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Abstract. The classification of algebraic vector bundles of rank 2 over smooth affine four-
folds is a notoriously difficult problem. Isomorphism classes of such vector bundles are not

uniquely determined by their Chern classes, in contrast to the situation in lower dimensions.

Given a smooth affine fourfold over an algebraically closed field of characteristic not equal
to 2 or 3, we study cohomological criteria for finiteness of the fibers of the Chern class map

for rank 2 bundles. As a consequence, we give a cohomological classification of such bundles

in a number of cases. For example, if d ≤ 4, there are precisely d2 non-isomorphic algebraic
vector bundles over the complement of a smooth hypersurface of degree d in P4

C.
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1. Introduction

Suppose k is an algebraically closed field and R a smooth affine k-algebra of dimension
4 over k. The main goal of this paper is to study isomorphism classes of rank 2 finitely
generated projective R-modules. We do this using tools from Morel–Voevodsky A1-homotopy
theory, a research area that in recent years has seen the resolution of major open problems
about projective modules such as Suslin’s cancellation conjecture [Fas21] and Murthy’s corank
1 splitting conjecture in characteristic zero [ABH23, Section 7.1].

The interplay between topology and the study of finitely generated projective modules has
a long history. Indeed, over affine schemes, J.-P. Serre’s seminal work characterized finitely
generated projective modules over commutative rings as the algebro-geometric analogue of
topological vector bundles [Ser55], allowing for the adaptation of a host of topological tools
to the setting of projective modules. For example, A. Grothendieck axiomatized S.-S. Chern’s
eponymous invariants for complex topological vector bundles over complex manifolds, leading
to the notion of Chern classes for algebraic vector bundles over smooth schemes [Che46, Gro58].
These characteristic classes are powerful and computable invariants in both the topological and
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algebraic setting, so a natural question is to what extent the Chern classes of a vector bundle
determine its isomorphism class.

Let X be a smooth affine k-variety of dimension d and E a rank r algebraic vector bundle
on X. The Chern classes ci(E) ∈ CHi(X), 1 ≤ i ≤ r, are elements of the Chow ring of X. If
Vr(X) denotes the set of isomorphism classes of algebraic vector bundles of rank r over X, the
Chern classes induce a natural map

(c1, ..., cr) : Vr(X) →
∏r
i=1 CH

i(X).

By Serre’s splitting theorem [Ser58, Théorème 1] and Suslin’s cancellation theorem [Sus77,
Theorem], any vector bundle E of rank r > d over X can be written uniquely as the direct sum
of a vector bundle of rank d and a trivial vector bundle over X. One can therefore focus on the
maps with 1 ≤ r ≤ d above.

If r = 1 and d is arbitrary, the map

c1 : V1(X) → CH1(X)

is precisely the classical isomorphism between the Picard group and the divisor class group,
which shows that the algebraic line bundles over X are uniquely determined by their first Chern
class.

If d = 2, the map

(1) (c1, c2) : V2(X) → CH1(X)× CH2(X)

is also a bijection as a consequence of [MS76, Theorem 1] and the relationship between algebraic
K-theory and algebraic cycles. By continuing the study of algebraic cycles, N. Mohan Kumar
and M. P. Murthy proved that if d = 3 the map

(c1, c2, c3) : V3(X) → CH1(X)× CH2(X)× CH3(X)

is a bijection and (c1, c2) is at least surjective in rank 2 [MKM82, Theorem 2.1]. At the time,
it seemed impossible with existing methods to determine if (c1, c2) was also injective, and the
question remained unresolved until the advent of A1-homotopy theory many years later.

F. Morel’s A1-homotopy classification of algebraic vector bundles (cf. [Mor12, Theorem 7.1],
[AHW17, Theorem 1]) provided a striking algebro-geometric analogue of Steenrod’s homotopy
classification of topological vector bundles (cf. [Ste99, §19.3]) and allowed methods of obstruc-
tion theory to be applied to algebraic vector bundles. Building on these ideas, A. Asok and J.
Fasel achieved a breakthrough in [AF14a, Theorem 1], proving that (c1, c2) is indeed bijective
for rank 2 bundles if d = 3 and the characteristic of the base field is not 2. This completed the
classification of algebraic vector bundles over smooth affine varieties over algebraically closed
fields of characteristic not equal to 2 in all dimensions less than or equal to 3: in low dimensions
at least, the isomorphism class of an algebraic vector bundle is uniquely determined by its rank
and its Chern classes!

Already in the 1980s, N. Mohan Kumar had produced examples of stably trivial non-trivial
algebraic vector bundles of rank 2 over smooth affine fourfolds over algebraically closed fields
[MK85]. Thus, this marks the first case in low dimensions in which algebraic vector bundles are
not determined up to isomorphism by their Chern classes and rank. The classification of vector
bundles of rank 2 over smooth affine fourfolds is therefore considered an extremely difficult and
subtle problem.

The main goal of this paper is to study the fibers of (c1, c2) as in (1) for X a smooth affine
fourfold over an algebraically closed field and, in particular, to give cohomological criteria for
finiteness of the fibers and for injectivity of the map. We prove:
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Theorem 1.1. Let X be a smooth affine variety of dimension 4 over an algebraically closed
field k of characteristic not equal to 2 or 3. The non-empty fibers of the map

(c1, c2) : V2(X) → CH1(X)× CH2(X)

are singletons (resp. finite) if the motivic cohomology group H5
M(X,Z/2(3)) and the mod 2

Chow group CH3(X)/2 are trivial (resp. finite).

We obtain many such examples in Section 6, for instance:

Example 1.2 (see Theorem 6.2). Suppose k = C and X is the complement of a smooth
hypersurface D of degree d ≤ 4 in P4. Then there are exactly d2 isomorphism classes of
algebraic vector bundles of rank 2 over X, determined uniquely by their first two Chern classes
in CH1(X)× CH2(X) ∼= (Z/d)×2.

We prove Theorem 1.1 using the obstruction theory involving the Moore–Postnikov factor-
ization of the Chern class map in A1-homotopy theory. To do so, we must analyze Nisnevich
cohomology of relevant twisted A1-homotopy sheaves of the A1-homotopy fiber of (c1, c2). The

cohomology groups of interest can be identified with H5
M(X,Z/2(3)), H3

Nis(X,π
A1

2 (A2 ∖ 0)(L))
and H4

Nis(X,π
A1

3 (A2 ∖ 0)(L)), where L is a line bundle on X.
For the purpose of computability, we note that the group H5

M(X,Z/2(3)) is isomorphic to
the Nisnevich cohomology group H2

Nis(X, I
3(L)), where I3 denotes the sheaf associated to the

third power of the fundamental ideal in the Witt ring. Moreover, there is an epimorphism from
the fourth unramified cohomology group H4

nr(X,µ
⊗4
2 ) to H2

Nis(X, I
3(L)) with finite kernel.

The sheaves πA1

2 (A2 ∖ 0) and πA1

3 (A2 ∖ 0) are A1-homotopy sheaves of the motivic sphere
A2 ∖ 0. The computation of classical homotopy groups of spheres is a notoriously difficult
problem in topology and the computation of homotopy sheaves of motivic spheres can certainly

be regarded as even more difficult. We show that the group H3
Nis(X,π

A1

2 (A2 ∖ 0)(L)) is a quo-

tient of the significantly more computable group CH3(X)/2. For this, we use a description

of the sheaf πA1

2 (A2 ∖ 0) due to Asok–Fasel [AF14a, Theorem 3]. However, we perform our
cohomological computations with the added difficulty of working in dimension 4. The bulk of

our cohomological computations is dedicated to the group H4
Nis(X,π

A1

3 (A2 ∖ 0)(L)). The diffi-
culty of computing this cohomology group stems from the fact that the unstable A1-homotopy

sheaf πA1

3 (A2 ∖ 0) has not even remotely been computed! Nonetheless, we prove the following
vanishing theorem, which is certainly of independent interest:

Theorem 1.3 (see Theorem 3.30). Let X be a smooth affine variety of dimension 4 over an

algebraically closed field k of characteristic not equal to 2 or 3. Then H4
Nis(X,π

A1

3 (A2 ∖ 0)(L)) =
0 for any line bundle L on X.

Under the assumptions of Theorems 1.1 and 1.3, the third-named author gave a cohomo-
logical criterion for all stably trivial vector bundles of rank 2 over X to be trivial [Sye21]. In
particular, the third-named author proved that all stably trivial vector bundles of rank 2 over
X are trivial if H2

Nis(X, I
3) = CH3(X) = CH4(X) = 0 [Sye21, Corollary 3.20]. Theorem 1.1

strengthens this criterion significantly. Furthermore, we remark that the map

(c1, c2) : V2(X) → CH1(X)× CH2(X)

also fails to be surjective in general. The image of the map was analyzed in [AFH19, Theorem
2.2.2] and can be described in terms of motivic Steenrod operations.

Theorem 1.3 actually goes beyond the analysis of the fibers of the Chern class map above. If
E is an algebraic vector bundle of rank r ≤ 4 over a smooth affine fourfold X as in the theorems
above, it is natural to ask for a sufficient cohomological criterion for E to split off a trivial vector
bundle of rank 1. If r = 4, M. P. Murthy’s celebrated work shows that E splits off a trivial
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vector bundle of rank 1 if and only if c4(E) = 0 ∈ CH4(X) [Mur94, Theorem 3.7]. Similarly,
if r = 3, A. Asok and J. Fasel shows that E splits off a trivial vector bundle of rank 1 if and
only if c3(E) = 0 ∈ CH3(X) [AF15, Theorem 2]. From an obstruction-theoretic viewpoint,
the question becomes only harder for rank 2 bundles, since more cohomological obstructions
to splitting off a trivial line bundle occur. The vanishing theorem above allows us to prove the
following result:

Theorem 1.4 (see Theorem 4.6). Let X be a smooth affine fourfold over an algebraically closed
field k of characteristic not equal to 2 or 3, and suppose that CH3(X)/2 = 0. Let L be a line
bundle over X and let VL

2 (X) denote the set of isomorphism classes of L-oriented algebraic
vector bundles of rank 2 on X (see Theorem 4.4). Then, by taking the Euler class, we obtain
a bijection

eL : VL
2 (X)

∼−→ C̃H
2
(X,L).

In particular, an algebraic vector bundle E of rank 2 splits off a trivial vector bundle of rank 1

if and only if the Euler class of E is zero in the Chow–Witt group C̃H
2
(X,L).

As another considerable consequence of Theorem 1.3, we prove a cancellation theorem for
symplectic vector bundles of rank 2 over smooth affine fourfolds (Theorem 4.9). Finally, ifX is a

smooth affine variety of dimension 4 over C, we denote by Vtop
2 (X) the set of isomorphism classes

of complex topological vector bundles of rank 2 over the complex manifold X(C). Theorem 1.3

also allows us to prove some statements about the fibers of the map V2(X) → Vtop
2 (X) induced

by complex realization.
We remark that the classification of complex topological vector bundles via Chern classes has

a long history itself (cf. [AR76, MS74, Swi79]). More recent work by the second-named author
and others provides insight on how to distinguish non-isomorphic bundles with the same Chern
classes (cf. [Opi24a, Hu23, CHO24, Opi24b, Yan23]). These works rely on an obstruction-
theoretic argument, which implies that, over any compact manifold (or finite cell complex),
there are only finitely many isomorphism classes of complex topological vector bundles with
prescribed Chern classes; a key element in the argument is the fact that the homotopy fiber
of the topological universal Chern class map has finite homotopy groups. Motivated by the
analogy between algebraic and topological vector bundles, it is natural to seek cohomological
criteria implying finiteness for algebraic vector bundles with fixed Chern classes. Notably,
motivic obstruction theory does not seem to yield any general finiteness statement. Failure
of such an argument can be related to the fact that there are no known finiteness results for
motivic homotopy sheaves of spheres. The additional challenges in understanding to what
extent algebraic Chern classes determine the isomorphism class of an algebraic bundle are
therefore related to fundamental differences between the topological and algebraic categories.

1.1. Acknowledgements. We would like to thank Aravind Asok, Patrick Brosnan, Jean Fasel,
James Hotchkiss, Michael J. Hopkins, Danny Krashen, Stefan Schreieder, Brian Shin, Burt
Totaro and Kirsten Wickelgren for conversations and correspondences around the ideas in this
paper. The authors would also like to thank PCMI for the program on motivic homotopy theory,
where much of this work was done. The first-named author is supported by NSF DMS-2303242.
The second-named author was partially supported by NSF DMS-2202914. The third-named
author was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - Project numbers 461453992; 544731044.

1.2. Conventions. In what follows, let X be a smooth separated scheme of finite type over a
field k and X be a motivic space over k. Throughout:

• k denotes an algebraically closed field.
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• Smk denotes the category of smooth, separated, finite-type k-schemes. We write H(k)
for the homotopy category of motivic spaces and H•(k) for the pointed version.

• πA1

n (X ) denotes the n-th A1-homotopy sheaf of X .
• Given motivic spaces X and Y, we write [X ,Y] for A1-homotopy classes of maps from X

to Y, i.e., for the set of morphisms from X to Y in H(k). We use an analogous notation
for morphisms in H•(k) between pointed motivic spaces.

• By a “homotopy class”, we mean an A1-homotopy class.
• All sheaves are understood to be Nisnevich sheaves unless otherwise stated.
• Given a Nisnevich sheaf of abelian groups A on Smk, we write H∗

Nis(X,A) for the
Nisnevich cohomology of X with coefficients in A. We will also use Zariski (resp. étale)
cohomology of Zariski (resp. étale) sheaves, occasionally. We will always write H∗

Zar

(resp. H∗
ét) in this case.

• We write Hi
M(X,Z(j)) (resp. Hi

M(X,Z/2(j))) for motivic cohomology in degree i of the
complex of sheaves Z(j) (resp. Z/2(j)).

• CHm(X) denotes the m-th Chow group of X of codimension m cycles and Chm(X) for
CHm(X)/2.

2. Background and tools

We assume some familiarity with unstable motivic homotopy theory. For example, we do
not introduce the category of motivic spaces over a field k, by which we mean the category of
A1-invariant Nisnevich sheaves (of spaces) on the category of smooth k-schemes [MV99]. Most
of the computations in this paper take place in the homotopy category of motivic spaces over
k and involve analysis of A1-homotopy classes of maps between specific motivic spaces.

The reader should also be familiar with affine representability for algebraic vector bundles
([Mor12, §8.1] and [AHW17, Theorem 1]), which gives a bijection between rank r algebraic
vector bundles on a smooth affine variety over k and the set of A1-homotopy classes of maps
from X to the classifying space BGLr. Some knowledge of Moore–Postnikov towers in classical
or motivic homotopy theory is also recommended (cf. [Mor12, Appendix B] and [AF15, §6.1]),
although we summarize some aspects of the theory in Section 2.5.

Below, we briefly summarize key concepts as needed for this paper, using this as an opportu-
nity to clarify notation and establish conventions. We discuss properties of strictly A1-invariant
sheaves (Section 2.1), contractions and twists of sheaves (Section 2.2 and Section 2.3), the
Rost–Schmid complex (Section 2.4), and motivic Moore–Postnikov theory (Section 2.5). We
also summarize some useful cohomological facts in Section 2.6.

2.1. Strictly A1-invariant sheaves of abelian groups. IfA is a (pre)sheaf of abelian groups
on Smk, we say that it is A1-invariant if the projection X × A1 → X induces an isomorphism
A(X) → A(X × A1) for every X ∈ Smk. If A is a Nisnevich sheaf of abelian groups on Smk,
we say it is strictly A1-invariant if Hn

Nis(−,A) is A1-invariant for each n ≥ 0. A prototypical

example of a strictly A1-invariant sheaf is the homotopy sheaf πA1

n (X ) associated to a motivic
space X when n ≥ 2.1 Strictly A1-invariant Nisnevich sheaves of abelian groups assemble to
form an abelian category [Mor12, 6.24].

Key examples of strictly A1-invariant sheaves includeMilnor K-theory, denotedKM
n , Milnor–

Witt K-theory, denoted KMW
n , and the fundamental ideal I as well as its powers In. We have

canonical short exact sequences

(2) 0 → In+1 → KMW
n → KM

n → 0

1Historically, distinctions were made between strongly and strictly A1-invariant sheaves. Due to work of
Morel, strongly A1-invariant Nisnevich sheaves of abelian groups on Smk are actually also strictly A1-invariant.
See also [Bac24].
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and

(3) 0 → In+1 → In → KM
n /2 → 0.

Other important examples of strictly A1-invariant sheaves are higher Grothendieck Witt
sheaves GWj

i , which are the Nisnevich sheafifications of higher Grothendieck Witt groups
GW i

j (X) (cf. [Sch10, Sch11, Sch17]; we refer the reader to [AF14a, Section 4] for a concise

treatment). For any i, j ∈ Z, GW i
j (X) are 4-periodic in j. For i ≥ 0 and X affine, the groups

GW j
i (X) can be identified with Hermitian K-theory groups as defined by M. Karoubi [Kar73].

In particular:

Proposition 2.1 ([Sch17, Corollary A.2]). For i ≥ 0, let KOi and KSpi denote the Nisnevich
sheafifications of the i-th orthogonal and symplectic K-theory groups, respectively. There are
isomorphisms

KOi
∼= GW0

i

KSpi
∼= GW2

i

of strictly A1-invariant sheaves.

Remark 2.2. Grothendieck–Witt groups have many interesting properties and have been ex-
tensively studied. For example, for i > 0 the negative Grothendieck–Witt groups coincide with
triangular Witt groups defined by P. Balmer [Bal05] via the formula GW j

−i(X) =W i+j(X). By

[Hor05, §3], the Grothendieck-Witt sheaves GWj
i are the homotopy sheaves πA1

i (GWj) = GWj
i

of a motivic space GWj .

2.2. Contractions of strictly A1-invariant sheaves. We will be concerned with a few ele-
mentary constructions on sheaves and presheaves, which we briefly recall here.

Construction 2.3 (Contraction of presheaves). Let A be a sheaf of abelian groups or pointed
sets on Smk. The contraction of A, denoted A−1, is the sheaf on Smk defined by

A−1(U) = ker

(
A(Gm × U)

(1×id)∗−−−−−→ A(U)

)
.

We define the i-fold contraction A−i inductively for i ∈ Z≥2 by

A−i = (A−(i−1))−1.

By [Mor12, Lemmas 5.32 and 7.33], A 7→ A−i is functorial on strictly A1-invariant sheaves
and preserves exact sequences. We record the following simple descriptions of contractions of
some important strictly A1-invariant sheaves:

Proposition 2.4. For any i and j, we have the following.

(a) (KM
i )−1

∼=

{
KM
i−1 i ≥ 1

0 i = 0.

(b) (In)−1
∼= In−1 and (KMW

i )−1
∼= KMW

i−1 .

(c)
(
GWj

i

)
−1

∼= GWj−1
i−1 .

(d) If j > i+ 1 then
(
GWi

i+1

)
−j = 0.

These results are standard, but can be found for instance in [AF14b, Lemma 2.7, Proposition
2.9], [AF14a, Proposition 4.4], and [AF15, Proposition 3.4.3], respectively.
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2.3. Actions and twisted cohomology. Given a sheaf of abelian groups A, a sheaf of groups
G acting on A, a smooth scheme X ∈ Smk, and a Nisnevich G-torsor P over X, cohomology
of X with coefficients in A can be twisted by P as follows.

Construction 2.5 (Twisted cohomology of Nisnevich sheaves). With set-up as above the
P-twisted cohomology of X with coefficients in A is defined as the cohomology of the sheaf
Z[P]⊗Z[G] A on the small Nisnevich site of X.

We summarize how to compute twisted cohomology groups in Section 2.4. Below, we give
examples of sheaves of abelian groups with group actions that we will use extensively.

Example 2.6. Contracted sheaves carry a natural action of Gm (see, e.g., [AF15, §2.4]). The
action of Gm arises from an action of (KMW

0 )× on contracted sheaves, which is then restricted
along the natural map Gm → KMW

0 given by a 7→ 1+ η[a] over any field F over k and a ∈ F×.
In particular, Gm acts on KMW

i for each i; this Gm-action coincides with the Gm-action coming
from the product morphism KMW

0 ×KMW
i → KMW

i .

Example 2.7. From Theorem 2.6, we get a Gm-action on Ij . This can be seen either from
the fact that it is an ideal in KMW

j and therefore closed under the (KMW
0 )×-action or from

Theorem 2.4(b). Unraveling definitions, one checks these actions agree.

Example 2.8. By Sequence (2) or Theorem 2.4(a), we get a Gm-action on KM
i for each i

induced by the action of KMW
i ; this action is trivial.

Remark 2.9. By definition, the sequences Sequence (2) and Sequence (3) are compatible with
Gm-actions and induce short exact sequences of twisted sheaves and long exact sequences on
twisted cohomology.

Example 2.10. Given any fibration in motivic spaces with A1-simply connected fiber, then the
A1-fundamental group of the base acts on the A1-homotopy sheaves of the fiber. For example,
we will later consider the fibration

F → BGL2
c1×c2−−−−→ K(KM

1 , 1)×K(KM
2 , 2),

coming from Diagram (9). This induces an action of πA1

1 (πA1

1 (K(KM
1 , 1)×K(KM

2 , 2)))
∼= πA1

1 (BGL2) ∼=
Gm on πA1

2 (F) ∼= I3. By [AF14a, Proposition 6.3], this agrees with the action on I3 discussed
in Theorem 2.7 above.

2.4. The Rost–Schmid complex. We briefly recall Rost–Schmid complexes, which are the
main computational tool for computing (twisted) Nisnevich cohomology of strictly A1-invariant
sheaves. Our main reference is [Mor12, §5] and we refer the reader to [AF14a, Section 2] or
[Bac24, Section 6] for a concise discussion.

A strictly A1-invariant sheaf A of abelian groups admits an associated Rost–Schmid complex
C∗
RS(X,A) computing Nisnevich cohomology of a smooth k-scheme X with coefficients in A.

The terms of this complex take the form

CiRS(X,A) =
⊕
x∈X(i)

A−i(x, ωx/X)

whereX(i) denotes the set of codimension i points ofX [Mor12, Definition 5.7]. The cohomology
of the Rost–Schmid complex C∗

RS(X,A) coincides with the Nisnevich (and Zariski) cohomology
groups of the sheaf A in each degree [Mor12, Corollary 5.43].

Now let X ∈ Smk and L be a line bundle over X. Then any contraction A−1 of a strictly A1-
invariant sheaf of abelian groups A has a canonical Gm-action by Example 2.6. This allows to
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define the twisted sheaf A−1(L) over the small Nisnevich site over X. One can then analogously
define the twisted Rost–Schmid complex C∗

RS(X,L;A−1) with terms of the form⊕
x∈X(i)

A−(i+1)(x, ωx/X ⊗ L)

in degree i. The cohomology groups of the complex C∗
RS(X,L;A−1) compute the Nisnevich

cohomology groups of the sheaf A−1(L) in a given degree [Mor12, Remark 5.14.2]. For com-
pleteness, we note some easy consequences of the definition of the Rost–Schmid complex that
will be useful to us throughout what follows:

Lemma 2.11. (Elementary properties of Rost–Schmid complexes)

(a) Suppose that F → G is a map of strictly A1-invariant Nisnevich sheaves of abelian
groups that induces an isomorphism after n-fold contraction. For any X and any line
bundle L over X, the induced map

Hi
Nis (X,F(L)) → Hi

Nis (X,G(L))

is an isomorphism for i ≥ n+ 1.
(b) If (F)−n restricts to zero on the small Nisnevich site over X, then Hi

Nis(X,F) = 0 for
i ≥ n.

2.5. Motivic Moore–Postnikov theory. We give a brief summary of twisted Eilenberg–Mac
Lane spaces and Moore–Postnikov theory, following [AF15, §6.1] to which we refer the reader
for more details.

Let G be a sheaf of groups and A a sheaf of abelian groups with a G-action. Then G also
acts on K(A, n) for each n and we define

KG(A, n) = EG×G K(A, n).

The space KG(A, n) admits a split morphism to BG induced by projection onto the first factor.
Consider a morphism f : E → B of pointed motivic spaces, where its homotopy fiber F :=

fib(f) is A1-simply connected and both E and B are A1-connected. The A1-homotopy sheaves

of F then carry a natural action of πA1

1 (B). By [AF15, Theorem 6.1.1], the Moore–Postnikov

tower for E f−→ B takes the form

(4)

...

E(4)

E(3) KπA1
1 (B)(πA1

4 (F), 5)

E(2) KπA1
1 (B)(πA1

3 (F), 4)

E E(1) = B KπA1
1 (B)(πA1

2 (F), 3).

k4

k3

g(4)

g(1)

g(2)

g(3)

k2
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The indicated morphisms E → E(i) induce an equivalence between E and the homotopy limit
of the system {g(i)}. Thus, given a smooth k-scheme X ∈ Smk, a morphism f : X → E is
equivalent to a compatible system of morphisms f (i) : X → E(i).

Given f (i) : X → E(i), let P denote the πA1

1 (B)-torsor over X associated to the composite

X
f(i)

−−→ E(i) ki+1−−−→ KπA1
1 (B)(πA1

i+1(F), i+ 2) → BπA1

1 (B).

A lift of g(i) to E(i+1) exists if and only if an element associated to ki ◦ g(i) in the group

(5) Hi+2
Nis (X,π

A1

i+1(F)(P)).

is zero. Moreover, the group

(6) Hi+1
Nis (X,π

A1

i+1(F)(P))

acts transitively on choices of lifts of g(i) to E(i+1). The formalism above implies that for X a
smooth affine variety of Nisnevich cohomological dimension at most d, there is a bijection

[X, E ] ∼= [X, E(d)].

Remark 2.12 (The special case of Postnikov towers). To recover the Postnikov tower of motivic
space X , we consider the Moore–Postnikov tower of the morphism X → ∗. See [AF14a, Section
6] to see discussion of the formalism in this case.

Remark 2.13 (Comparing Moore–Postnikov towers). Consider a homotopy commutative
square of motivic spaces

(7)

E ′ B′

E B,

e

g

b

f

where all spaces indicated are A1-connected and the vertical homotopy fibers are A1-simply
connected. Let F ′ denote the homotopy fiber of g and F that of f .

Given a Moore–Postnikov tower for g and for f , for each i we have comparison maps

e(i) : E ′(i) → E(i)

and

r(i) : KπA1
1 (B′)(πA1

i+1(F ′), i+ 2) → KπA1
1 (B)(πA1

i+1(F), i+ 2)

fitting into a homotopy commutative diagram

(8)

E ′(i) KπA1
1 (B′)(πA1

i+1(F ′), i+ 2)

E(i) KπA1
1 (B)(πA1

i+1(F ′), i+ 2)

k′i+1

e(i) r(i)

ki+1

and making various other diagrams involving the maps f, g, e, b homotopy commutative.
Let X be a motivic space. Given a homotopy commutative diagram

X E ′(i)

E(i),

h′(i)

h(i)
e(i)
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the map on cohomology induced by r(i) from Diagram (8) induces a map on cohomology with
the property that the image of the obstruction to lifting (resp., choices of lift of) h′(i) to E ′(i+1)

maps to the the obstruction to lifting (resp., choices of lift of) h(i) to E(i+1).

We will be interested in understanding Diagram (4) above when E = BGL2, B = K(KM
1 , 1)×

K(KM
2 , 2), and f = (c1, c2) : BGL2 → K(KM

1 , 1) ×K(KM
2 , 2) is the product of universal first

and second Chern class morphisms. We will discuss this in detail in Section 3.

2.6. Vanishing and divisibility results and an exact sequence. The sheaves Ij , KM
n ,

KMW
n , and GWj

i introduced in Section 2.1 will appear throughout our paper. We collect some
facts about these sheaves that will be repeatedly used in what follows.

Proposition 2.14 ([AF14a, 5.1, 5.2]). Let X be a smooth scheme of dimension d ≥ 2 over an
algebraically closed field k, and let L be a line bundle on X.

(a) The restriction of the sheaf Ij(L) to the small Nisnevich site over X is identically zero
for j ≥ d+ 1.

(b) Both Hd
Nis(X, I

j(L)) and Hd−1
Nis (X, Ij(L)) vanish for j ≥ d.

We will later use the following divisibility results for cohomology with coefficients in KMW
d

and for Chow groups:

Lemma 2.15 ([Fas21, Lemmas 4.0.3 and 4.0.5]). Let X be a smooth affine scheme of dimension

d ≥ 4 over an algebraically closed field k. Then Hd−1
Nis (X,KMW

d ) is uniquely divisible prime to

the characteristic of k and Hd−2
Nis (X,KMW

d ) is divisible prime to the characteristic of k.

Theorem 2.16 ([Sri89]). Let X be a smooth affine domain of dimension d ≥ 3 over an

algebraically closed field. Then CHd(X) is divisible and torsion-free.

The following exact sequence relates the cohomology of some Grothendieck-Witt sheaves to
algebraic cycles:

Proposition 2.17 ([AF14a, Proposition 4.16]). For X a smooth scheme over k with 2 ∈ k×,
there is an exact sequence

Ch2(X)
Sq2

L−−→ Ch3(X) → H3
Nis(X,GW2

3(L)) → 0.

Here the homomorphism Sq2L is the twisted Steenrod operation; we refer the reader to
[AF14a, Theorem 4.17] for more details.

3. The Moore–Postnikov tower for a Chern class map

Let X be a smooth affine fourfold over an algebraically closed field k of characteristic not
equal to 2 or 3. We analyze the set of isomorphism classes of algebraic vector bundles of rank
2 over X with fixed Chern data by use of an appropriate Moore–Postnikov tower. The first
consequence of the this will be a proof of Theorem 1.1.

Following [AFH19, 2.1.2], for each i we consider the first non-trivial Postnikov section in
the Postnikov tower of K(Z(i), 2i) (for a brief discussion of Postnikov towers in A1-homotopy
theory, see Theorem 2.12 above): this is a morphism K(Z(i), 2i) → K(KM

i , i). Precomposing
this map with the universal i-th Chern class morphism BGLi → K(Z(i), 2i), we obtain maps

ci : BGLi → K(KM
i , i)

representing the Chow-valued i-th Chern class in the unstable motivic homotopy categoryH(k).
Consider the product of the first two Chern classes

(9) (c1, c2) : BGL2 → K(KM
1 , 1)×K(KM

2 , 2).
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We study the Moore–Postnikov tower of Diagram (9), referring the reader to Section 2.5 for
a brief overview of motivic Moore–Postnikov theory and to [AF15, §6.1] for details. Since

πA1

1 (BGL2) ∼= Gm, this is a tower of principal fibrations over twisted Eilenberg–MacLane spaces

of the form KGm(πA1

i+1(F), i + 2), where F is the A1-homotopy fiber of (c1, c2). By [AFH19,
Proposition 2.2.1], we obtain a tower of twisted principal fibrations:

(10)

BGL
(4)
2

BGL
(3)
2 KGm(πA1

4 (BGL2), 5)

BGL
(2)
2 KGm(πA1

3 (BGL2), 4)

BGL2 K(KM
1 , 1)×K(KM

2 , 2) KGm(I3, 3).

k4

k3

k2

In the above, I3 is the third power of the fundamental ideal sheaf, fitting into a short exact
sequence of sheaves 0 → I3 → KMW

2 → KM
2 → 0, as noted in Sequence (2). For X a smooth

affine variety of Nisnevich cohomological dimension at most 4,

[X,BGL2] ∼= [X,BGL
(4)
2 ].

Thus Diagram (10) shows that we may build a lift of a morphism X → K(KM
1 , 1)×K(KM

2 , 2)
to a morphism X → BGL2 in three stages. The obstructions and choices of lifts at each
stage in the tower are controlled by Nisnevich cohomology with twisted coefficient sheaves I3

or πA1

i (BGL2) for i = 3 or i = 4, as appropriate. By working with these twisted cohomology
groups we will obtain the following:

(Stage 1) We study lifts of a given morphism X → K(KM
1 , 1) ×K(KM

2 , 2) to BGL
(2)
2 . We show

that lifts up to homotopy are a torsor for a quotient of H5
M(X,Z/2(3)). We obtain

conditions under which the set of lifts is finite (resp. a singleton) in Section 3.1.

(Stage 2) We study the set of lifts of a given morphism X → BGL
(2)
2 to BGL

(3)
2 . Lifts up to

homotopy are a torsor for a group H3
Nis(X,π

A1

3 (BGL2)(L)), where L is a line bundle on

X. We show that H3
Nis(X,π

A1

3 (BGL2)(L)) is a quotient of Ch3(X) in Section 3.2.

(Stage 3) We study the set of lifts of a given morphism X → BGL
(3)
2 to BGL

(4)
2 . Lifts up

to homotopy are a torsor for a quotient of H4
Nis(X,π

A1

4 (BGL2)(L)), where L is a line

bundle on X. We prove that H4
Nis(X,π

A1

4 (BGL2)(L)) is zero in Section 3.3.

Assuming the stage-by-stage analysis outlined above, we can deduce our first theorem:

Proof of Theorem 1.1. If H5
M(X,Z/2(3)) and Ch3(X) are trivial (resp. finite), then any given

pair in (a, b) ∈ CH1(X)× CH2(X) represent the first and second Chern classes of at most one
(resp. at most finitely many) rank 2 algebraic vector bundles on X, since trivial (resp. finite)
groups bound the choices of lift at each stage in the Moore–Postnikov tower that parameterizes

lifts of (a, b) : X → K(KM
1 , 1)×K(KM

2 , 2) to a map X → BGL
(4)
2 representing a rank 2 vector

bundle on X. □
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3.1. The first Moore–Postnikov stage. We now analyze finiteness of lifts

(11)

BGL
(2)
2

X K(KM
1 , 1)×K(KM

2 , 2)(c1,c2)

up to homotopy. Appealing to Diagram (10) and Section 2.5, it is sufficient to study finiteness
of H2

Nis(X, I
3(L)). If the latter group is finite (resp. trivial), then there are only finitely many

lifts (resp. a unique lift). Our main result in this section is the following:

Proposition 3.1. Let X be a smooth affine fourfold over an algebraically closed field k with 2
invertible in k. Let L be a line bundle on X.

(a) H2
Nis(X,K

M
3 /2)

∼= H2
Nis(X, I

3(L)).
(b) H5

M(X,Z/2(3)) ∼= H2
Nis(X, I

3(L)).
(c) There is an epimorphism H4

nr(X,µ
⊗4
2 ) → H2

Nis(X, I
3(L)) with finite kernel.

Remark 3.2. The group H4
nr(X,µ

⊗4
2 ) is the fourth unramified cohomology of X with coef-

ficients in µ⊗4
2 and will be defined below in Definition 3.7. The previous proposition implies

that if any one of the groups H2
Nis(X,K

M
3 /2), H

5
M(X,Z/2(3)), H4

nr(X,µ
⊗4
2 ), or H2

Nis(X, I
3(L))

is finite, then all the others are also finite.

We first make some reductions.

Lemma 3.3. Let X be a smooth affine fourfold over an algebraically closed field k with 2
invertible in k. Then H2

Nis(X,K
M
3 /2)

∼= H5
M(X,Z/2(3)).

Proof. By [Tot03, Theorem 1.3], we have an exact sequence

(12) Hi+j
M (X,Z/2(j−1)) → Hi+j

M (X,Z/2(j)) → Hi
Zar(X,H

j
ét(Z/2)) → Hi+j+1

M (X,Z/2(j−1)).

We note a few facts:

• By the Milnor conjecture [Voe03], Hj
ét(Z/2) ≃ KM

j /2.
• By [MVW06, Theorem 19.3], Hn

M(X,Z/2(m)) = 0 whenever n > 2m.
• By [MVW06, Theorem 13.10], H2

Nis(X,K
M
3 /2)

∼= H2
Zar(X,K

M
3 /2).

Using these facts and taking i = 2, j = 3 in Sequence (12) yields an exact sequence:

0 → H5
M(X,Z/2(3)) → H2

Nis(X,K
M
3 /2) → 0

which completes the proof. □

By Theorem 3.3, to prove Theorem 3.1(a), (b) it suffices to prove only (a). We reduce
Theorem 3.1(a) as follows.

Lemma 3.4. Let X be a smooth affine fourfold over an algebraically closed field k. Then, if
H2

Nis(X,K
M
4 /2) = H3

Nis(X,K
M
4 /2) = 0, one has H2

Nis(X,K
M
3 /2)

∼= H2
Nis(X, I

3(L)).

Proof. The sheaf I5|X(L) is zero by Theorem 2.14 so, by Sequence (3), we obtain an isomor-
phism of sheaves on the small Nisnevich site of X

I4 ∼= I4/I5 ∼= KM
4 /2.

This sequence is compatible with twists. Now consider the short exact sequence of sheaves
0 → I4|X(L) → I3|X(L) → KM

3 /2|X → 0. The associated long exact sequence on cohomology
and the fact that KM

4 /2(L) ≃ KM
4 /2 imply the result. □
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So, to prove Theorem 3.1 (a) it suffices to argue that H2
Nis(X,K

M
4 /2) and H3

Nis(X,K
M
4 /2)

are trivial. This follows from a spectral sequence argument that we set up in Section 3.1.1. We
prove in Section 3.1.2 that H2

Nis(X,K
M
3 /2) is finite if and only if H4

nr(X,µ
⊗4
2 ) is finite.

3.1.1. Bloch–Ogus sheaves and vanishing of H2
Nis(X,K

M
4 /2). Given a suitable cohomology the-

ory on a variety, the coniveau filtration, dating back to work of Grothendieck, filters cohomology
classes by the codimension of their support. This filtration gives rise to the Bloch–Ogus spectral
sequence (see [CTHK97, §1]). The case of interest to us computes étale cohomology, and can
be written as

(13) Ep,q1 =
⊕

x∈X(p)

Hq−p
ét (k(x), µ⊗j−p

2 ) ⇒ Hp+q
ét (X,µ⊗j

2 ),

where X(p) denotes codimension p points of X.2 By [BO74, Corollary 6.1], the cohomology
E2-page of Spectral Sequence (13) takes the form

(14) Hp
Nis(X,H

q
ét(j)) =⇒ Hp+q

ét (X,µ⊗j
2 ),

where we define Hq
ét(j) to be the Nisnevich sheafification of the presheaf

U 7→ Hq
ét(U, µ

⊗j
2 ).

As a consequence of the Milnor conjectures, certain Bloch–Ogus sheaves can be identified with
Milnor K-theory modulo 2.

Theorem 3.5 ([Voe03]). For i, j ≥ 0, let Hi
ét(j) denote the Nisnevich sheafification of the

presheaf U 7→ Hi
ét(U,Z/2(j)) on Smk. Over a base field k, there is an isomorphism KM

i /2
∼=

Hi
ét(i) of strictly A1-invariant Nisnevich sheaves on Smk.

In our setting, each term on the E∞-page of the Bloch–Ogus spectral sequence is finite: they
are subquotients of étale cohomology, which is finite [Mil80, Theorem 19.1]. We leverage this
to prove finiteness or vanishing of certain terms on the E2-page.

Lemma 3.6. Let X be a smooth affine fourfold over an algebraically closed field k. Then
H2

Nis(X,K
M
4 /2) = H3

Nis(X,K
M
4 /2) = 0.

Proof. The E2-terms Hi
Nis(X,Hm(j)) of the Bloch–Ogus spectral sequence are zero for i > m

(cf. [BO74, Corollary 6.2], [MVW06, Theorem 19.3]). Furthermore, it follows from [Mil80,
Chapter VI, Theorem 7.2] that the restriction of the sheaves Hm(j) to the small Zariski site
of X are zero for m > 4; in particular Hi

Nis(X,Hm(j)) = Hi
Zar(X,Hm(j)) = 0 for m > 4. We

depict the E2-page for X in Figure 1:

2Historically, the Bloch–Ogus spectral sequence is set-up in the Zariski site. In our situation, we can use
Nisnevich cohomology instead (see [CTHK97, 7.5.3] for a precise statement).
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H0
Nis(X,H4

ét(j)) H1
Nis(X,H4

ét(j)) H2
Nis(X,H4

ét(j)) H3
Nis(X,H4

ét(j)) H4
Nis(X,H4

ét(j))

H0
Nis(X,H3

ét(j)) H1
Nis(X,H3

ét(j)) H2
Nis(X,H3

ét(j)) H3
Nis(X,H3

ét(j)) 0

H0
Nis(X,H2

ét(j)) H1
Nis(X,H2

ét(j)) H2
Nis(X,H2

ét(j)) 0 0

H0
Nis(X,H1

ét(j)) H1
Nis(X,H1

ét(j)) 0 0 0

H0
Nis(X,H0

ét(j)) 0 0 0 0

Figure 1. The E2-page for the Bloch–Ogus spectral sequence of a smooth
affine variety of dimension at most four, converging to étale cohomology with
coefficients in µ⊗j

2 . Convergence is along the anti-diagonals.

Note that the term

E4,4
2 = H4

Nis(X,H4
ét(j))

is the only possibly nonzero term on the line p+ q = 8, converging to H8
ét(X,µ

⊗j
2 ). This term

admits no nontrivial incoming or outgoing differentials, so

E4,4
∞ = H4

Nis(X,H4
ét(j)).

Since X is affine of dimension 4, E4,4
∞

∼= H8
ét(X,µ2) = 0 by [Mil80, Theorem 15.1]. Similarly,

since H3
Nis(X,H4

ét(µ2)) also has no nontrivial incoming or outgoing differentials, it is identical
to E3,4

∞ and therefore zero. Lastly, H2
Nis(X,H4

ét(µ2)) has no nontrivial incoming or outgoing
differentials, hence is equal to E2,4

∞ . This is a subquotient of H6
ét(X,µ2), which is zero by

dimension considerations. Therefore H2
Nis(X,H4

ét(µ2)) = 0. □

This completes the proof Theorem 3.1(a).

3.1.2. Unramified cohomology and the first stage. We briefly recall unramified cohomology, de-
fined as those cohomology classes on X that vanish under specialization maps to codimension
one points. First, note that the Bloch–Ogus spectral sequence Spectral Sequence (13) with
p = 0 includes a differential

(15) dq1 : H
q
ét(k(X), µ⊗j

2 ) →
⊕

x∈X(1)

Hq−1
ét (k(x), µ⊗j−1

2 ).

Definition 3.7 ([CTO89, Definition 1.1.1]). Let X be a smooth connected variety over a field
k, and assume n is invertible in k. The qth unramified cohomology of X with coefficients in
µ⊗j
2 , denoted Hq

nr(X,µ
⊗j
2 ), is the kernel of dq1 from Equation (15).

Remark 3.8. Over an algebraically closed base field, µ⊗j
2

∼= µ2. Since we work over an
algebraically closed field for all results in this paper, we could in principle omit the tensor
powers in our notation.
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By the Bloch–Ogus theorem [BO74, Theorem 6.1],

(16) Hq
nr(k(X), µ⊗j

2 ) ∼= H0
Nis(X,H

q
ét(µ

⊗j
2 )).

We now have the setup to prove Theorem 3.1(c).

Lemma 3.9. Let X be a smooth fourfold over an algebraically closed field k of characteristic
not equal to 2. Then H4

nr(k(X), µ⊗j
2 ) is finite if and only if H2

Nis(X,H3
ét(j)) is finite.

Proof. Consider the Bloch–Ogus spectral sequence forX as in Figure 1. The E2-page is depicted
in Figure 2.

H0
Nis(X,H4

ét(j)) H1
Nis(X,H4

ét(j)) 0 0

H0
Nis(X,H3

ét(µ2)) H1
Nis(X,H3

ét(j)) H2
Nis(X,H3

ét(j)) H3
Nis(X,H3

ét(j))

...
...

...
...

Figure 2. The E2-page for the Bloch–Ogus spectral sequence of a smooth
affine variety of dimension at most four, with differentials indicated.

There are no nontrivial incoming differentials to the term H0
Nis(X,H4

ét(j)), and the only
outgoing differential appears on the E2-page, so we have that the kernel

(17) ker
(
H0

Nis(X,H4
ét(j))

d2−→ H2
Nis(X,H3

ét(j))
)

is a subquotient of H4
ét(X,µ

⊗j
2 ), so the kernel (17) is finite by finiteness of étale cohomology

[Mil80, Theorem 19.1]. The cokernel of this map is zero as it is a subquotient ofH5
ét(X,µ

⊗j
2 ) ∼= 0.

Together, we have that the map d2 : H
0
Nis(X,H4

ét(j)) → H2
Nis(X,H3

ét(j)) is surjective with finite
kernel, therefore one of these groups is finite if and only if the other is. □

In particular, this proves Theorem 3.1(c) and we conclude that a sufficient condition to

have finitely many lifts of prescribed Chern classes to BGL
(2)
2 as in Diagram (11) is that the

unramified cohomology H4
nr(X,µ

⊗4
2 ) is finite. We now study settings where these constraints

on unramified cohomology are satisfied.

Proposition 3.10. Suppose that X is smooth affine of dimension 4 over a field k, and X ↪→ X
is a compactification with boundary divisor D that is smooth and irreducible of dimension 3. If
H4

nr(X,µ
⊗j
2 ) and H3

nr(D,µ
⊗j−1
2 ) are finite (resp., zero), then so is H4

nr(X,µ
⊗j
2 ).

Proof. For any smooth k-variety U and integer j ≥ 0, consider the complex E∗,4
1 (U, j) on the

E1-page of the Bloch–Ogus spectral sequence associated to U . The degree zero cohomology
of this complex is the fourth unramified cohomology group of U with coefficients in µ⊗j

2 (cf.

Spectral Sequence (13)). The open immersion X → X induces an epimorphism of complexes of

abelian groups E∗,4
1 (X, 4) → E∗,4

1 (X, 4) whose kernel is precisely the complex E∗,3
1 (D, 3) used

in the definition of the third unramified cohomology of D with coefficients in µ⊗3
2 shifted by

1 degree. Now the long exact sequence of cohomology groups associated to the short exact
sequence of complexes yields an exact sequence of abelian groups

0 → Hd
nr(X,µ

⊗j
2 ) → Hd

nr(X,µ
⊗j
2 )

∂−→ Hd−1
ét (k(D), µ⊗j−1

2 )
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with

Im(∂) ⊂ Ker

d31 : Hd−1
ét (k(D), µ⊗j−1

2 ) → ⊕i
⊕

y∈D(1)

Hd−2
ét (k(y), µ⊗j−2

2 )

 ,

where d31 is the differential in E∗,3
1 (D) whose kernel computes the group H3

nr(D,µ
⊗j−1
2 ). □

Remark 3.11. Localization sequences are available for refined unramified cohomology groups
as defined in [Sch23], which generalize unramified cohomology groups. Instead of directly using
the localization sequence for refined unramified cohomology groups given in [KZ24, Theorem
1.3], we have given a formal reasoning in the proof of Theorem 3.10 to make this paper more
self-contained.

Corollary 3.12. With set-up as in Theorem 3.10, suppose that additionally k is algebraically
closed. If H4

nr(X,µ2) and H
3
nr(D,µ2) are finite (resp., zero), then so is H4

nr(X,µ2).

3.1.3. Examples of smooth affine fourfolds with finite fourth unramified cohomology. Theo-
rem 3.10 gives some immediate examples of smooth affine fourfolds with finite fourth unramified
cohomology. Throughout, let k be an algebraically closed field of characteristic different from
2 unless otherwise specified.

Proposition 3.13 ([CTV12, Corollaire 6.2]). Let Z be a smooth projective threefold over an
algebraically closed field of characteristic zero. If Z is uniruled then H3

nr(Z, µ2) = 0.

Example 3.14. By [KMM92], a smooth projective variety D over C with ample anticanonical
bundle −KD is rationally connected and hence uniruled. Let X be the complement of any of
the following:

(a) a smooth hypersurface Z ⊆ P4 of degree d ≤ 4
(b) a smooth hypersurface Z ⊆ P1 × P3 of bidegree (a, b) with a ≤ 1 and b ≤ 3
(c) a smooth hypersurface Z ⊆ P2 × P2 of bidegree (a, b) with a ≤ 2 and b ≤ 2.

In all these cases above, H3
nr(Z, µ2) vanishes by Theorem 3.13 and hence H4

nr(X,µ2) = 0 by
Theorem 3.10.

3.2. The second Moore–Postnikov stage. We now consider conditions under which the

number of A1-homotopy classes of lifts of a given morphism X → BGL
(2)
2 to BGL

(3)
2 are finite.

Our main result is the following:

Theorem 3.15. Let X be a smooth affine fourfold over an algebraically closed field k of char-

acteristic not equal to 2 or 3. Given a fixed homotopy class X → BGL
(2)
2 , lifts to BGL

(3)
2 are

finite (resp. unique) if Ch3(X) is finite (resp. zero).

From the discussion in Section 2.5, the number of lifts is a torsor for a quotient of

H3
Nis(X,π

A1

3 (BGL2)(L)) ∼= H3
Nis(X,π

A1

2 (A2 ∖ 0)(L)),

where L the line bundle determined by the composite X → BGL
(2)
2 → BGm.

We start from the observation that SL2 ≃ A2 ∖ 0 ≃ Sp2 and use standard symplectic

fiber sequences to understand πA1

2 (A2 ∖ 0). We begin in Section 3.2.1 by recalling results from
[AF14a] in the language of spectral sequences. In Section 3.2.2, we prove vanishing results for
cohomology with coefficients in KM

i /r for r composite. In Section 3.2.3, we put together the
proof of Theorem 3.15.
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3.2.1. A symplectic spectral sequence and unstable homotopy of spheres. We give preliminaries
that will be used both in the proof of Theorem 3.15 and again in Section 3.3.

A way to access the unstable A1-homotopy sheaves of even punctured affine spaces A2n ∖ 0
is via the the natural filtration

· · · → Sp2n → Sp2n+2 · · · → Sp,

since subsequent terms in the filtration fit into fiber sequences Sp2n → Sp2n+2 → A2n+2 ∖ 0.
For any integer n ≥ 0, the punctured affine space An+2∖0 have first non-trivial homotopy sheaf

πA1

n+1(An+2 ∖ 0) ∼= KMW
n+2 [Mor12, Theorem 6.40]. Following [AF17, Section 2.2], the spectral

sequence associated to the filtration above then takes the form

(18) Es,t1 = πA1

s (A2t ∖ 0) =⇒ πA1

s (Sp).

A differential dr on the r-th page has bidegree (−1,−r), i.e., is a morphism ds,tr : Es,tr →
Es−1,t−r
r .

Remark 3.16. Note that our grading convention differs from the one in [AF17, Section 2.2];
by our grading convention, convergence occurs in columns.

In Figure 3 we write out relevant terms of the first page of Spectral Sequence (18). All terms
to the left, below, and above the region shown in Figure 3 are zero.

0 0 0 0 πA1

5 (A6 ∖ 0)

0 0 πA1

3 (A4 ∖ 0) πA1

4 (A4 ∖ 0) πA1

5 (A4 ∖ 0)

πA1

1 (A2 ∖ 0) πA1

2 (A2 ∖ 0) πA1

3 (A2 ∖ 0) πA1

4 (A2 ∖ 0) πA1

5 (A2 ∖ 0)

d5,31

d3,21 d4,21 d5,21

Figure 3. The E2-page for the spectral sequence arising from the dimension
filtration on Sp. We depict d1-differentials as solid arrows and a single d2-
differential as a dashed arrow.

Remark 3.17. Spectral Sequence (18) is a spectral sequence of strictly A1-invariant sheaves
with Gm-action as follows. By [AF14a, pp. 2577-2578], there is an action of Gm on Sp2n that

(a) induces aGm-action on A2n∖0 ≃ Sp2n / Sp2n−2. This action is given by t·(a1, . . . , a2n) =
(a1, t

−1a2, a3, t
−1a4, . . . , a2n−1, t

−1a2n);
(b) stabilizes to the natural action of Gm on KSpi

∼= GW2
i given by composing the canon-

ical map Gm → KMW
0

∼= GW0
0 with the action of (GW0

0)
× on GW2

i (see [AF14a,
Lemma 4.7]). This Gm-action agrees with the canonical Gm-action on GW2

i as a con-
traction as explained in Example 2.6 (see [AF14a, Lemma 4.6]); and

(c) induces the πA1

1 -action of Gm ∼= πA1

1 (BGL2) on π
A1

n (BGL2) under the natural identifica-
tion

πA1

n (BSp2) πA1

n (BSL2) πA1

n (BGL2)
∼=∼=

for n ≥ 2.
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In addition to differentials, there are a few other morphisms that will be relevant. The edge
morphisms es : E

s,1
1 → Es,1∞ take the following form:

es : πs(A2 ∖ 0) → πs(Sp) = KSps+1.

The map from Sp → Sp / Sp2n−2 induces a morphism

i2n−1 : π
A1

2n−1(Sp)
∼= KSp2n → πA1

2n−1(Sp /Sp2n−2)
∼= πA1

2n−1(A2n ∖ 0).

Note again that πA1

2n−1(A2n ∖ 0) ∼= KMW
2n by [Mor12, Theorem 6.40]. Under this identification,

the morphism agrees with the map φ2n : KSp2n → KMW
2n of [AF14a, §3].

Definition 3.18. Following [AF14a, p. 2568], let T′
2n = coker

(
KSp2n

φ2n−−→ KMW
2n

)
.

As a particular application of our spectral sequence, we can investigate πA1

2 (A2 ∖ 0) via its
outgoing edge map e2 and its incoming differential, and we obtain a short exact sequence

0 → im(d3,21 ) → πA1

2 (A2 ∖ 0)
e2−→ KSp3 → 0.

Note that e2 is an epimorphism because πA1

2 (A2 ∖ 0). Moreover, convergence implies that there
is an exact sequence

KSp4
φ4−→ πA1

3 (A4 ∖ 0)
d3,21−−→ πA1

2 (A2 ∖ 0)
e2−→ KSp3 → 0.

Thus, we can identify im(d3,21 ) ∼= πA1

3 (A4 ∖ 0)/ ker(d3,21 ) ∼= coker(φ4) = T′
4. This yields the

following result.

Theorem 3.19 ([AF14a, Theorem 3 and Corollary 4.9] ). There is an exact sequence

(19) 0 → T′
4 → πA1

2 (A2 ∖ 0) → KSp3 → 0

of strictly A1-invariant sheaves with Gm-actions. The Gm-action on T′
4 is trivial.

Moreover, Asok–Fasel show that there is an exact sequence

(20) I5 → T′
4 → S′

4 → 0,

where

S′
4 = coker(KSp2n+2 → KMW

2n+2 ↠ KM
2n+2).

By Theorem 2.14(a), I5|X ∼= 0 for X a smooth affine fourfold. We deduce:

Corollary 3.20 ([AF14a]). Let X be a smooth affine fourfold over an algebraically closed field
of characteristic ̸= 2. Then S′

4|X ∼= T′
4|X .

By [AF14a, 3.2], we have an epimorphism KM
4 /12 ↠ S′

4 that becomes an isomorphism after
2-fold contraction. By Theorem 2.11(a):

Corollary 3.21 ([AF14a]). Let X be a smooth affine fourfold over an algebraically closed field
of characteristic ̸= 2. Then Hi

Nis(X,T
′
4)

∼= Hi
Nis(X,K

M
4 /12) for i = 3, 4.

Putting these facts together, consider X a smooth affine fourfold and L a line bundle over
X. We obtain an exact sequence on cohomology
(21)

H3
Nis(X,K

M
4 /12) → H3

Nis(X,π
A1

2 (A2 ∖ 0)(L)) e2∗−−→ H3
Nis(X,KSp3(L)) → H4

Nis(X,K
M
4 /12)

We will first show that H3
Nis(X,K

M
4 /12) and H

4
Nis(X,K

M
4 /12) are zero in Section 3.2.2. Then,

in Theorem 3.28, we relate finiteness (resp. triviality) of H3
Nis(X,KSp3(L)) to finiteness (resp.

triviality) of Ch3(X). This will complete the proof of Theorem 3.15.



ON ALGEBRAIC VECTOR BUNDLES OF RANK 2 OVER SMOOTH AFFINE FOURFOLDS 19

3.2.2. Vanishing of mod n Milnor K-theory cohomology. In this section, we prove vanishing
results for cohomology of a smooth affine variety X of dimension d over an algebraically closed
fields with coefficients in KMW

d /n, where d ≥ 4 and n is prime to the characteristic of the base
field. This is a key step in the proof of Theorem 3.15.

Definition 3.22. Let ·n : KM
d → KM

d denote multiplication by n. Let KM
d [n] denote the kernel

of ·n : KM
d → KM

d and nKM
d denote its image.

We will use the short exact sequences of sheaves

(22) 0 → KM
d [n] → KM

d → nKM
d → 0,

and

(23) 0 → nKM
d → KM

d → KM
d /n→ 0.

For each i, Sequence (22) gives rise to an exact
(24)

Hi−1
Nis (X,nK

M
d ) −→ Hi

Nis(X,K
M
d [n])

ai−→ Hi
Nis(X,K

M
d )

a′i−→ Hi
Nis(X,nK

M
d ) −→ Hi+1

Nis (X,K
M
d [n])

while Sequence (23) gives rise to an exact sequence
(25)

Hi−1
Nis (X,K

M
d /n) → Hi

Nis(X,nK
M
d )

bi−→ Hi
Nis(X,K

M
d )

b′i−→ Hi
Nis(X,K

M
d /n) → Hi+1

Nis (X,nK
M
d )

for each i.

Lemma 3.23. If X is a smooth affine d-fold over an algebraically closed field k and n ≥ 2 is
a positive integer that is invertible in k, then the natural map

bd : H
d
Nis(X,nK

M
d ) → Hd

Nis(X,K
M
d )

is an isomorphism.

Proof. We refer to Sequence (24) and Sequence (25) for notation. By Theorem 2.16, the

group Hd
Nis(X,K

M
d ) ∼= CHd(X) is divisible and torsion-free. This implies bd ◦ a′d is an isomor-

phism and a′d is injective. The map a′d is moreover surjective and thus an isomorphism since

Hd+1
Nis (X,KM

d [n]) is zero by dimension considerations. Thus bd is an isomorphism as was to be
shown. □

Next, we prove a similar result for the (d− 1)-st cohomology.

Lemma 3.24. If X is a smooth affine d-fold over an algebraically closed field k and n ≥ 2 is
a positive integer that is invertible in k, then the natural map

bd−1 : H
d−1
Nis (X,nKM

d ) → Hd−1
Nis (X,KM

d )

is an isomorphism.

Proof. By Theorem 2.15, multiplication by n is an isomorphism on Hd−1
Nis (X,KMW

d ). Using

Sequence (2) and Theorem 2.14(a), the same is true for multiplication by n on Hd−1
Nis (X,KM

d ).
Therefore bd−1 ◦ a′d−1 is an isomorphism and bd−1 is surjective.

Since a′d−1 is injective, it suffices to show that a′d−1 is also surjective (and hence bijective).

This follows from Sequence (22) with i = d− 1 and the fact that Hd
Nis(X,K

M
d [n]) = 0. □

Lemma 3.25. If X is a smooth affine d-fold over an algebraically closed field k and n ≥ 2 is
a positive integer that is invertible in k, then Hd−1

Nis (X,KM
d /n) = 0.

Proof. Consider Sequence (25) with i = d − 1. Surjectivity of bd−1 implies that b′d−1 is zero.

However, since bd is an isomorphism, b′d−1 is also surjective and Hd−1
Nis (X,KM

d /n) is zero. □
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Lemma 3.26. If X is a smooth affine d-fold over an algebraically closed field k and n ≥ 2 is
a positive integer that is invertible in k,then Hd−2

Nis (X,KM
d /n) = 0.

Proof. This argument is similar to the proof of Theorem 3.25. Theorem 2.15 implies that
bd−2 ◦ a′d−2 is surjective and b′d−2 is zero. By Theorem 3.24, bd−1 is an isomorphism. So we
conclude that b′d−2 is surjective and zero. □

From Sequence (21), we conclude:

Corollary 3.27. If X is a smooth affine fourfold over an algebraically closed field k of charac-
teristic ̸= 2, 3, then H2

Nis(X,K
M
4 /12) = 0, H3

Nis(X,K
M
4 /12) = 0, and

e2∗ : H
3
Nis(X,π

A1

2 (A2 ∖ 0)(L)) → H3
Nis(X,KSp3(L))

is an isomorphism.

3.2.3. Proof of Theorem 3.15. By Theorem 3.27, finiteness (resp. uniqueness) of the lifts in
stage 2 reduces to finiteness (resp. triviality) of the group H3

Nis(X,KSp3). We now give
conditions for finiteness (resp. triviality) of H3

Nis(X,KSp3).

Proposition 3.28. Let X be a smooth affine fourfold over an algebraically closed field, and
suppose that Ch3(X) is finite (resp. zero). Then H3

Nis(X,KSp3) is finite (resp. zero).

Proof. By Theorem 2.1, we have an isomorphism KSp3 ≃ GW2
3. Applying Theorem 2.17, we

have an exact sequence

(26) Ch2(X) → Ch3(X) → H3
Nis(X,GW2

3(L)) → 0.

In particular, if Ch3(X) is finite (resp. zero), then so is H3
Nis(X,GW2

3(L)). □

Remark 3.29. Recall that the first map in Sequence (26) is the twisted Steenrod square
Sq2L : Ch2(X) → Ch3(X); see [AF14a, Theorem 4.17]. So H3

Nis(X,GW2
3(L)) ∼= coker(Sq2L).

Combining Theorem 3.27 and Theorem 3.28 complets the proof of Theorem 3.15.

3.3. The third Moore–Postnikov stage. The number of lifts from the second stage to the

third is bounded by H4
Nis(X,π

A1

4 (BGL2)(L)). Note that πA1

4 (BGL2) ∼= πA1

3 (SL2) ∼= πA1

3 (A2 ∖ 0).
We will prove:

Theorem 3.30. Let X be a smooth affine fourfold over an algebraically closed field of charac-

teristic not equal to 2 or 3. Let L be a line bundle on X. Then H4
Nis(X,π

A1

3 (A2 ∖ 0)(L)) = 0.

We note a first reduction.

Lemma 3.31. With set-up as in Theorem 3.30, suppose that H4
Nis(X,π

A1

3 (A2 ∖ 0)) = 0. Then

H4
Nis(X,π

A1

3 (A2 ∖ 0)(L)) = 0.

Proof. This follows from [Fas21, Lemma 2.2.3]. □

To prove that H4
Nis(X,π

A1

3 (A2 ∖ 0)) = 0 will require more work. We give background in
Section 3.3.1. We then prove Theorem 3.30 in Section 3.3.2.
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3.3.1. Preliminaries. Recall Spectral Sequence (18), from which we obtain an exact sequence
involving edge maps and differentials:

(27) · · · → πA1

4 (A4 ∖ 0)
d4,21−−→ πA1

3 (A2 ∖ 0)
e3−→ KSp4

φ4−→ πA1

3 (A4 ∖ 0)
d3,21−−→ πA1

2 (A2 ∖ 0) → · · ·

Definition 3.32. Let C = coker(d4,21 ) and D = ker(d3,21 ).

Considering Sequence (27) at the term KSp4, we get a short exact sequence

0 → C → KSp4 → D → 0.

Remark 3.33. By exactness, we have identifications

C ∼= πA1

3 (A2 ∖ 0)/ ker(e3)

∼= ker(φ4)

∼= im(e3),

D ∼= im(φ4).

We therefore obtain the following diagram, where both vertical sequences and the diagonal
sequence are short exact:

(28)

0 0 0

im(d4,21 ) D

πA1

3 (A2 ∖ 0) KSp4 KMW
4

C T′
4

0 0 0

e3 φ4

3.3.2. Proof of Theorem 3.30. We now prove the main theorem of this section; this involves the
sheaves C and D introduced in Theorem 3.32 and their relationship to the cohomology group
of interest.

Lemma 3.34. The map of sheaves πA1

3 (A2 ∖ 0) → C induces an isomorphism

H4
Nis(X,π

A1

3 (A2 ∖ 0))
∼−→ H4

Nis(X,C),

for X a smooth affine fourfold over a field with 2 and 3 invertible.

Proof. By the leftmost vertical short exact sequence in Diagram (28), and the fact that X has
dimension four, we obtain an exact sequence of cohomology groups

(29) H4
Nis(X, im(d4,21 )) → H4

Nis(X,π
A1

3 (A2 ∖ 0)) → H4
Nis(X,C) → 0,

hence it suffices to argue that H4
Nis(X, im(d4,21 )) = 0. We consider the short exact sequence of

sheaves

0 → ker(d4,21 ) → πA1

4 (A4 ∖ 0) → im(d4,21 ) → 0,
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giving rise to a long exact sequence

(30) · · · → H4
Nis(X, ker(d

4,2
1 )) → H4

Nis(X,π
A1

4 (A4 ∖ 0)) → H4
Nis(X, im(d4,21 )) → 0.

Since X is a smooth affine fourfold, H4
Nis(X,π

A1

4 (A4 ∖ 0)) = 0 by [Fas21, Theorem 3.0.3].

Together with Sequence (30), this implies that H4
Nis(X, im(d4,21 )) = 0 and the result follows. □

Combining Diagram (28) and Theorem 3.34, we obtain

Corollary 3.35. There is an exact sequence

(31) · · · → H3
Nis(X,D) → H4

Nis(X,π
A1

3 (A2 ∖ 0)) → H4
Nis(X,KSp4) → · · · .

To prove Theorem 3.30 it suffices to argue that both the incoming map from H3
Nis(X,D)

and the outgoing map to H4
Nis(X,KSp4) in Sequence (31) factor through zero. We next study

the term H4
Nis(X,KSp4). Recalling that GW2

4
∼= KSp4 by Theorem 2.1, the following general

result is applicable:

Proposition 3.36. Let X be a smooth affine n-fold over a field k of characteristic not equal
to 2. Then

Hn
Nis(X,GWn−2

n ) ∼= CHn(X)

Proof. Let F be a field. By [FRS12, Lemma 2.3] the hyperbolic map

h : KQ
i (F ) → GWi−2

i (F ) ≃ GWi+2
i (F )

is an isomorphism for i = 0, 1. Consider Rost–Schmid complexes computing Hn
Nis(X,GWn−2

n )
and Hn

Nis(X,K
Q
n ), and the comparison map induced by the hyperbolic map:

⊕x∈X(n−1)KM
1 (k(x)) ⊕x∈X(n)KM

0 (k(x))

· · · ⊕x∈X(n−1)(KQ
n )−(n−1)(k(x)) ⊕x∈X(n)(KQ

n )−n(k(x)) 0

· · · ⊕x∈X(n−1)(GWn−2
n )−(n−1)(k(x)) ⊕x∈X(n)(GWn−2

n )−n(k(x)) 0

⊕x∈X(n−1)GW−1
1 (k(x)) ⊕x∈X(n)GW−2

0 (k(x)) .

≃ ≃

h h

≃ ≃

So Hn
Nis(X,GWn−2

n ) ≃ Hn
Nis(X,K

Q
n ) ≃ Hn

Nis(X,K
M
n ) ≃ CHn(X). □

We next consider cohomology with coefficients in D.

Proposition 3.37. Let X be a smooth affine fourfold over an algebraically closed field k of
characteristic not equal to 2 or 3. Then the natural maps of sheaves D → KMW

4 → KM
4 induce

isomorphisms

(32) H3
Nis(X,D)

∼−→ H3
Nis(X,K

MW
4 )

∼−→ H3
Nis(X,K

M
4 ).

Proof. Consider the long exact sequence on cohomology induced by the short exact sequence

0 → D → KMW
4 → T′

4 → 0.

Note that H2
Nis(X,T

′
4) = 0 and H3

Nis(X,T
′
4) = 0 by Theorems 3.25 and 3.26 together with The-

orem 2.11 and the fact that KM
4 → T′

4 is an epimorphism that becomes an isomorphism after 2-

fold contraction. Thus, Sequence (32) gives an isomorphismH3
Nis(X,D)

∼−→ H3
Nis(X,K

MW
4 ). □
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Combining Theorem 3.36, Theorem 3.37, and Sequence (31) gives us the following result:

Corollary 3.38. Let X be a smooth affine fourfold over an algebraically closed field of char-
acteristic not equal to 2 or 3. There is an exact sequence

· · · → H3
Nis(X,KSp4) → H3

Nis(X,K
M
4 ) → H4

Nis(X,π
A1

3 (A2 ∖ 0)) → CH4(X) → · · ·

Lemma 3.39. Let X be a smooth affine fourfold over an algebraically closed field k. Then

H4
Nis(X,π

A1

3 (SL2))⊗Q = H3
Nis(X,π

A1

3 (SL2))⊗Q = 0.

In particular, all elements in H4
Nis(X,π

A1

3 (SL2)) and H
3
Nis(X,π

A1

3 (SL2)) are torsion.

Proof. Since tensoring with Q is exact, by considering the Rost–Schmid complex for computing
cohomology of a strictly A1-invariant sheaf A we find that Hi

Nis(X,A)⊗Q ≃ Hi
Nis(X,A⊗Q).

So, it suffices to prove that

H3
Nis

(
X,πA1

3 (SL2)⊗Q
)
= H4

Nis

(
X,πA1

3 (SL2))⊗Q
)
= 0.

By [AFH22, Theorem 5.3.3], loops on c2 induces a rational A1-weak equivalence

Ωc2 : SL2 → K(Z(2), 3).

By [AFH22, 4.3.10] the induced maps

πA1

i (SL2)⊗Q → πA1

i (K(Z(2), 3))⊗Q

are isomorphisms of sheaves. We note that

H3
Nis(X,π

A1

3 (K(Z(2), 3)) = H4
Nis(X,π

A1

3 (K(Z(2), 3))) = 0,

so the same is true with rationalized coefficients. To see this, recall that πk(K(Z(j), i)) ∼=
Hi−k,j , where Hi,j is the Nisnevich sheafification of the presheaf U 7→ Hi

M(U,Z(j)) on Smk. In
particular, π3(K(Z(2), 3)) ≃ H0,2. The contractions of the sheaves Hi,j have a simple formula:
by the Tate suspension isomorphism for motivic cohomology, one has

(Hi,j)−m ∼= Hi−m,j−m.

Thus the term at degreem in the Rost–Schmid complex computing cohomology with coefficients

in πA1

3 (K(Z(2), 3)) takes the form ⊕
x∈X(m)

H−m,2−m(k(x))⊗Q.

If m ≥ 3, then 2−m < 0 and each cohomology group H−m
M (k(x),Z(2−m)) is zero for all points

x, so there is no cohomology at that term in the complex. □

By Theorem 2.16 the group CH4(X) is torsion-free. Using this observation, we obtain the
following result by combining Theorem 3.38 and Theorem 3.39:

Corollary 3.40. For X a smooth affine fourfold over an a field with 2 and 3 invertible, there

is a surjection H3
Nis(X,K

M
4 ) → H3

Nis(X,π
A1

3 (A2 ∖ 0)).

So, to complete the proof of Theorem 3.30, it is enough to prove the next proposition.

Proposition 3.41. The surjective map H3
Nis(X,K

M
4 ) → H4

Nis(X,π
A1

3 (A2 ∖ 0)) is zero.
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Proof. Consider the map of sheaves

(33) KSp4
φ4−→ KMW

4 → KM
4 ,

where φ4 is as in Sequence (27) and KMW
4 → KM

4 is the natural map. The composite (33)
induces the first map in the exact sequence from Theorem 3.38. We will prove that the map
induced map

(34) H3
Nis(X,KSp4) → H3

Nis(X,K
M
4 ),

which occurs in the exact sequence from Theorem 3.37, is surjective in characteristic not equal
to 2 or 3.

To do so, consider the composite

(35) KM
4

µ4−→ KQ
4

H4,2−−−→ KSp4
φ4−→ KMW

4 → KM
4 ,

where KQ
4 denotes the fourth Quillen K-theory sheaf, µ4 is the map induced from Milnor K-

theory to Quillen K-theory by the natural identification KM
1 → KQ

1 , and H4,2 is a hyperbolic
morphism. For more details on these morphisms, we refer the reader to the discussion preceding
[AF14a, Lemma 4.2].

We will prove that the long composite in Diagram (35) induces a surjection after applying
H3

Nis(X,−), which implies that (34) is also surjective. By the discussion in the paragraph before
[AF14a, Proposition 3.2], the composite

KSp4 → KMW
4 → KM

4

coincides with the composite

KSp4

f4,2−−→ KQ
4

ψ4−−→ KM
4 ,

where f4,2 is the forgetful morphism. So the long composition Diagram (35) is the same as the
composite

(36) KM
4

µ4−→ KQ
4

H4,2−−−→ KSp4

f4,2−−→ KQ
4

ψ4−−→ KM
4 ,

By [AF14a, Lemma 4.2] the composition Diagram (36) is the same as the composite

(37) KM
4

·2−→ KM
4

µ4−→ KSp4
ψ4−−→ KM

4 .

By the paragraph before [AF14a, Proposition 3.2], ψ4 ◦ µ4 is multiplication by 6 on KM
4 . It

follows that Diagram (35) is multiplication by 12 onKM
4 and therefore induces multiplication by

12 on cohomology. Away from characteristics 2 and 3, this map is surjective by Theorem 2.15.
□

4. Other cohomological approaches to classification

The cohomological investigations in the previous section provide far more insight than is
contained in the statement of Theorem 1.1. In particular, we can deduce some classification
results for rank 2 bundles using Euler classes and (stable) symplectic K-theory classes.

In Section 4.1, we observe that vanishing of Ch3(X) guarantees a bijection between isomor-
phism classes of rank 2 algebraic vector bundles on X determined by their first Chern class
and Euler class. Moreover, we show that any choice of determinant bundle and Euler class
in an appropriately twisted Chow–Witt group can be achieved as an invariant of some rank 2
algebraic vector bundle on X.

In Section 4.2 we study rank 2 vector bundles with fixed determinant bundle L which is the
square of another line bundle N . We show that such bundles are determined by an associated
(stable) symplectic K-theory class. Conceptually, this gives a cohomological classification of
such bundles.
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4.1. Cohomological criteria for the first Chern class and Euler class to uniquely
determine a bundle. Let X be a smooth affine fourfold over an algebraically closed field k
with characteristic not equal to 2 or 3 and let L be a line bundle over X. Given any element

e ∈ C̃H
2
(X,L),

it is natural to ask whether there exists a rank 2 bundle E over X with det(E) ∼= L and Euler
class equal to e. We prove that this is indeed the case, and then study cohomological conditions
under which determinant and Euler class completely classify algebraic vector bundles of rank
2 over X. We refer the reader to [Mor12, Chapter 8] for a detailed introduction to the theory
of Euler classes in A1-homotopy theory.

In this section, we use the Postnikov tower of BGL2 in A1-homotopy theory (see Theorem 2.12

or [AF14a, Theorem 6.1] for details). Abusing notation, we write BGL
(i)
2 for the i-th stage of

the Postnikov tower for BGL2. These spaces should not be confused with the i-th stages of
the Moore–Postnikov factorization of the morphism (c1, c2) : BGL2 → K(KM

1 , 1) × K(KM
2 , 2)

considered in the previous section.

Remark 4.1. This notation is justified since, for i ≥ 3, the i-th Postnikov tower stage for
BGL2 agrees with the i-th Moore–Postnikov tower stage for BGL2 → K(KM

1 , 1) ×K(KM
2 , 2).

So, in all interesting cases considered below, no problem can arise from the potential ambiguity.

Recall that BGL2 is the homootpy limit of a system

· · · → BGL
(i+1)
2 → BGL

(i)
2 → · · · .

A morphism X → BGL
(i)
2 in H(k) can be lifted to a morphism X → BGL

(i+1)
2 in H(k) if and

only if an associated element in Hi+2
Nis (X,π

A1

i+1(BGL2)(L)) is zero, where L is the line bundle

corresponding to the composite X → BGL
(i)
2 → BGL

(1)
2 = BGm. The choices of lifts are acted

on transitively by Hi+1
Nis (X,π

A1

i+1(BGL2)(L)).
Lemma 4.2. Let X be a smooth affine fourfold over an algebraically closed field of characteristic

not equal to 2 or 3. Then [X,BGL2] ∼= [X,BGL
(3)
2 ].

Proof. Recall that [X,BGL2] = [X,BGL
(4)
2 ]. Furthermore, since H4

Nis(X,π
A1

4 (BGL2)(L)) ∼=
H4

Nis(X,π
A1

3 (A2 ∖ 0)(L)) = 0 by Theorem 3.30, any two choices of lift of a given map X →
BGL

(3)
2 to BGL

(4)
2 are A1-homotopic. Moreover, the obstruction to lifting vanishes by cohomo-

logical dimension considerations. Thus,

[X,BGL2] ∼= [X,BGL
(4)
2 ] ∼= [X,BGL

(3)
2 ].

□

Lemma 4.3. Let X be a smooth affine fourfold over an algebraically closed field k of char-
acteristic not equal to 2 or 3 and let L be a line bundle on X. Then any cohomology class

e ∈ C̃H
2
(X,L) is the Euler class of a rank 2 algebraic vector bundle on X with determinant L.

Proof. Given Theorem 4.2, we must show that lifts of a given map X → BGL
(2)
2 to BGL

(3)
2 exist

and are homotopically unique. First, consider the obstruction to such a lift. This obstruction
takes values in

H4
Nis(X,π

A1

3 (BGL2)(L)) = H4
Nis(X,π

A1

2 (A2 ∖ 0)(L)).
By the long exact sequence on cohomology associated to Sequence (19) and Theorem 3.20, it
suffices to prove that H4

Nis(X,T
′
4) = H4

Nis(X,KSp3) = 0.
By Theorem 3.19,

H4
Nis(X,T

′
4)

∼= H4
Nis(X,K

M
4 /12)

∼= CH4(X)/12.
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By Theorem 2.16, CH4(X)/12 = 0. On the other hand, KSp3
∼= GW2

3. Since (GW2
3)−4 = 0

by Theorem 2.4, the fourth term in the Rost–Schmid complex computing Nisnevich cohomology
with coefficients in GW2

3 is identically zero.

In particular, we have shown that the map [X,BGL2] → [X,BGL
(2)
2 ] is surjective. It follows

from [AF14a, Proposition 6.3] that this map associates to a rank 2 bundle X → BGL2 precisely
its determinant bundle L and its Euler class in CH2(X,L). This finishes the proof. □

Definition 4.4. Let L be a line bundle over a smooth affine k-variety X. An L-oriented
vector bundle of rank r over X is a pair (E , φ), where E is a rank r vector bundle over X with

an isomorphism φ : det(E)
∼=−→ L. Two such L-oriented vector bundles (E , φ) and (E ′, φ′) are

isomorphic if there is an isomorphism i : E
∼=−→ E ′ such that φ′ ◦ det(i) = φ. We let VL

r (X)
denote the set of isomorphism classes of L-oriented rank r algebraic vector bundles on X.

Remark 4.5. If L = OX in Theorem 4.4, we recover oriented vector bundles in the usual
sense.

Theorem 4.6. Let X be a smooth affine fourfold over an algebraically closed field k of char-
acteristic not equal to 2 or 3, and suppose that Ch3(X) = 0. Then, by taking the Euler class,
we obtain a bijection

(38) eL : VL
2 (X)

∼−→ C̃H
2
(X,L)

for any line bundle L over X. In particular, an algebraic vector bundle E of rank 2 on X splits
off a trivial vector bundle of rank 1 if and only if the Euler class of E is zero in the Chow–Witt

group C̃H
2
(X,det(E)).

Proof. Surjectivity of (38) follows from Theorem 4.3. Up to homotopy, choices of lifts of a given
map

X → BGL
(2)
2 ≃ KGm(KMW

2 , 2)

to BGL
(3)
2 are acted on transitively by

H3
Nis(X,π

A1

3 (BGL2)(L)) ∼= H3
Nis(X,π

A1

2 (A2 ∖ 0)(L)),

which is zero by Theorem 3.27, Theorem 3.28 and by our assumption that Ch3(X) is zero.

In particular, it follows that under our assumptions the map [X,BGL2] → [X,BGL
(2)
2 ] is

bijective. □

Remark 4.7. If Ch3(X) is assumed only to be finite, but not necessarily zero, then eL in (38)
is a surjection with finite fibers.

4.2. Symplectic stabilization. Combining analysis of the Moore–Postnikov tower for BSp2 →
BSp with some of our previous computations, we are able to show that rank 2 vector bundles on
smooth affine fourfolds whose determinant bundle is a square are determined by their symplectic
K-theory class. More precisely:

Theorem 4.8. Let X be a smooth affine fourfold over an algebraically closed field k of char-
acteristic not equal to 2 or 3. Let L be a line bundle on X such that L ≃ (N )⊗2 for some line
bundle N on X. Then there is an injective map

VL
2 (X) ↪→ K̃Sp0(X)

given by taking a vector bundle V with determinant L to the composite(
X

V⊗N−1

−−−−−→ BSL2 → BSp

)
∈ [X,BSp].
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We reduce Theorem 4.8 to the case that L is trivial by noting that tensoring by N−1 induces
a bijection

VOX
2 (X) ∼= VL

2 (X).

Hence the proof of Theorem 4.8 is completed by the following:

Theorem 4.9. Let X be a smooth affine fourfold over an algebraically closed field k of char-
acteristic not equal to 2 or 3. Then the natural map

[X,BSp2] → [X,BSp]

is injective.

Proof. We first consider the morphism BSp4 → BSp. Its homotopy fiber has its first nonzero
A1-homotopy sheaf in degree 5, so the obstruction theory involving the Moore–Postnikov factor-
ization associated to the morphism BSp4 → BSp implies that [X,BSp4] → [X,BSp] is bijective.
In particular, it remains to show that [X,BSp2] → [X,BSp4] is injective.

The relevant stages of the Moore–Postnikov tower for BSp2 → BSp4 take the form below
(we refer the reader to Section 2.5 for background on Moore–Postnikov towers):

(39)

E(4)

E(3) K(πA1

4 (A4 ∖ 0), 5)

BSp4 K(KMW
4 , 4)

k5

k4

where [X, E(4)] ∼= [X,BSp2] forX a smooth affine fourfold. Injectivity has to do with uniqueness
of choices of lift from BSp4 to E(4), which we count one stage at a time.

• Lifts of a map y : X → BSp4 to E(3) are a torsor for a quotient of H3(X,KMW
4 ).

• Given a lift ỹ : X → E(3), lifts to E(4) are a torsor for a quotient of H4(X,πA1

4 (A4 ∖ 0)),
which is zero by [Fas21, Theorem 3.0.3]. Thus, [X, E(4)] ∼= [X, E(3)] via the obvious
map.

To show lifts of a mapX → BSp4 to E(3) are unique, we compare the Moore–Postnikov tower for
BSp2 → BSp4 to that for the BSL2 → K(KMW

2 , 2), where the latter morphism represents the
Euler class (see Theorem 2.13 for a discussion of comparison maps Moore–Postnikov towers).
Note that we have a commutative diagram

(40)

BSp2 BSL2

BSp4 K(KMW
2 , 2)

A

≃

B
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Taking first stages in the Moore–Postnikov towers for A and B in Diagram (40), we obtain a
commutative diagram:

(41)

K(KMW
4 , 3) K(πA1

2 (A2 ∖ 0), 3)

E(3) F (3)

BSp4 K(KMW
2 , 2)

f

g

where both columns are fiber sequences. Given a basepoint map X → BSp4 and lift of this
basepoint to a map X → E(3), apply [X,−] to Diagram (41) to obtain a commutative diagram

(42)

[X,K(KMW
4 , 3)] [X,K(πA1

2 (A2 ∖ 0), 3)]

[X, E(3)] [X,F (3)]

[X,BSp4] [X,K(KMW
2 , 2)].

f∗

g∗

where the columns are exact sequences of pointed sets. The set of lifts of the given basepoint
is a torsor for the image of the map labeled g∗.

By Theorem 3.27 and Theorem 3.28,H3(X,πA1

2 (A2 ∖ 0)) is a 2-torsion group, whileH3(X,KMW
4 )

is uniquely 2-divisible by [Fas21, Theorem 4.0.3]. Thus f∗ is zero. Lastly, note that the center
horizontal map in Diagram (42) is a bijection: we have a string of bijections

[X, E(3)] ∼= [X, E(4)] ∼= [X,BSp2]
∼= [X,F (4)] ∼= [X,F (3)],

where the last bijection uses Theorem 3.30. Thus g∗ factors through zero and its image is
zero. □

Remark 4.10. While Theorem 4.8 asserts the existence of an injection, we can say a bit more.
The proof of Theorem 4.9 shows that, for as in the statement of the theorem Theorem 4.8,
VL
2 (X) is in bijection with the elements in [X,BSp] ∼= [X,BSp4] such that k4(E ⊗ N−1) = 0,

where k4 : BSp4 → K(KMW
4 , 4) is the first nontrivial k-invariant for the Moore–Postnikov of

Diagram (39).

We conclude this section with a cohomological classification of oriented vector bundles of
rank 2 over a smooth affine fourfold that are stably isomorphic to a fixed oriented bundle of
rank 2. For any integer r ≥ 0, recall that VOX

r (X) denotes the set of isomorphism classes of
oriented vector bundles of rank r over X. As for ordinary algebraic vector bundles, we have
stabilization maps

Φor : VOX
r (X) → VOX

r+1(X)

given on representatives by

(E , φ) 7→ (E ⊕ OX , φ
+)

where φ+ denotes the orientation φ+ : det(E ⊕ OX)
∼=−→ det(E) φ−→ OX . We study the fibers

(Φor)
−1

[E ⊕ OX , φ
+] for some fixed oriented vector bundle (E , φ) of rank r. Since X is affine,

we can describe this fiber in terms of commutative algebra.



ON ALGEBRAIC VECTOR BUNDLES OF RANK 2 OVER SMOOTH AFFINE FOURFOLDS 29

Definition 4.11. Let R = OX(X) be the ring of regular functions on X and let (P, θ) be the
oriented projective R-module of rank r corresponding to (E , φ). Then let Um(P ⊕ R) denote
the set of surjective R-linear homomorphisms P ⊕R→ R.

Note that the group SL(P ⊕ R) of R-linear automorphisms of P ⊕ R with determinant 1
acts on the right on the set Um(P ⊕R) by precomposition. We denote by Um(P ⊕R)/ SL(P ⊕
R) the corresponding orbit space. Following [Sye21, Section 2.A], we consider the following
construction.

Construction 4.12. If a ∈ Um(P ⊕ R), then its kernel Pa = ker(a) is a finitely generated
projective R-module of rank r. Any section s : R → P ⊕ R of a then induces an isomorphism
is : P ⊕ R → Pa ⊕ R and also an isomorphism det(P ) ∼= det(Pa) which is independent of the

choice of s. We obtain an orientation of det(Pa) by θa : det(Pa)
∼=−→ det(P )

θ−→ R.

As in [Sye21, Section 2.A], Theorem 4.12 induces a natural bijection

Um(P ⊕R)/SL(P ⊕R)
∼=−→ (Φor)

−1
[E ⊕ OX , φ

+].

Under the bijection above, the class of a ∈ Um(P ⊕ R) is mapped to the class of the oriented
vector bundle of rank r over X corresponding to the oriented projective R-module (Pa, θa) of
rank r.

We now focus on the case r = 2 and we fix an oriented projective R-module (P, θ) of rank 2.

Recall that there is an abelian group ṼSL(R) generated by triples of the form [Q,χ1, χ2], where
χ1, χ2 are non-degenerate alternating forms on some finitely generated projective R-module
Q; the group ṼSL(R) is isomorphic to the group WSL(R) (cf. [Sye21, Section 2.C]), which is
itself isomorphic to ker(K0 Sp(R) → K0(R)). Following [Sye21, Section 3.A], there exists a
well-defined map

Vθ : Um(P ⊕R)/SL(P ⊕R) → ṼSL(R)

called the generalized Vaserstein symbol modulo SL associated to (P, θ).
The map Vθ above is defined as follows. Let a ∈ Um(P ⊕R) be an R-linear epimorphism and

Pa = ker(a) the associated finitely generated projective R-module of rank 2. The trivialization
θ of det(P ) induces a canonical non-degenerate alternating form χ on P and a non-degenerate
alternating form χa on Pa. As above, any section s : R → P ⊕R of a induces an isomorphism
is : P ⊕R→ Pa ⊕R. The triple

Vθ(a) = [P ⊕R2, χ ⊥ ψ2, (is ⊕ 1)
t
(χa ⊥ ψ2)(is ⊕ 1)] ∈ ṼSL(R)

is independent of the choice of s and induces the generalized Vaserstein symbol modulo SL
associated to (P, θ) above. We refer the reader to [Sye21, Section 3.A] for details. Injectivity
and surjectivity of Vθ was studied in detail in [Sye21, Section 3.B]. The following theorem is
now an easy consequence of Theorem 4.9:

Theorem 4.13. Let R be a smooth affine domain of dimension 4 over an algebraically closed
field k of characteristic not equal to 2 or 3. Let (P, θ) be an oriented projective R-module of
rank 2 over X. Then the generalized Vaserstein symbol

Vθ : Um(P ⊕R)/SL(P ⊕R) → ṼSL(R)

is bijective.

Proof. The map Vθ is automatically surjective by [Sye21, Theorem 3.2] and Suslin’s cancellation
theorem [Sus77]. So it remains to show that Vθ is injective.

For this purpose, assume a, a′ ∈ Um(P⊕R) with sections s, s′ : R→ P⊕R such that Vθ(a) =
Vθ(a

′). Then, following the formalism developed in [Sye21, Lemma 3.4], we easily see that the

non-degenerate alternating forms (is ⊕ 1)
t
(χa ⊥ ψ2)(is ⊕ 1) and (is′ ⊕ 1)

t
(χa′ ⊥ ψ2)(is′ ⊕ 1)



30 ON ALGEBRAIC VECTOR BUNDLES OF RANK 2 OVER SMOOTH AFFINE FOURFOLDS

are isometric. In other words, the symplectic R-modules (P ⊕R2, (is ⊕ 1)
t
(χa ⊥ ψ2)(is ⊕ 1)) ∼=

(Pa ⊕ R2, χa ⊥ ψ2) and (P ⊕ R2, (is′ ⊕ 1)
t
(χa′ ⊥ ψ2)(is′ ⊕ 1)) ∼= (Pa′ ⊕ R2, χa′ ⊥ ψ2) are

isomorphic. Now, by Theorem 4.9, it follows that (Pa, χa) and (Pa′ , χa′) are isomorphic as
symplectic and hence as oriented R-modules. Therefore, by the preceding paragraphs, the
classes of a and a′ are the same in the orbit space Um(P ⊕ R)/ SL(P ⊕ R) and Vθ is indeed
injective. □

Remark 4.14. The special case of Theorem 4.13 when P = R2 was already proven in [Sye24,
Theorem 3.9] and was significantly easier.

Theorem 4.13 now implies the following cohomological description of (Φo2)
−1

[E ⊕ OX , φ
+]:

Theorem 4.15. Let X be a smooth affine variety of dimension 4 over an algebraically closed
field k of characteristic not equal to 2 or 3. Let (E , φ) be an oriented vector bundle of rank 2
over X. Then there is a natural bijection

(Φo2)
−1

[E ⊕ OX , φ
+] ∼= ker (KSp0(X) → K0(X)) .

5. The number of algebraic vector bundles with a fixed topological class

Let X be a smooth affine variety of dimension d over C and let Xan denote its associated
analytic space (i.e., Xan = X(C) viewed as a complex manifold). Then complex realization
induces natural maps

Rr(X) : Vr(X) → Vtop
r (Xan)

for all integers r ≥ 0, where Vr(X) denotes the set of isomorphism classes of algebraic vector
bundles of rank r over X and Vtop

r (Xan) denotes the set of isomorphism classes of complex
topological vector bundles of rank r over Xan. Similarly, complex realization induces cycle
class maps

cli : CH
i(X) → H2i

sing(X
an,Z)

for all integers i ≥ 0, where Hi
sing(−,Z) denotes singular cohomology with integer coefficients.

The maps Rr(X) are not surjective in general. Even isomorphism classes of complex topological
vector bundles of rank r whose topological Chern classes lie in the image of the cycle class maps
need not lie in the image of the map Rr(X) (cf. [AFH19, Theorem 2]).

It is natural to study the fibers of the maps Rr(X), i.e., to determine the set of isomorphism
classes of algebraic vector bundles of rank r over X realizing to the same isomorphism class of
a complex topological vector bundle over Xan. If r = 1, then it is classical that topological and
algebraic vector bundles are both uniquely determined by their first Chern classes (appropriately
interpreted) and we have a commutative diagram

V1(X) CH1(X)

Vtop
1 (Xan) H2

sing(X
an,Z),

R1(X)

c1
∼=

cl1

ctop1

∼=

This immediately implies the following theorem:

Proposition 5.1. Let X be a smooth affine variety of dimension d over C. Then there is a
bijection between any non-empty fiber of the map R1(X) and the kernel of the cycle class map
cl1. In particular, the non-empty fibers of the map R1(X) are all finite (resp. a singleton) if
and only if the kernel of the map cl1 is finite (resp. trivial).
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If r = 2 and d ≤ 3, then by the Andreotti–Frankel theorem [AF59, Theorem 1] and [AE17,

Proposition 2.29], ctop1 is bijective. By [AF14a, Theorem 1], (c1, c2) is also bijective. Thus, we
have a commutative diagram:

V2(X) CH1(X)× CH2(X)

Vtop
2 (Xan) H2

sing(X
an,Z).

R2(X)

(c1,c2)

∼=
cl1 ◦prCH1(X)

ctop1

∼=

Note that the group CH2(X) is trivial if d = 1. The diagram immediately yields the following
result:

Proposition 5.2. Let X be a smooth affine variety of dimension d ≤ 3 over C. Then there is
a bijection between any non-empty fiber of the map R2(X) and the product ker(cl1)×CH2(X).
In particular, the non-empty fibers of the map R2(X) are all finite (resp. a singleton) if and
only if ker(cl1) and CH2(X) are finite (resp. trivial).

Now let r = 2 and d = 4. Then [AF59, Theorem 1] and [AE17, Proposition 2.29] still apply

and the map (ctop1 , ctop2 ) is bijective, but the map (c1, c2) is no longer injective in general. We
obtain a commutative diagram of the form

(43)

V2(X) CH1(X)× CH2(X)

Vtop
2 (X(C)) H2

sing(X,Z)×H4
sing(X,Z),

R2(X)

(c1,c2)

cl1×cl2
(ctop1 ,ctop2 )

∼=

Although (c1, c2) is not bijective in general, the map R2(X) can be understood in terms of
(c1, c2) and cl1 × cl2. Using Theorem 1.1, we can deduce the following theorem on the fibers of
R2(X) from Diagram (43):

Theorem 5.3. Let X be a smooth affine variety of dimension 4 over C. If ker(cl1), ker(cl2),
Ch3(X) and H5

M(X,Z/2(3)) are finite abelian groups (resp. trivial), then every non-empty fiber
of the map R2(X) is finite (resp. a singleton).

If Ch3(X) and H5
M(X,Z/2(3)) are zero, then there is a bijection between any non-empty

fiber of R2(X) and ker(cl1)× ker(cl2).

6. Examples

On a given smooth affine fourfold X over an algebraically closed field of characteristic not
equal to 2 or 3, Theorem 1.1 reduces the study of rank 2 algebraic vector bundles with fixed
Chern classes to understanding Ch3(X) and H4

nr(X,µ2). If we instead study vector bundles
with prescribed first Chern class and Euler class, the answers take a slightly different form.
Below, we use Theorem 4.6 to give a number of explicit cases where rank 2 vector bundles on
X are completely classified by their first Chern class and Euler class. We also give a number
of examples where there are only finitely many vector bundles with prescribed Chern classes or
first Chern class and Euler class.

As a preliminary remark, we note that a number of concrete examples are provided by
work of Asok–Fasel in the case that a given smooth affine variety has Nisnevich cohomological
dimension at most 3. For example, let X be a smooth affine fourfold over an algebraically
closed field of characteristic not 2 having the A1-homotopy type of a smooth surface (e.g., if X
is the Jouanolou device over any smooth projective surface, cf. [AF23, 3.3.6]) or of a smooth
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affine threefold. Then any rank 2 vector bundle over X is uniquely determined by its first two
Chern classes [AF14a, Theorem 1].

The remainder of this section will focus on examples that are not covered by previous liter-
ature. In Section 6.1 we focus on complements of hypersurfaces in P4, P1×P3, and P2×P2. In
Theorem 6.6, we discuss the Mohan Kumar example in dimension 4. In Section 6.2, we study
rank 2 algebraic vector bundles on cyclic coverings.

Throughout this section, let k be an algebraically closed base field of characteristic different
from 2 or 3. We will further specialize the field as necessary.

6.1. Rank 2 vector bundles on hypersurface complements. The examples that follow
are all smooth affine fourfolds of the form Y ∖D for Y a smooth projective variety of dimension
4 and D a hypersurface. We organize them according to the ambient projective variety Y .

Example 6.1 (Hypersurface complements in P4). Consider X = P4∖D where D is a hypersur-
face of degree d. From the localization sequence on Chow groups, CH3(X) is a quotient of Z/d,
and hence Ch3(X) is finite. By Theorem 4.7, there are only finitely many vector bundles with
a given first Chern class and Euler class. We can consider a number of additional hypotheses
that allow us to draw stronger conclusions:

(a) If d is odd, Ch3(X) = 0 and rank 2 vector bundles on X are uniquely determined by
their first Chern class and Euler class by Theorem 4.6.

(b) If d ≤ 5, then Ch3(X) is zero. This follows from observing that the Fano variety of
lines on D is nonempty [BVdV79, Theorem 8]. Again, rank 2 vector bundles on X are
determined by their first Chern class and Euler class.

(c) Appealing to Theorem 3.10, if D is smooth and H3
nr(D,µ

3
2) is finite (resp., zero), then

H4
nr(X,µ

⊗4
4 ) is finite (resp., zero) as well. By Theorem 1.1 and Theorem 3.1, there are

only finitely many rank 2 bundles over X with given Chern classes.
(d) By Theorem 3.14, if k = C, D is smooth, and d ≤ 4, then H4

nr(X,µ2) = 0 and the
previous item implies Chern finiteness for rank 2 bundles on X, i.e., there are only
finitely many rank 2 bundles over X with given Chern classes.

(e) Let k = C and X = P4∖D for D a smooth hypersurface of degree ≤ 4. Then it follows
from (a) and [AFH19, Theorem 2.2.2] that any pair (c1, c2) ∈ CH1(X) × CH2(X) can
be realized as the first two Chern classes of an algebraic vector bundle of rank 2 over
X. Combining (b) and (c) above with Theorem 1.1 and Theorem 3.1, we then find that
vector bundles of rank 2 over X are completely classified by their Chern classes.

We highlight a strong consequence of the previous example, part (e):

Theorem 6.2. Suppose k = C and X is the complement of a smooth hypersurface D of degree
d ≤ 4 in P4. Then there are exactly d2 isomorphism classes of algebraic vector bundles of rank 2
over X, determined uniquely by their first two Chern classes in CH1(X)×CH2(X) ∼= (Z/d)×2.

Question 6.3. What can be said about the vanishing or finiteness of H3
nr(X,µ2) when X is

the complement of a generic or a specific quintic threefold?

Example 6.4 (Hypersurface complements in P1 × P3). Consider X = P1 × P3 ∖ D, where

D is a hypersurface of bidegree (a, b). Note that CH3(X) is a quotient of Z/g ⊕ Z/ b
2

g , where

g = gcd(a, b). Hence Ch3(X) is finite. By Theorem 4.7, there are only finitely many vector
bundles with a given first Chern class and Euler class. Again, we consider hypotheses under
which we may conclude more:

(a) If b is odd, then Ch3(X) is trivial and by Theorem 4.6 vector bundles on X are deter-
mined by their first Chern class and Euler class.
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(b) By Theorem 3.10, if D is smooth and H3
nr(D,µ2) is finite (resp., zero) then H4

nr(X,µ4)
is finite (resp. zero) as well. Therefore, by Theorem 1.1 and Theorem 3.1, there are
only finitely many rank 2 bundles over X with given Chern classes.

(c) If k = C and D is smooth, Theorem 3.14 applies: if a ≤ 1 and b ≤ 3, −KD is ample
and hence H4

nr(X,µ2) = 0. In particular, the number of isomorphism classes of rank 2
bundles over X with given Chern classes is finite.

(d) Consider the specific case of D a smooth bidegree (1, 3) hypersurface over k = C. Then
it follows from (a) and Theorem 4.3 that any pair (c1, c2) ∈ CH1(X) × CH2(X) can
be realized as the first two Chern classes of an algebraic vector bundle of rank 2 over
X. Combining (a) and (c) of this example with Theorem 1.1 and Theorem 3.1, we find
that isomorphism classes of rank 2 vector bundles over X are in bijection with choices
(c1, c2) ∈ CH1(X)× CH2(X).

Example 6.5 (Hypersurface complements in P2×P2). Consider X = P2×P2∖D, where D is
a smooth hypersurface of bidgree (a, b). Let g = gcd(a, b) denote the greatest common divisor
of a and b. Then CH3(X) is a finite abelian group which is g2-torsion. To see this, let x, y be
generators of CH1(X) such that ax + by = 0. Note also that we may choose x and y so that
x3 = y3 = 0 and CH3(X) is generated by xy2 and yx2. Moreover, axy2 = 0 and byx2 = 0. We
can write g = an+ bm for some m,n ∈ Z and we find that:

g2(xy2) = b2m2xy2 = m2(by)2x = m2(ax)2x = m2a2x3 = 0

and similarly we deduce that g2(yx2) = 0.
In any case, CH3(X) is finite and there are only finitely many vector bundles with a given

first Chern class and Euler class. However, we can sometimes say more:

(a) If the greatest common divisor of a and b is odd, then Ch3(X) is trivial and by Theo-
rem 4.6 vector bundles on X are determined by their first Chern class and Euler class.

(b) By Theorem 3.10, if D is smooth and H3
nr(D,µ

3
2) is finite (resp., zero), then H

4
nr(X,µ

⊗4
4 )

is finite (resp., zero) as well. Therefore, by Theorem 1.1 and Theorem 3.1, there are
only finitely many rank 2 bundles over X with given Chern classes.

(c) If k = C, Theorem 3.14 applies. For D smooth and a, b ≤ 2, we find that −KX is
ample and hence H4

nr(X,µ2) is trivial. In particular, there are only finitely many vector
bundles of rank 2 with fixed Chern classes.

(d) Consider the specific case k = C, D smooth, and a = 1 and b = 2. Then it follows from
(a) and Theorem 4.3 that any pair (c1, c2) ∈ CH1(X)×CH2(X) can be realized as the
first two Chern classes of an algebraic vector bundle of rank 2 over X. Combining (a)
and (c) of this example with Theorem 1.1 and Theorem 3.1, we find that isomorphism
classes of rank 2 vector bundles over X are in bijection with choices (c1, c2) ∈ CH1(X)×
CH2(X).

Example 6.6 (The Mohan Kumar example). In [MK84] and [MK85], N. Mohan Kumar gives
an amazing construction of a smooth complex fourfold with non-trivial but stably trivial rank
2 vector bundle. In fact, Mohan Kumar’s construction applies more generally to give smooth
affine (p + 2)-folds with non-trivial but stably trivial rank p bundles for any prime p, and his
construction works over any algebraically closed base field. Some additional perspective on
such examples is provided in [Wen21] using motivic methods.

In the case p = 2, the variety in question is the complement of a union of three hypersurfaces
in P3×A1. While Mohan Kumar’s construction provides defining equations for these hypersur-
faces, explicit computations are still extremely difficult and thus it is challenging to understand
stably trivial vector bundles on the Mohan Kumar examples. It follows from [Sye24, Theo-
rem 3.9] that non-trivial stably trivial oriented rank 2 bundles over the Mohan Kumar variety
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XMK are in bijection with the Hermitian K-theory group WSL(XMK) ∼= ker(KSp0(XMK) →
K0(XMK)); this was done by studying classical Hermitian K-theory groups. Theorem 4.15 fur-
ther generalizes this and shows that all the fibers (Φo2)

−1([E , φ]) for an oriented vector bundle
(E , φ) of rank 2 over XMK are in bijection with the group WSL(XMK). Theorem 4.9 shows that
oriented vector bundles of rank 2 over XMK are determined by their symplectic K-theory class.
More generally, Theorem 4.8 implies that vector bundles E on XMK with fixed determinant
N⊗2 are determined by the symplectic K-theory class of E ⊗ N−1.

6.2. Rank 2 vector bundles over cyclic coverings. Let X be a smooth affine variety over
a field k which admits an embedding ι : k ↪→ C. Then one may use this embedding to define
an associated complex manifold Xan

ι . The variety X is called topologically contractible if the
complex manifold Xan

ι is a contractible topological space for every embedding ι : k ↪→ C. Affine
spaces over k are the primordial examples of topologically contractible smooth affine k-varieties.
The study of topologically contractible varieties has stimulated a wealth of research over many
decades and its long history is directly related to important questions in algebraic geometry
such as the Zariski cancellation problem, the linearization problem, the generalized van de Ven
question or the generalized Serre question on algebraic vector bundles [AØ21, Section 5.1.2].

Answering a question raised by J.-P. Serre (cf. [Ser55, p. 243]), D. Quillen and A. Suslin
independently proved that algebraic vector bundles over affine spaces are always trivial [Qui76],
[Sus76]. The generalized Serre question asks whether algebraic vector bundles over topologically
contractible smooth affine complex varieties are always trivial [AØ21, Question 6]. While the
generalized Serre question is known to have a positive answer in dimensions ≤ 2, the question
remains completely open in higher dimensions [AØ21, Section 5.5.2].

Many concrete examples of topologically contractible smooth affine complex varieties in the
literature are given by cyclic coverings [Zai99, Section 5], defined as follow. Let X be a smooth
affine variety over an algebraically closed field k of characeristic 0, n > 0 be an integer and
f ∈ OX(X) be a regular function. In general, one assumes that

• the closed subscheme F0 of X defined by f is smooth over k,
• the polynomial un − f is prime in both the polynomial rings OX(X)[u] and k(X)[u],

where k(X) is the field of fractions of the domain OX(X), and
• there is a Gm-action on X which makes f a quasi-invariant of weight d ∈ Z with

⟨d, n⟩ = Z.
Under these general assumptions, one obtains a smooth affine k-variety defined by

Yn := {un − f = 0} ⊂ X × A1,

where u is the variable of A1. The projection morphism φn : Yn → X is called a cyclic cov-
ering of X of order n with respect to f . As indicated above, many examples of topologically
contractible smooth affine complex varieties can be constructed as cyclic coverings; indeed,
if k = C, if the variety X is topologically contractible and if other natural assumptions are
satisfied, the smooth affine k-variety Yn is topologically contractible [Zai99, Theorem 5.1].

The motivic cohomology groups of cyclic coverings over algebraically closed fields of char-
acteristic 0 were studied in [Sye23]. Combining [Sye23, Theorem 3.21] and [Sye23, Corollary
3.25] for Z/2-coefficients, one obtains that if n is odd the cyclic covering morphism φn induces
isomorphisms

CHi(X)⊗Z Z/2 ∼= CHi(Yn)⊗Z Z/2
for i ≥ 0. If furthermore CH2(X)⊗Z Z/2 = 0, then φn also induces an isomorphism

H5
M(X,Z/2(3)) ∼= H5

M(Yn,Z/2(3)).

In particular, it follows that whenever CHi(X)⊗ZZ/2 = 0 for all i ≥ 1 and H5
M(X,Z/2(3)) = 0

holds, the same will hold for Yn. We give some concrete examples:
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(a) For example, consider α0, α1, α2, α3 ≥ 2 are pairwise coprime integers with α0 odd. Let
n ≥ 2 be an integer coprime to α0 and let

α3 = 1 +mα1α2

for some m > 0. We obtain a smooth affine subvariety

Yα0
= {x+ xnzα0 + yα1

1 + yα2
2 + yα3

3 = 0} ⊂ A5.

Let
X = {x+ xnz + yα1

1 + yα2
2 + yα3

3 = 0} ⊂ A5.

The variety Y is a cyclic covering of X of order α0 along the function z ∈ OX(X).
The variety X is stably A1-contractible by [DPØ19, Theorem 1.19] and hence has the
motivic cohomology of Spec(k). In particular, CHi(X) ⊗Z Z/2 = 0 for all i ≥ 1 and
H5

M(X,Z/2(3)) = 0. By the preceding paragraph, one therefore also has CHi(Yα0) ⊗Z
Z/2 = 0 for all i ≥ 1 and H5

M(Yα0
,Z/2(3)) = 0. As a consequence, we conclude that

algebraic vector bundles of rank 2 over Yα0
are uniquely determined up to isomorphism

by their Chern classes. If k = C, the variety Yα0
is topologically contractible by [Zai99,

Example 6.2]. We refer the reader to [Sye23, Section 4.3] for details.
(b) Let α0, α1, α2, α3 ≥ 2 are pairwise coprime integers. Consider the smooth affine subva-

riety
Y = {x+ x2(uα0 + vα1) + zα2 + tα3 = 0} ⊂ A5,

and the subariety

X = {x+ x2y + zα2 + tα3 = 0} ⊂ A4.

Then Y is a cyclic covering of the product of X × A1 of order α0 with respect to the
function y−vα1 ∈ OX(X)[v], where we consider v as the coordinate on A1. Analogously,
Y is also a cyclic covering of the product of X × A1 of order α1 with respect to the
function y − uα0 ∈ OX(X)[u], where we consider u as the coordinate on A1.. The
variety X is a Koras–Russell threefold of the first kind and is A1-contractible by [DF18,
Theorem 1]. In particular, X as well as X × A1 have the motivic cohomology of
Spec(k). As either α0 or α1 is odd, it follows that CHi(Y ) ⊗Z Z/2 = 0 for all i ≥ 1
and H5

M(Y,Z/2(3)) = 0. As a consequence, algebraic vector bundles of rank 2 over
Y are uniquely determined up to isomorphism by their Chern classes. As a matter
of fact, one can even prove that CHi(Y ) = 0 for i ≥ 1; together with the vanishing of
H5

M(Y,Z/2(3)) mentioned above, this implies that all vector bundles over Y are actually
trivial! If k = C, the variety Y is topologically contractible by [Zai99, Example 6.2].
We refer the reader to [Sye23, Section 4.4] for details.
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France 86 (1958), 137–154.

[Hor05] Jens Hornbostel, A1-representability of Hermitian K-theory and Witt groups, Topology 44 (2005),
no. 3, 661–687. MR 2122220

[Hu23] Y. Hu, Metastable complex vector bundles over complex projective spaces, Trans. Amer. Math. Soc.

376 (2023), no. 11, 7783–7814.
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