( 𝑓 ) = Tr𝑘 (𝑥)/𝑘 〈Jac( 𝑓 ) (𝑥)〉 .

Remark 4 At a non-rational point 𝑝 whose residue field 𝑘 (𝑝) |𝑘 is a finite separable extension of the ground
field, the local A1-degree can be computed by base changing to 𝑘 (𝑝) to compute the local degree rationally,
and applying the field trace Tr𝑘 (𝑝)/𝑘 to obtain a well-defined element of GW(𝑘) [Bra+20].

5 The commutativity of this diagram is one of the key features of Morel’s A1-degree and is attributable to him [Mor06, p. 1037].
We can provide an alternative justification of this fact following the discussion of the EKL form in Section 2.1.
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2.1 The Eisenbud–Khimshiashvili–Levine signature formula

Given a morphism 𝑓 = ( 𝑓1, . . . , 𝑓𝑛) : A𝑛
𝑘
→ A𝑛

𝑘
with an isolated zero at the origin, we may associate

to it a certain isomorphism class of bilinear forms 𝑤EKL
0 ( 𝑓 ), called the Eisenbud–Levine–Khimshiashvili

(EKL) class. This was studied by Eisenbud and Levine, and independently by Khimshiashvili, in the case
where 𝑓 is a smooth endomorphism of R𝑛 [EL77; Him77]. They ascertained that the degree degtop

0 𝑓 can be
computed as the signature of the form 𝑤EKL

0 ( 𝑓 ). If 𝑓 is furthermore assumed to be real analytic, the rank of
this form recovers the degree of the complexification 𝑓C [Pal67]. This bilinear form 𝑤EKL

0 ( 𝑓 ) can be defined
over an arbitrary field 𝑘 , and in this setting Eisenbud asked the following question: does 𝑤EKL

0 ( 𝑓 ) have any
topological interpretation? We will see that the answer is yes, via work of Kass and Wickelgren [KW19].

Suppose that 𝑓 = ( 𝑓1, . . . , 𝑓𝑛) : A𝑛
𝑘
→ A𝑛

𝑘
has an isolated zero at the origin, and define the local 𝑘-algebra

𝑄0 ( 𝑓 ) :=
𝑘 [𝑥1, . . . , 𝑥𝑛] (𝑥1 ,...,𝑥𝑛)
( 𝑓1, . . . , 𝑓𝑛)

.

We may pick polynomials 𝑎𝑖 𝑗 so that, for each 𝑖, we have the equality

𝑓𝑖 (𝑥1, . . . , 𝑥𝑛) = 𝑓𝑖 (0) +
𝑛∑︁
𝑗=1
𝑎𝑖 𝑗 · 𝑥 𝑗 .

By taking their determinant, we define 𝐸0 ( 𝑓 ) := det(𝑎𝑖 𝑗 ) as an element of 𝑄0 ( 𝑓 ), which we refer to as the
distinguished socle element of the local algebra 𝑄0 ( 𝑓 ). We remark that when Jac( 𝑓 ) is a nonzero element of
𝑄0 ( 𝑓 ), one has the equality [SS75, 4.7 Korollar]

Jac( 𝑓 ) = dim𝑘 (𝑄0 ( 𝑓 )) · 𝐸0 ( 𝑓 ).

We then pick 𝜂 to be any 𝑘-linear vector space homomorphism 𝜂 : 𝑄0 ( 𝑓 ) → 𝑘 satisfying 𝜂(𝐸0 ( 𝑓 )) = 1.
One may check that the following bilinear form

𝑄0 ( 𝑓 ) ×𝑄0 ( 𝑓 ) → 𝑘

(𝑢, 𝑣) ↦→ 𝜂(𝑢 · 𝑣)

is non-degenerate and its isomorphism class is independent of the choice of 𝜂 [EL77, Propositions 3.4, 3.5],
[KW19, §3]. The class of this form in GW(𝑘) is referred to as the EKL class, and denoted by 𝑤EKL

0 ( 𝑓 ).

Example 5 If 𝑓 : A1
𝑘
→ A1

𝑘
is given by 𝑧 ↦→ 𝑧2, we may see that 𝑄0 ( 𝑓 ) = 𝑘 [𝑧] (𝑧)

/
(𝑧2). We see that 𝑓 has

an isolated zero at the origin, and that

𝑓 = 𝑓 (0) + 𝑥 · 𝑥,

hence 𝐸0 ( 𝑓 ) = 𝑥. We determine 𝜂 : 𝑄0 ( 𝑓 ) → 𝑘 on a basis for𝑄0 ( 𝑓 ) by setting 𝜂(𝑥) = 1 and 𝜂(1) = 0. Then
we compute the EKL form via its Gram matrix as:
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𝜂(1 · 1) 𝜂(1 · 𝑥)
𝜂(𝑥 · 1) 𝜂(𝑥 · 𝑥)

)
=

(
0 1
1 0

)
= H.

Theorem 6 If 𝑓 : A𝑛
𝑘
→ A𝑛

𝑘
is any endomorphism of affine space with an isolated zero at the origin, there

is an equality degA
1

0 𝑓 = 𝑤EKL
0 ( 𝑓 ) in GW(𝑘) [KW19].

In particular we observe that the compatibility stated in Diagram 4 is justified by this theorem, combined with
the results of Eisenbud–Khimshiashvili–Levine and Palamodov. Moreover we remark that the EKL form can
be defined at any 𝑘-rational point, and an analogous statement to Theorem 6 holds in this context.

Exercise 6

1. Compute the degree of 𝑓 : A2
𝑘
→ A2

𝑘
, given as 𝑓 (𝑥, 𝑦) = (4𝑥3, 2𝑦) in the case where char(𝑘) ≠ 2.

2. Supposing 𝑓 is étale at the origin 0, show that 𝑤EKL
0 ( 𝑓 ) = 〈Jac( 𝑓 ) (0)〉 is an equality in GW(𝑘). Show

furthermore that an analogous equality holds at any 𝑘-rational point 𝑥.

As a generalization of Exercise 6(2), one may show that if 𝑓 is étale at a point 𝑥, one has the following
equality in GW(𝑘)

𝑤EKL
𝑥 ( 𝑓 ) = Tr𝑘 (𝑥)/𝑘 〈Jac( 𝑓 ) (𝑥)〉 . (5)

This is shown using Galois descent, as in [KW19, Lemma 33].

2.2 Sketch of proof for Theorem 6

Step 1: We can see that degA
1

0 𝑓 and 𝑤EKL
0 ( 𝑓 ) are finitely determined in the sense that they are unchanged by

changing 𝑓 to 𝑓 + 𝑔, with 𝑔 = (𝑔1, . . . , 𝑔𝑛), and 𝑔𝑖 ∈ 𝔪𝑁
0 for sufficiently large 𝑁 , where 𝔪0 := (𝑥1, . . . , 𝑥𝑛)

denotes the maximal ideal at the origin [KW19, Lemma 17].

Step 2: By changing 𝑓 to 𝑓 + 𝑔, we may assume that 𝑓 extends to a finite, flat morphism 𝐹 : P𝑛
𝑘
→ P𝑛

𝑘
, where

𝐹−1 (A𝑛
𝑘
) ⊆ A𝑛

𝑘
and 𝐹 |𝐹−1 (0)r{0} is étale [KW19, Proposition 23].

Proposition 6 (Scheja–Storch) [SS75, §3, pp.180—182] We have that 𝑤EKL
0 ( 𝑓 ) is a direct summand of the

fiber at 0 of a family of bilinear forms over A𝑛
𝑘
, which we construct below.

We will prove Proposition 6 following the construction of this family of bilinear forms.

The Scheja–Storch construction Let 𝐹 : Spec (𝑃) → Spec (𝐴), where

𝑃 = 𝑘 [𝑥1, . . . , 𝑥𝑛]
𝐴 = 𝑘 [𝑦1, . . . , 𝑦𝑛] .

One may show that the collection {𝑡1, . . . , 𝑡𝑛} is a regular sequence in 𝐴[𝑥1, . . . , 𝑥𝑛], where 𝑡𝑖 := 𝑦𝑖 −
𝐹𝑖 (𝑥1, . . . , 𝑥𝑛). Then
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𝐵 = 𝐴[𝑥1, . . . , 𝑥𝑛]
/
〈𝑡1, . . . , 𝑡𝑛〉

is a relative complete intersection, which parametrizes the fibers of 𝐹. This regular sequence determines a
canonical isomorphism [SS75, Satz 3.3]

𝜃 : Hom𝐴(𝐵, 𝐴)
�−→ 𝐵,

via the following procedure: we may first express

𝑡 𝑗 ⊗ 1 − 1 ⊗ 𝑡 𝑗 =
𝑛∑︁
𝑖=1

𝑎𝑖 𝑗 (𝑥𝑖 ⊗ 1 − 1 ⊗ 𝑥𝑖) ,

where each 𝑎𝑖 𝑗 is an element of 𝐴[𝑥1, . . . , 𝑥𝑛] ⊗𝐴 𝐴[𝑥1, . . . , 𝑥𝑛]. Under the projection map 𝐴[𝑥1, . . . , 𝑥𝑛] ⊗𝐴
𝐴[𝑥1, . . . , 𝑥𝑛] → 𝐵⊗𝐴𝐵, we have that det

(
𝑎𝑖 𝑗

)
is mapped to some element Δ. We now consider the bijection

𝐵 ⊗𝐴 𝐵→ Hom𝐴(Hom𝐴(𝐵, 𝐴), 𝐵)
𝑏 ⊗ 𝑐 ↦→ (𝜑 ↦→ 𝜑(𝑏)𝑐) ,

and define 𝜃 to be the image of Δ. We remark that a priori 𝜃 is an 𝐴-module homomorphism between
Hom𝐴(𝐵, 𝐴) and 𝐵, which both have 𝐵-module structures. It is in fact a 𝐵-module homomorphism, and is
moreover an isomorphism by [SS75, Satz 3.3]. Defining 𝜂 = 𝜃−1 (1), we have that 𝜂 determines a bilinear
form, which we denote by 𝑤

𝐵 ⊗𝐴 𝐵→ 𝐴

𝑏 ⊗ 𝑐 𝑤↦−→ 𝜂(𝑏𝑐).

Proof of Proposition 6: We note that, when 𝑦1 = . . . = 𝑦𝑛 = 0, Spec (𝐵) is the fiber of 𝐹 over 0, consisting of a
discrete set of points. This corresponds to a disjoint union of schemes. If 𝑏 and 𝑐 lie in different components,
then their product is zero. This implies that the bilinear form 𝑤 decomposes into an orthogonal direct sum of
forms over each factor in 𝐹−1 (0). These factors correspond to EKL forms at each point in the fiber 𝐹−1 (0),
and in particular over 0 ∈ 𝐹−1 (0), we recover the EKL form 𝑤EKL

0 (𝐹).

The following theorem will allow us to relate the EKL forms at various points in the fiber 𝐹−1 (0).

Theorem 7 (Harder’s Theorem) [Lam06, p. VII.3.13] A family of symmetric bilinear forms over A1
𝑘

is
constant (respectively, has constant specialization to 𝑘-points) for characteristic not equal to 2 (resp. any
𝑘). In particular when char(𝑘) ≠ 2, for any finite 𝑘 [𝑡]-module 𝑀 , we have that the family of bilinear forms
𝑀 ×𝑘 [𝑡 ] 𝑀 → 𝑘 [𝑡] is pulled back from some bilinear form 𝑁 ×𝑘 𝑁 → 𝑘 via the unique morphism of schemes
A1
𝑘
→ Spec (𝑘).

Step 3: We choose 𝑦 so that 𝐹 |𝐹−1 (𝑦) is étale. One may use the generalization of Exercise 6(2) as stated in
Equation 5, combined with Proposition 5 to see that∑︁

𝑥∈𝐹−1 (𝑦)
𝑤EKL
𝑥 (𝐹) =

∑︁
𝑥∈𝐹−1 (𝑦)

degA
1

𝑥 𝐹.
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By Harder’s theorem, we have that
∑
𝑥∈𝐹−1 (𝑦) 𝑤

EKL
𝑥 (𝐹) = ∑

𝑥∈𝐹−1 (0) 𝑤
EKL
𝑥 (𝐹), and by the local formula for

degree, we see that ∑︁
𝑥∈𝐹−1 (𝑦)

degA
1

𝑥 𝐹 = degA
1
𝐹 =

∑︁
𝑥∈𝐹−1 (0)

degA
1

𝑥 𝐹.

Thus
∑
𝑥∈𝐹−1 (0) 𝑤

EKL
𝑥 (𝐹) = ∑

𝑥∈𝐹−1 (0) degA
1

𝑥 𝐹. Since 𝐹 |𝐹−1 (0)r{0} is étale, we may iteratively apply the
equality in Equation 5 to cancel terms, leaving us with the local degree and EKL form at the origin:

𝑤EKL
0 (𝐹) = degA

1

0 𝐹.

Therefore by finite determinacy we recover the desired equality 𝑤EKL
0 ( 𝑓 ) = degA

1

0 ( 𝑓 ). This concludes the
proof of Theorem 6.

2.3 A1-Milnor numbers

The following section is based off of joint work by Jesse Kass and Kirsten Wickelgren [KW19, §8]. A variety
over a perfect field is generically smooth, although it may admit a singular locus where the dimension of the
tangent space exceeds the dimension of the variety, for example a self-intersecting point on a singular elliptic
curve. Singularities are generally difficult to study, although certain classes are more tractable than others.
There is a particular class of singularities, called nodes, which are in some sense the most generic. If 𝑘 is a
field of characteristic not equal to 2, then a node is given by an equation 𝑥2

1 + . . . + 𝑥
2
𝑛 = 0 over a separable

algebraic closure 𝑘 .

Consider a point 𝑝 on a hypersurface { 𝑓 (𝑥1, . . . , 𝑥𝑛) = 0} ⊆ A𝑛
𝑘
. Fix values 𝑎1, . . . , 𝑎𝑛, and consider the

family

𝑓 (𝑥1, . . . , 𝑥𝑛) + 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 = 𝑡,

parametrized over the affine 𝑡-line. This hypersurface bifurcates into nodes over 𝑘 . Given any hypersurface
𝑔(𝑥1, . . . , 𝑥𝑛) with a node at a 𝑘-rational point 𝑝, we define the type of the node as the element in GW(𝑘)
corresponding to the rank one form represented by the Hessian matrix at 𝑝:

type(𝑝) :=
〈
𝜕2𝑔

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑝)

〉
.

In particular, we see that:

type(𝑥2
1 + 𝑎𝑥

2
2 = 0) := 〈𝑎〉

type

(
𝑛∑︁
𝑖=1

𝑎𝑖𝑥
2
𝑖 = 0

)
:=

〈
2𝑛

𝑛∏
𝑖=1

𝑎𝑖

〉
.
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In the case where we have a node at 𝑝 with 𝑘 (𝑝) = 𝐿, then 𝐿 is separable over 𝑘 [DK73, Exposé XV,
Théorème 1.2.6], and we define the type of the node as the trace of the type over its residue field. In the
examples above, this gives:

type

(
𝑛∑︁
𝑖=1

𝑎𝑖𝑥
2
𝑖 = 0

)
:= Tr𝐿/𝑘

〈
2𝑛

𝑛∏
𝑖=1

𝑎𝑖

〉
.

Thus the type encodes the field of definition of the node, as well as its tangent direction. In the case where
𝑘 = R, we can visualize the possible R-rational nodes in degree two as:

𝑥2
1 − 𝑥

2
2 = 0

(a) split

𝑥2
1 + 𝑥

2
2 = 0

(b) non-split

Here we may think of split as corresponding to the existence of rational tangent directions, while non-split
refers to non-rational tangent directions. Over fields that aren’t R, it is possible to have many different split
nodes.

In the case where 𝑘 = C, for any (𝑎1, . . . , 𝑎𝑛) sufficiently close to 0, it is a classical result that the number
of nodes in this family is a constant integer, equal to degtop

0 grad 𝑓 =: 𝜇, which is called the Milnor number.
This admits a generalization as follows.

Theorem 8 [KW16, Corollary 45] Assume that 𝑓 has a single isolated singularity at the origin. Then for a
generic (𝑎1, . . . , 𝑎𝑛), we have that the sum over nodes on the hypersurface 𝑓 + 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 = 𝑡 is∑︁

nodes 𝑝
in family

type(𝑝) = degA
1

0 grad 𝑓 =: 𝜇A
1

0 𝑓 .

We refer to this as the A1-Milnor number. We remark that the classical Milnor number can be recovered by
taking the rank of the A1-Milnor number.

Example 6 Let 𝑓 (𝑥, 𝑦) = 𝑥3 − 𝑦2, over a field of characteristic not equal to 2 or 3. Let 𝑝 = (0, 0) be a point
on the hypersurface { 𝑓 = 0}. We can compute grad 𝑓 = (3𝑥2,−2𝑦), and then we have that

deg grad 𝑓 = deg(3𝑥2) · deg(−2𝑦)

=

(
0 1/3

1/3 0

)
〈−2〉

= H.
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This has rank two, so the classical Milnor number is 𝜇 = 2. We can take our family to be 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑡.
If 𝑎 = 0, then we have a node at 0. In general, for 𝑎 ≠ 0, we have nodes at those 𝑡 with the property that the
discriminant of the curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑡 vanishes, that is at those 𝑡 where Δ = −16

(
4𝑎3 + 27𝑡2

)
= 0. This

has at most two solutions in 𝑡, which we may denote by
{
𝑥2 + 𝑢1𝑦

2 = 0
}

and
{
𝑥2 + 𝑢2𝑦

2 = 0
}
, and we see

by Theorem 8 that H = 〈𝑢1〉 + 〈𝑢2〉. This implies, by taking determinants, that −1 agrees with 𝑢1𝑢2 up to
squares. This provides us with obstructions to the existence of pairs of nodes of certain types, depending on
the choice of field we are working over. For example:

• Over F5, we see that 〈1〉 = 〈−1〉 in GW(F5) implying that 𝑢1𝑢2 is always a square. In particular, 𝑢1 and
𝑢2 cannot have the property that exactly one of them is a non-square, meaning that we cannot bifurcate
into a split and a non-split node.

• Over F7 we have that 〈1〉 ≠ 〈−1〉, implying 𝑢1𝑢2 is a non-square, so we cannot bifurcate into two split or
two non-split nodes.

Exercise 7 Compute 𝜇A1 for the following ADE singularities over Q:

singularity equation
𝐴𝑛 𝑥2 + 𝑦𝑛+1
𝐷𝑛 𝑦(𝑥2 + 𝑦𝑛−2) (𝑛 ≥ 4)
𝐸6 𝑥3 + 𝑦4

𝐸7 𝑥(𝑥2 + 𝑦3)
𝐸8 𝑥3 + 𝑦5.

2.4 An arithmetic count of the lines on a smooth cubic surface

The following is based off of joint work of Jesse Kass and Kirsten Wickelgren [KW17]. Let 𝑓 ∈
𝑘 [𝑥0, 𝑥1, 𝑥2, 𝑥3] be a homogeneous polynomial of degree three. Consider the following surface

𝑉 = { 𝑓 = 0} ⊆ Proj 𝑘 [𝑥0, 𝑥1, 𝑥2, 𝑥3] = P3
𝑘 ,

and suppose that 𝑉 is smooth.

Theorem 9 (Cayley-Salmon Theorem) When 𝑘 = C, there are exactly 27 lines on 𝑉 [Cay09].

Proof Consider the Grassmannian GrC (2, 4), which parametrizes 2-dimensional complex subspaces 𝑊 ⊆
C⊕4, or equivalently, lines in P3

C
. As the Grassmannian is a moduli space, it admits a tautological bundle S

whose fiber over any point 𝑊 ∈ GrC (2, 4) is the vector space 𝑊 itself. A chosen homogeneous polynomial
𝑓 of degree three defines a section 𝜎 𝑓 of Sym3S∗, where

𝜎 𝑓 ( [𝑊]) = 𝑓 |𝑊 .

Thus we see that the line ℓ ⊆ P3
C

corresponding to [𝑊] lies on the surface 𝑉 if and only if 𝜎 𝑓 [𝑊] = 0. One
may see that 𝜎 𝑓 has isolated zeros [EH16, Corollary 6.17], and thus we may express the Euler class of the
bundle as
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𝑒(Sym3S∗) = 𝑐4 (Sym3S∗) =
∑︁
ℓ

degtop
ℓ
𝜎 𝑓 , (6)

where this last sum is over the zeros of 𝜎 𝑓 . We determine degtop
ℓ
𝜎 𝑓 by choosing local coordinates near ℓ

on GrC (2, 4) as well as a compatible trivialization for Sym3S∗ over this coordinate patch. Then 𝜎 𝑓 may be
viewed as a function

A4
C ⊇ 𝑈

𝜎 𝑓−−→ A4
C

with an isolated zero at ℓ. We can then define degtop
ℓ
𝜎 𝑓 as the local degree of this function. It is a fact that

the smoothness of 𝑉 implies that 𝜎 𝑓 vanishes to order 1 at ℓ. Thus the Euler class counts the number of
lines on 𝑉 . Finally, one may compute 𝑐4 (Sym3S∗) = 27 by applying the splitting principle and computing
the cohomology of GrC (2, 4). �

In the real case, Schäfli [Sch60] and Segre [Seg42] showed that there can be 3, 7, 15, or 27 real lines on
𝑉 . One of the main differences between the real and the complex case was the distinction that Segre drew
between hyperbolic and elliptic lines.

Definition 5 We say that 𝐼 ∈ PGL2 (R) is hyperbolic (resp. elliptic) if the set

Fix(𝐼) = {𝑥 ∈ P1
R : 𝐼𝑥 = 𝑥}

consists of two real points (resp. a complex conjugate pair of points).

To a real line ℓ ⊆ 𝑉 we may associate an involution 𝐼 ∈ Aut(ℓ) � PSL2 (R), where 𝐼 sends 𝑝 ∈ ℓ to 𝑞 ∈ ℓ if
𝑇𝑝𝑉 ∩ 𝑉 = ℓ ∪𝑄, for some 𝑄 satisfying ℓ ∩𝑄 = {𝑝, 𝑞}, (that is, for any point 𝑝 on a line ℓ, there is exactly
one other point 𝑞 having the same tangent space). We can say that ℓ is hyperbolic (resp. elliptic) whenever 𝐼
is.

Alternatively, we may describe these classes of lines topologically. We think of the frame bundle as a principal
SO(3)-bundle over RP3. As SO(3) admits a double cover Spin(3), from any principal SO(3)-bundle we may
obtain a principal Spin(3)-bundle. Traveling on our cubic surface along the line ℓ gives a distinguished choice
of frame at every point on ℓ, that is, a loop in the frame bundle. This loop may or may not lift to the associated
Spin(3)-bundle. If the loop lifts, then ℓ is hyperbolic, and if it doesn’t then ℓ is elliptic.

Theorem 10 In the real case, we have the following relationship between hyperbolic and elliptic lines:

#{real hyperbolic lines on 𝑉} − #{real elliptic lines on 𝑉} = 3.

We refer the reader to the following sources [Seg42; BS95; HS12; OT14; FK15].

Proof sketch Via the map 𝜎 𝑓 : GrR (2, 4) → Sym3S∗, we have that

𝑒(Sym3S∗) =
∑︁

ℓ∈GrR (2,4)
𝜎 𝑓 (ℓ)=0

degtop
ℓ
𝜎 𝑓 .
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One may also show that

degtop
ℓ
𝜎 𝑓 =

{
1 if ℓ is hyperbolic
−1 if ℓ is elliptic,

and compute that 𝑒(Sym3S∗) = 3 using the Grassmannian of oriented planes. �

To define a notion of hyperbolic and elliptic which holds in more generality, we introduce the type of a line.
As before, we let 𝑉 ⊆ P3

𝑘
be a smooth cubic surface, and consider a closed point ℓ ∈ Gr𝑘 (2, 4), with residue

field 𝐿 = 𝑘 (ℓ). We can then view ℓ as a closed immersion

ℓ � P1
𝐿

/↩→ P3
𝑘 ⊗𝑘 𝐿.

Given such a line ℓ ⊆ 𝑉 , we again have an associated involution:

𝐼 =

(
𝑎 𝑏

𝑐 𝑑

)
∈ PGL2 (𝐿).

Since 𝐼 is an involution, its fixed points satisfy 𝑎𝑧+𝑑
𝑐𝑧+𝑑 = 𝑧, from which we can see they are defined over the

field 𝐿
(√
𝐷

)
, where 𝐷 is the discriminant of the subscheme Fix(𝐼) ⊆ P1

𝐿
.

Definition 6 The type of a line ℓ is the element of GW(𝑘 (ℓ)) given by

type(ℓ) := 〈𝐷〉 = 〈𝑎𝑑 − 𝑏𝑐〉 = 〈−1〉 degA
1 (𝐼).

We say a line is hyperbolic if type(ℓ) = 〈1〉, and elliptic otherwise.

Theorem 11 [KW17, Theorem 2] The number of lines on a smooth cubic surface is computed via the following
weighted count ∑︁

ℓ⊆𝑉
Tr𝑘 (ℓ)/𝑘 (type(ℓ)) = 15 · 〈1〉 + 12 · 〈−1〉 .

Remark 5 We may apply the previous theorem to observe the following results:

1. If 𝑘 = C, then by taking the rank, we obtain the Cayley-Salmon Theorem (9), stating that the number of
lines on a cubic surface is 27.

2. If 𝑘 = R, then TrC/R 〈1〉 = 〈1〉 ⊕ 〈−1〉. Taking the signature, we recover Theorem 10, stating that the
number of hyperbolic lines minus the number of elliptic lines is 3.

As a particular application, if we are working over a finite field 𝑘 = F𝑞 , then its square classes are F×𝑞
/
(F×𝑞)2 �

{1, 𝑢}. Thus the type of a line ℓ over F𝑞𝑎 is either 〈1〉 or 〈𝑢𝑎〉, which by Definition 6 we call hyperbolic or
elliptic, respectively.
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Corollary 2 [KW17, Theorem 1] For any natural number 𝑎, we have that the number of lines on 𝑉 satisfies

#{elliptic lines with field of definition F𝑞2𝑎+1 }
+ #{hyperbolic lines with field of definition F𝑞2𝑎 } ≡ 0 (mod 2).

In particular when all the lines in question are defined over a common field 𝑘 , we have that the number of
elliptic lines is even.

In order to prove Theorem 11, one considers 𝜎 𝑓 to be a section of the bundle Sym3S∗ → Gr𝑘 (2, 4), and
computes a sum over its isolated zeros, weighted by their local index. Over the complex numbers, this is
precisely Equation 6, which recovers the Euler number of the bundle. In a more general context, however,
we will want to obtain an element of GW(𝑘). This requires us to use an enriched notion of an Euler class,
described below.

Digression In this exposition, given a vector bundle 𝐸 → 𝑋 with section 𝜎, we use the Euler class 𝑒(𝐸, 𝜎)
valued in GW(𝑘) of [KW17, Section 4]. In the literature, there are a number of other Euler classes which
coincide with this definition in various settings. One may define this Euler class via Chow-Witt groups
[BM00] or oriented Chow groups [Fas08] as in the work of M. Levine [Lev17]. In his seminal book,
Morel defines the Euler class of a bundle 𝐸 → 𝑋 as a cohomology class in twisted Milnor-Witt 𝐾-theory
𝐻𝑛 (𝑋;KMW

𝑛 (det 𝐸∗)) [Mor12], and when det(𝐸∗) is trivial, one may relate these Euler classes up to a unit
multiple via the isomorphism

𝐻𝑛 (𝑋;KMW
𝑛 (det 𝐸∗)) � C̃H(𝑋, det 𝐸∗).

For more details, see the work of Asok and Fasel [AF16]. Other versions of the Euler class in A1-homotopy
theory occur in the work of Déglise, Jin and Khan [DJK18] and the work of Levine and Raksit [LR18]. Many
of these notions are equated in work of Bachmann and Wickelgren [BW20]. �

Definition 7 Let 𝑋 be a smooth projective scheme of dimension 𝑟 , and let E → 𝑋 be a rank 𝑟 bundle. We
say that E is relatively oriented if we are given an isomorphism

Hom(det𝑇𝑋, det E) � L⊗2,

where L is a line bundle on 𝑋 .

Suppose that 𝜎 is a section of a relatively oriented bundle E with isolated zeros, and define 𝑍 = {𝜎 = 0} to
be its vanishing locus. For each 𝑥 ∈ 𝑍 , we will define degA

1

𝑥 𝜎 as follows:

1. Choose Nisnevich coordinates ([KW17, Definition 17]) near 𝑥 ∈ 𝑍 , that is, pick an open neighborhood
𝑈 ⊆ 𝑋 around 𝑥, and an étale morphism 𝜑 : 𝑈 → A𝑟

𝑘
such that 𝑘 (𝜑(𝑥)) � 𝑘 (𝑥).

2. Choose a compatible oriented trivialization E
��
𝑈

, that is, a local trivialization

𝜓 : E
��
𝑈
→ O⊕𝑟

𝑈
,

such that the associated section Hom(det𝑇𝑋, det E)(𝑈) is a square of a section in L(𝑈). Then we have
that 𝜓 ◦ 𝜎 ∈ O⊕𝑟

𝑈
and there exists a 𝑔 ∈ (𝔪𝑁

𝑥 )⊕𝑟 , with 𝑁 sufficiently large, so that
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𝜓 ◦ 𝜎 + 𝑔 ∈ 𝜑∗OA𝑟
𝑘
.

Define 𝑓 := 𝜓 ◦ 𝜎 + 𝑔, and then we have that 𝑓 : 𝜑(𝑈) → A𝑟
𝑘

has an isolated zero at 𝜑(𝑥). Since our
trivialization was compatibly oriented, this definition is independent of the choice of 𝑔.

3. Finally, we define degA
1

𝑥 𝜎 := degA
1

𝜑 (𝑥) 𝑓 ∈ GW(𝑘).

Definition 8 For a relatively oriented bundle E → 𝑋 , and a section 𝜎 with isolated zeros, we define the
Euler class to be

𝑒(𝐸, 𝜎) :=
∑︁

𝑥:𝜎 (𝑥)=0

degA
1

𝑥 𝜎.

In order to conclude the proof of Theorem 11, we must identify degA
1

ℓ 𝜎 𝑓 with type(ℓ). Then we are able to
compute 𝑒(Sym3S∗) using a well-behaved choice of cubic surface, for instance the Fermat cubic. For more
details, see [KW17, §5].

Remark 6 Following our definition of an Euler class for a relatively oriented bundle, we include the following
closely related remarks.

1. Interesting enumerative information is still available when relative orientability fails. For an example of
this in the literature, we refer the reader to the paper of Larson and Vogt [LV19] which defines relatively
oriented bundles relative to a divisor in order to compute an enriched count of bitangents to a smooth
plane quartic [LV19].

2. Given a smooth projective scheme over a field, one may push forward the Euler class of its tangent
bundle to obtain an Euler characteristic which is valued in GW(𝑘). A particularly interesting consequence
of this is an enriched version of the Riemann–Hurwitz formula, first established by M. Levine [Lev17,
Theorem 12.7] and expanded upon by work of Bethea, Kass, and Wickelgren [BKW20].

Forthcoming work of Pauli investigates the related question of lines on quintic threefold [Pau20b]. We also
refer the reader to work of M. Levine, which includes an examination of Witt-valued characteristic classes,
including an Euler class of Sym2𝑛−𝑑S∗ on Gr𝑘 (2, 𝑛 + 1) [Lev19], and results of Bachmann and Wickelgren
for symmetric bundles on arbitrary Grassmannians [BW20, Corollary 6.2]. Finally, for a further investigation
of enriched intersection multiplicity, we refer the reader to recent work of McKean on enriching Bézout’s
Theorem [McK20].

2.5 An arithmetic count of the lines meeting 4 lines in space

The following is based off of work by Padmavathi Srinivasan and Kirsten Wickelgren [SW18].

In enumerative geometry, one encounters the following classical question: given four complex lines in general
position in CP3, how many other complex lines meet all four? The answer is two lines, whose proof we sketch
out below.
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Four lines in three-space, classically Let 𝐿1, 𝐿2, 𝐿3, 𝐿4 be lines in CP3 so that no three of them intersect at
one point (we refer to this condition as general). Given a point 𝑝 ∈ 𝐿1, there is a unique line 𝐿𝑝 through 𝑝
which intersects both 𝐿2 and 𝐿3. We then examine the surface sweeped out by all such lines𝑄 :=

⋃
𝑝∈𝐿1 𝐿𝑝 ,

and we claim that this is a degree two hypersurface which contains 𝐿1, 𝐿2, and 𝐿3. To see this, it suffices to
verify that it is the vanishing locus of a degree two homogeneous polynomial. A homogeneous polynomial
of degree two, considered as an element of 𝐻0 (CP3,O(2)), will vanish on the line 𝐿𝑖 if and only if it lies in
the kernel

𝐻0 (CP3,O(2)) → 𝐻0 (𝐿𝑖 ,O(2)).

We verify that

dim𝑘 𝐻
0 (CP3,O(2)) =

(
2 + 3

2

)
= 10

dim𝑘 𝐻
0 (𝐿𝑖 ,O(2)) = 3,

therefore for 𝑖 = 1, 2, 3 each such map has kernel of dimension ≥ 7. This implies there is a polynomial 𝑓
in the common kernel of all three maps. We claim that 𝐿𝑝 ⊆ 𝑉 ( 𝑓 ) for each 𝑝 ∈ 𝐿1, and indeed since three
points of 𝐿𝑝 lie in𝑉 ( 𝑓 ), we see that𝑉 ( 𝑓 ) contains the entire line. Therefore we have containment𝑉 ( 𝑓 ) ⊇ 𝑄,
and it is easy to see we must have equality. Finally by applying Bézout’s Theorem, we see that𝑄∩𝐿4 consists
of two points, counted with multiplicity.

One might ask how to answer this question over an arbitrary field 𝑘 . We recall that the Grassmannian Gr𝑘 (2, 4)
parametrizes lines in P3

𝑘
(that is, two-dimensional subspaces of 𝑘 ⊕4), which is an appealing moduli space for

this problem. We first select a basis {𝑒1, 𝑒2, 𝑒3, 𝑒4} of 𝑘 ⊕4 satisfying

𝐿1 = 𝑘𝑒3 ⊕ 𝑘𝑒4,

and we define a new line 𝐿 such that

𝐿 = 𝑘�̃�3 ⊕ 𝑘�̃�4,

where �̃�3 and �̃�4 are some linearly independent vectors whose definition we defer until further below. Letting
𝜑𝑖 denote the dual basis element to 𝑒𝑖 , one may compute that 𝐿 ∩ 𝐿1 is nonempty if and only if

(𝜑1 ∧ 𝜑2) (�̃�3 ∧ �̃�4) = 0.

Consider the line bundle detS∗ = S∗ ∧S∗ → Gr𝑘 (2, 4), whose fiber over a point𝑊 ∈ Gr𝑘 (2, 4) is𝑊∗ ∧𝑊∗.
We then have that 𝜑1 ∧ 𝜑2 ∈ 𝐻0 (Gr𝑘 (2, 4),S∗ ∧ S∗) and

(𝜑1 ∧ 𝜑2) ( [𝑊]) = 𝜑1 |𝑊 ∧ 𝜑2 |𝑊 .

It is then clear that we obtain a bijection between lines intersecting 𝐿1 and zeros of 𝜑1 ∧ 𝜑2:

{𝐿 : 𝐿 ∩ 𝐿1 ≠ ∅} = {[𝑊] : (𝜑1 ∧ 𝜑2) ( [𝑊]) = 0}.

We may repeat this process for each line to form a section 𝜎 of ⊕4
𝑖=1S

∗ ∧ S∗. Then the zeros of 𝜎 will
correspond exactly to lines which meet all four of our chosen lines:
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{𝐿 : 𝐿 ∩ 𝐿𝑖 ≠ ∅, 𝑖 = 1, 2, 3, 4} = {[𝑊] ∈ Gr𝑘 (2, 4) : 𝜎( [𝑊]) = 0}.

In particular, if 𝜎 is a section of a relatively oriented bundle, then we may calculate an enriched count of
lines meeting four lines in space, given by the Euler class

𝑒

(
⊕4
𝑖=1S

∗ ∧ S∗, 𝜎
)
=

∑︁
𝐿 : 𝐿∩𝐿𝑖≠0

ind𝐿𝜎. (7)

Denote by E = ⊕4
𝑖=1S

∗ ∧S∗ our rank four vector bundle over 𝑋 := Gr𝑘 (2, 4). Since 𝑋 is a smooth projective
scheme of dimension four, we have that (det𝑇𝑋)∗ � 𝜔𝑋 � O(−2)⊗2, and det E �

(
⊗2
𝑖=1S

∗ ∧ S∗
) ⊗2.

Therefore Hom(det𝑇𝑋, det E) � 𝑤𝑋 ⊗ det E � L⊗2, so E is relatively oriented over 𝑋 , and Equation 7 is a
valid expression. In order to compute a local index of the section 𝜎 near a zero 𝐿, we must first parametrize
Nisnevich local coordinates near 𝐿. Here we define a parametrized basis of 𝑘 ⊕4 by

�̃�1 = 𝑒1

�̃�2 = 𝑒2

�̃�3 = 𝑥𝑒1 + 𝑦𝑒2 + 𝑒3

�̃�4 = 𝑥 ′𝑒1 + 𝑦′𝑒2 + 𝑒4.

We then obtain a morphism from affine space to an open cell around 𝐿:

A4
𝑘 = Spec 𝑘 [𝑥, 𝑦, 𝑥 ′, 𝑦′] → 𝑈 ⊆ Gr𝑘 (2, 4)

(𝑥, 𝑦, 𝑥 ′, 𝑦′) ↦→ span{�̃�3, �̃�4}.

Over this cell, we obtain an oriented trivialization of the bundle detS∗, given by 𝜑3 ∧ 𝜑4, where 𝜑𝑖 denotes
the dual basis element to �̃�𝑖 . Under these local coordinates, we may compute the local index ind𝐿𝜎 as the
local A1-degree at the origin of the induced map A4

𝑘
→ A4

𝑘
. Suppose that

𝐿1 = {𝜑1 = 𝜑2 = 0} = 𝑘𝑒3 ⊕ 𝑘𝑒4.

Then we have that 𝜎( [𝑊]) =
(
𝜑1 ∧ 𝜑2 | [𝑊 ] , . . .

)
. We see then that

(𝜑1 ∧ 𝜑2) |𝑘�̃�3⊕𝑘�̃�4 = (𝑥𝜑3 + 𝑦𝜑4) ∧ (𝑥 ′𝜑3 + 𝑦′𝜑4)
= (𝑥𝑦′ − 𝑥 ′𝑦)𝜑3 ∧ 𝜑4.

Thus we may exhibit 𝜎 as a function

𝑓 = ( 𝑓1, 𝑓2, 𝑓3, 𝑓4) : A4
𝑘 → A

4
𝑘 ,

where 𝑓1 (𝑥, 𝑦, 𝑥 ′, 𝑦′) = 𝑥𝑦′ − 𝑥 ′𝑦. Then in the basis (𝑥, 𝑦, 𝑥 ′, 𝑦′) we have that the Jacobian of 𝜎 has its first
column as:
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Jac( 𝑓 ) = det
©«
𝑦′ · · ·
−𝑥 ′ · · ·
−𝑦 · · ·
𝑥 · · ·

ª®®®¬ .
Question Is there a geometric interpretation of ind𝐿𝜎 = degA

1

𝐿 𝑓 ?

The intersections 𝐿 ∩ 𝐿𝑖 for 𝑖 = 1, . . . , 4 determine four points on 𝐿 � P1
𝑘 (𝐿) . Let 𝜆𝐿 denote the cross-

ratio of these points in 𝑘 (𝐿)∗. Denote by 𝑃𝑖 the plane spanned by 𝐿 and 𝐿𝑖 . We note that planes 𝑃 in P3
𝑘

correspond to subspaces 𝑉 ⊆ 𝑘 (𝑃)⊕4 where dim(𝑉) = 3. If 𝑃 contains the line 𝐿 = [𝑊] then it corresponds
to 𝑊 ⊆ 𝑉 ⊆ 𝑘 (𝑃)⊕4, which in turn corresponds to 𝑘 (𝑃)-points of Proj

(
𝑘 (𝐿)⊕4

/
𝑊

)
� P1

𝑘 (𝐿) . Thus we
might think of the planes 𝑃𝑖 for 𝑖 = 1, . . . , 4 as 4 points on P1

𝑘 (𝐿) . Let 𝜇𝐿 denote the cross-ratio of these
points.

Theorem 13 [SW18, Theorem 1] Let 𝐿1, 𝐿2, 𝐿3, 𝐿4 be four general lines defined over 𝑘 in P3
𝑘
. Then∑︁

{𝐿 : 𝐿∩𝐿𝑖≠∅ ∀𝑖 }
Tr𝑘 (𝐿)/𝑘 〈𝜆𝐿 − 𝜇𝐿〉 = 〈1〉 + 〈−1〉 .

As a generalization, let 𝜋1, . . . , 𝜋2𝑛−2 be codimension 2 planes in P𝑛
𝑘

for 𝑛 odd. Then∑︁
{𝐿 : 𝐿∩𝜋𝑖≠∅ ∀𝑖 }

Tr𝑘 (𝐿)/𝑘 det
(
· · · 𝑐𝑖𝑏𝑖1 · · ·
· · · 𝑐𝑖𝑏𝑖2 · · ·

)
=

1
2𝑛

(
2𝑛 − 2
𝑛 − 1

)
H,

where 𝑐𝑖 are normalized coordinates for the line 𝜋𝑖 ∩ 𝐿 (defined in [SW18, Definition 10]), and [𝑏𝑖1, 𝑏
𝑖
2] =

𝐿 ∩ 𝜋𝑖 � P1
𝑘 (𝐿) . This weighted count is expanded in forthcoming work of the author, which provides a

generalized enriched count of 𝑚-planes meeting 𝑚𝑝 codimension 𝑚 planes in (𝑚 + 𝑝)-space [Bra20].

Corollary 3 [SW18, Corollary 3] Over F𝑞 , we cannot have a line 𝐿 over F𝑞2 with

𝜆𝐿 − 𝜇𝐿 =

{
non-square 𝑞 ≡ 3 (mod 4)
square 𝑞 ≡ 1 (mod 4).

For related results in the literature, we refer the reader to the papers of Levine and Bachmann–Wickelgren
mentioned in the previous section [Lev19; BW20], as well as Wendt’s work developing a Schubert calculus
valued in Chow-Witt groups [Wen18]. Finally, Pauli uses Macaulay2 to compute enriched counts over a
finite field of prime order and the rationals for various problems presented in these conference proceedings,
including lines on a cubic surface, lines meeting four general lines in space, the EKL class, and various
A1-Milnor numbers [Pau20a].

Notation Guide
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〈𝑎〉 the element of the Grothendieck–Witt ring corresponding to 𝑎 ∈ 𝑘×/(𝑘×)2
[𝑋,𝑌 ]A1 genuine A1-homotopy classes of morphisms 𝑋 → 𝑌

Béz( 𝑓 /𝑔) Bézout bilinear form of a rational function
Bl𝑍 𝑋 blowup of a subscheme 𝑍 in 𝑋
degA

1
global A1-degree

degtop the topological (Brouwer) degree of a map between real or complex manifolds
𝑒(F ) the Euler number (Euler class) of a vector bundle
G𝑚 the multiplicative group scheme
Gr𝑘 (𝑛, 𝑚) the Grassmannian of affine 𝑛-planes in 𝑚-space over a field 𝑘
GW(𝑘) the Grothendieck–Witt ring over a field 𝑘
H the hyperbolic element 〈1〉 + 〈−1〉 in GW(𝑘)
𝜇A

1
A1-Milnor number

[𝑋,𝑌 ]𝑁 naive A1-homotopy classes of morphisms 𝑋 → 𝑌

𝑁𝑍 𝑋 the normal bundle of a subscheme 𝑍 in 𝑋
Sh𝜏 (𝒞) the category of sheaves in a Grothendieck topology 𝜏 on a category 𝒞

sPre(𝒞) the category of simplicial presheaves on 𝒞

Th(𝑉) Thom space of a vector bundle 𝑉
Tr𝐿/𝐾 trace for a field extension 𝐿/𝐾
𝑤EKL the Eisenbud-Levine/Khimshiashvili bilinear form
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