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Abstract. Given a polynomial with integral coefficients, one can inquire about the possible residues it
can take in its image modulo a prime p. The sum over the distinct residues can sometimes be computed
independent of the prime p; for example, Gauss showed that the sum over quadratic residues vanishes
modulo a prime. In this paper we provide a closed form for the sum over distinct residues in the image
of Dickson polynomials of arbitrary degree over finite fields of odd characteristic, and prove a complete
characterization of the size of the image set. Our result provides the first non-trivial classification of
such a sum for a family of polynomials of unbounded degree.
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1. Introduction

For an integral polynomial f and an odd prime p, we denote by Rp(f) the image set of f in Fp,
the finite field of order p. Many properties of Rp(f) have been well-studied if f is of small degree.
For example, it is well-known that |Rp(f)| = (p + 1)/2 if f is quadratic. Following the work of von
Sterneck [vS08] and Kantor [Kan15] in the early 20th century, the size of the image set of a cubic
polynomial was determined: if p > 3 is prime, then

∣∣Rp(x
3 + ax2 + bx+ c)

∣∣ =


p a2 − 3b = 0, p ≡ −1 (mod 3);
p+2
3 a2 − 3b = 0, p ≡ 1 (mod 3);

2p−1
3 a2 − 3b 6= 0, p ≡ −1 (mod 3);

2p+1
3 a2 − 3b 6= 0, p ≡ 1 (mod 3).
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For quartic and higher degree polynomials, not as much is known. Sun [Sun06] investigated |Rp(f)|
for quartic polynomials f with no cubic term, Chou, Gomez-Calderon, and Mullen [CGCM88] es-
tablished |Rp(f)| for Dickson polynomials f (we will discuss this in greater detail later), and Cusick
[Cus98] investigated an infinite family of polynomials over a finite field of characteristic 2. Uchiyama
[Uch54] provided sufficient conditions for a polynomial f to satisfy the lower bound |Rp(f)| > p/2,
but noted that this does not hold in general. Just a few years later, Birch and Swinnerton-Dyer made
Uchiyama’s bound more precise [BSD59], and this was further improved upon by Voloch [Vol89].
Probabilistic methods over finite fields allow one to ask about the “average” value of |Rp(f)|, varying
over polynomials of degree n, and this has proven to be a fruitful direction of research (see for ex-
ample [Coh73, KK90]), however ascertaining the value |Rp(f)| for arbitrary polynomials still appears
intractable at the time of writing.

Another interesting property of Rp(f) is the residue sum, denoted by Sp(f), defined to be the sum
of the elements of Rp(f) in Fp. Gauss [Gau66] first proved that Sp(x

2) = 0. Considering f(x) = x2 as
a special case of polygonal numbers, it is natural to investigate the residue sum of triangular numbers
modulo p, which was shown to be −16−1 in Fp by Stetson [Ste04] in 1904. In other words, Stetson
showed that

Sp

(
x(x+ 1)

2

)
= − 1

16
.

This result was later generalized by Gross, Harrington, and Minott [GHM17], who computed for a 6≡ 0
(mod p) that

Sp
(
ax2 + bx+ c

)
= −b

2 − 4ac

8a
.

We observe that the residue sums of quadratic polynomials are invariant for all odd primes p. Such
is not true if f has a higher degree. Finch-Smith, Harrington, and Wong [FSHW20] showed that if
a 6≡ 0 (mod p) where p > 3 is an odd prime, then

Sp
(
ax3 + bx2 + cx+ d

)
=



27a2d− 9abc+ 2b3

81a2
if b2 6= 3ac and p ≡ 1 (mod 3);

−27a2d− 9abc+ 2b3

81a2
if b2 6= 3ac and p ≡ −1 (mod 3);

2
(
27a2d− 9abc+ 2b3

)
81a2

if b2 = 3ac and p ≡ 1 (mod 3);

0 if b2 = 3ac and p ≡ −1 (mod 3).

While these results are interesting, the residue sums above have only been investigated for low-degree
polynomials. In this article, we study Rp(f) and Sp(f) when f is a Dickson polynomial, which is an
infinite family of polynomials with degrees that are arbitrarily large.

Definition 1.1. For a nonzero integer a, the Dickson polynomials Dn(x, a) for n ≥ 0 are defined
recursively by D0(x, a) = 2, D1(x, a) = x, and Dn(x, a) = xDn−1(x, a)− aDn−2(x, a) for n ≥ 2.

The Dickson polynomials are ubiquitous in algebra and number theory. They are closely re-
lated to the Chebyshev polynomials Tn(x), and when a = −1, we recover the Lucas polynomials
Ln(x) = Dn(x,−1). The Lucas polynomials are a “polynomialization” of the famous sequence of
Lucas numbers, where the nth Lucas number can be obtained as Ln(1).

As an illustrative example of residue sums, consider the Lucas polynomials at the prime p = 7 as
in Table 1. We remark that the residue sum Sp(Ln) has a very limited number of possible values.
Shockingly, this is not a property that is special to the case p = 7. As a consequence of our study
on the Dickson polynomials, we can provide a complete classification of Sp(Ln) for all odd primes
p and positive integers n which shows that Sp(Ln) ∈ {−1, 0, 1, 2}. In fact, the following theorem

implies that Sp(Dn(x, a)) ∈ {−2an/2,−an/2, 0, an/2, 2an/2}. As all our results hold for finite fields of

odd characteristic, we state them in that generality where q = pk for p an odd prime.
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Table 1. Investigation of S7(Ln) for 1 ≤ n ≤ 40.

n S7(Ln)

1 0
2 1
3 0
4 1
5 0
6 2
7 0
8 6

n S7(Ln)

9 0
10 1
11 0
12 2
13 0
14 1
15 0
16 1

n S7(Ln)

17 0
18 2
19 0
20 1
21 0
22 1
23 0
24 0

n S7(Ln)

25 0
26 1
27 0
28 1
29 0
30 2
31 0
32 1

n S7(Ln)

33 0
34 1
35 0
36 2
37 0
38 1
39 0
40 6

We denote by χq(·) the quadratic character over Fq, that is the multiplicative function defined by

(1) χq(a) := a
q−1
2 =


0 if a = 0 ∈ Fq;
1 if a is a quadratic residue in Fq;
−1 if a is not a quadratic residue in Fq.

This function generalizes the Legendre symbol over a field of prime order. Furthermore, it is natural
to extend the definitions of Rp and Sp to the field of order q and denote these by Rq and Sq.

Theorem 1.2. Let a be an integer, n be a nonnegative integer, and q be an odd prime power such
that a 6= 0 ∈ Fq. Let d = gcd(n, q − 1) and δ = gcd(n, q + 1), and let r be the highest power of 2
dividing q2 − 1. Then the sum of the elements in the image of the Dickson polynomials is1

Sq(Dn(x, a)) =

{
0 2r−1 | n;

−χq(a)
n
d
+n
δ an/2 else,

+

{
χq(a)

n
d an/2 (q − 1) | n;

0 else,
+

{
χq(a)

n
δ an/2 (q + 1) | n;

0 else.

Corollary 1.3. In the situation above, we have five possibilities for the residue sum, as n and a vary
over all integers, and q over all odd prime powers

Sq(Dn(x, a)) ∈
{

0,±an/2,±2an/2
}
.

This demonstrates the first non-trivial classification for Sq(f) where f varies over an infinite family
of polynomials of unbounded degree. In the process of proving this theorem, we provide a complete
characterization of the size of Rq(Dn(x, a)) for all n, a, and odd prime powers q, which is the main
result of Chou, Gomez-Calderon, and Mullen [CGCM88, Theorem 10] for odd characteristic.

Theorem 1.4. Let p be an odd prime power, n an even natural number, d = gcd(q − 1, n), δ =
gcd(2(q + 1), n), and 2r the highest power of 2. Then the size of the value set of the nth Dickson
polynomial over Fq is

|Rq(Dn(x, a))| =
⌊
q − 1

2d

⌋
+

⌊
q + 1

2δ

⌋
+ 1 +

{
1 if χq(a) = −1 and 2r−1 || n;

0 otherwise.

Acknowledgements. The first named author is supported by an NSF Graduate Research Fellowship
(DGE-1845298).

1When (q − 1) | n we remark that χq(a)n/dan/2 = an, while when (q + 1) | n we have that χq(a)n/δan/2 = an−n/δ.
We keep it in the stated form to highlight the symmetry.
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2. Preliminaries

In this section, we present some preliminary results and notation that will be useful in our investi-
gation.

Notation 2.1. Throughout this paper we will fix p to be an odd prime, and q to be some power of
it, defining a finite field Fq. We fix a primitive (q2 − 1)st root of unity ζq2−1 to be a generator of the

group of units F×
q2

. For each positive factor m of q2−1, let ζm = ζ
(q2−1)/m
q2−1 . In particular, ζq−1 ∈ F×q is

a primitive (q − 1)st root of unity. When we consider a Dickson polynomial over Fq and a nonzero in
Fq, let A be the smallest positive integer such that a = ζAq−1. Finally, we denote by Sq(f) the residue

sum of an integral polynomial f(x) over the finite field Fq.

2.1. Dickson polynomials. Using standard methods of solving recurrence relations, one can show
that the Dickson polynomials admit a Binet formula expansion:

Dn(x, a) = ω(x, a)n + ω(x, a)n,(2)

where

ω(x, a) =
x+
√
x2 − 4a

2
and ω(x, a) =

x−
√
x2 − 4a

2
.

Using the expressions for ω and ω, we make note of the following properties:

(3)
x = ω(x, a) + ω(x, a),

a = ω(x, a)ω(x, a).

Since a 6= 0, from this expression we see ω(x, a) = aω(x, a)−1.

Example 2.2. One may check that the small index Dickson polynomials are given by

D0(x, a) = 2 D4(x, a) = x4 + 4x2a+ 2a2

D1(x, a) = x D5(x, a) = x5 + 5x3a+ 5xa2

D2(x, a) = x2 − 2a D6(x, a) = x6 − 6x4a+ 9x2a2 − 2a3

D3(x, a) = x3 − 3xa D7(x, a) = x7 − 7x5a+ 14x3a3 − 7xa3.

Proposition 2.3. If n is odd, then Sq(Dn(x, a)) = 0.

Proof. It follows from the recursive definition of Dn(x, a) that if n is odd, then Dn(x, a) is an odd
polynomial. Consequently, if y ∈ Rq(Dn(x, a)), then −y ∈ Rq(Dn(x, a)). Since p is odd, y 6≡ −y in
Fq, and we deduce that Sq(Dn(x, a)) = 0. �

Proposition 2.4. Suppose that a ≡ 0 in Fq. Then we have that

Sq(Dn(x, a)) =

{
1 n = q − 1;

0 else.

Proof. Via the recursive relation of the Dickson polynomials, we have that Dn(x, a) ≡ xn whenever a
vanishes over Fq. From this the problem reduces to summing nth powers over a finite field. �

Assumption 2.5. As Proposition 2.3 determines the residue sum Sq(Dn(x, a)) for all odd n, for
the remainder of this paper, we will make the standing assumption that n is even. Additionally
Proposition 2.4 determines the case where a ≡ 0 ∈ Fq, so we will assume without loss of generality
that a 6≡ 0 ∈ Fq. Finally we will make the standing assumption that q 6= 3, however one may check
by direct computation that Theorem 1.2 holds when q = 3.
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Using ω(x, a) = aω(x, a)−1 , we simplify Equation 2 to

Dn(x, a) = ω(x, a)n + anω(x, a)−n,

and we exploit this form of Dn to prove the following proposition and other results throughout the
paper.

Proposition 2.6. Let x, y ∈ Fq be arbitrary. Then Dn(x, a) = Dn(y, a) if and only if ω(x, a)n =
ω(y, a)n or ω(x, a)n = ω(y, a)n = anω(y, a)−n.

Proof. Suppose that Dn(x, a) = ω(x, a)n + anω(x, a)−n = ω(y, a)n + anω(y, a)−n = Dn(y, a). By
multiplying both sides of the equation by ω(x, a)n and rearranging the terms, we have that

ω(x, a)2n −
(
ω(y, a)n + anω(y, a)−n

)
ω(x, a)n + an = 0.

That is, ω(x, a)n is a solution of the polynomial

t2 −
(
ω(y, a)n + anω(y, a)−n

)
t+ an = (t− ω(y, a)n)

(
t− anω(y, a)−n

)
.

�

Proposition 2.7. [CGCM88, Lemma 7] Let x ∈ Fq. Then we have that ω(x, a)n = ω̄(x, a)n if and

only if Dn(x, a) = ±2an/2.

Corollary 2.8. For any x ∈ Fq, we have that Dn(x, a) = ±2an/2 if and only if ω(x, a)n = ±an/2.

2.2. Hyperbolic, elliptic, and parabolic elements.

Notation 2.9. We partition Fq into three subsets, denoted by

Hq(a) =
{
x ∈ Fq : χq(x

2 − 4a) = 1
}
,

Eq(a) =
{
x ∈ Fp : χq(x

2 − 4a) = −1
}
,

Pq(a) =
{
x ∈ Fp : χq(x

2 − 4a) = 0
}
.

We will refer to elements of Hq(a), Eq(a), and Pq(a) as hyperbolic, elliptic, and parabolic, respectively.
This terminology is inspired by the work of Bourgain, Gamburd, and Sarnak [BGS16] on showing the
connectivity of the Markoff mod p graphs.

Our understanding of Rq(Dn(x, a)) will come from investigating the images of these three sets under
the map Dn. We will denote by Dn(Hq(a), a) ⊆ Fq the image set of the hyperbolic elements under the
Dickson polynomial, and similarly for the elliptic and parabolic sets. In order to compute the residue
sum Sq(Dn(x, a)), it will suffice to have a handle on these three image sets as well as their potential
overlaps.

Remark 2.10. We note here some preliminary observations about the quantity ω(x, a).

(1) If x ∈ Hq(a), then ω(x, a) is an element of Fq. In particular, ω(x, a)q−1 = 1, thus we may write
ω(x, a) = ζcq−1 for some c, where ζq−1 is our fixed primitive (q − 1)st root of unity.

(2) If x ∈ Eq(a), then ω(x, a) is an element of Fq2 but not an element of Fq. Thus we have that

ω(x, a)q
2−1 = 1.

(3) Observe that Pq(a) is nonempty if and only if χq(a) = 1, where we recall that χq is the
quadratic character as in Equation 1. In this situation, if x ∈ Pq(a), then ω(x, a) = x/2 is an

element of Fq. Moreover, we have that x = ±
√

4a = ±2
√
a. Now, since n is even,

Dn(x, a) = ω(x, a)n + ω(x, a)
n

=

(
±2
√
a

2

)n
+

(
±2
√
a

2

)n
= 2an/2.

We now establish the following property of elliptic elements.

Proposition 2.11. For all elliptic elements x ∈ Eq(a), we have that ω(x, a)q+1 = a ∈ Fq. In particular,

we have that ω(x, a) = ζ
A+k(q−1)
q2−1 in Fq2 for some integer k.
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Proof. Via the freshman’s dream, we may write ω(x, a)q as

ω(x, a)q =
x+

(√
x2 − 4a

)q
2

,

and we observe that

ω(x, a) =
x−
√
x2 − 4a

2
.

As x is not parabolic, the quantity x2 − 4a is nonvanishing, thus we have that
(
x2 − 4a

)q−1
= 1 in

Fq. As
√
x2 − 4a is not defined over Fq, it is not fixed by the Frobenius endomorphism on Fq2 . This

implies that
(
x2 − 4a

) q−1
2 = −1 in Fq2 . Thus we see that

ω(x, a)q =
x+

(√
x2 − 4a

)q
2

=
x+

(
x2 − 4a

) q−1
2
√
x2 − 4a

2
=
x−
√
x2 − 4a

2
= ω(x, a).

Therefore ω(x, a)q+1 = ω(x, a)ω(x, a) = a.

By Remark 2.10, we have that ω(x, a) = ζcq2−1 for some c. From the observation that ω(x, a)q+1 =

a = ζAq−1 = ζ
(q+1)A
q2−1 , we must have that c(q + 1) ≡ A(q + 1) (mod q2 − 1). That is, c = A + k(q − 1)

for some integer k, which we may assume to lie in the range 1 ≤ k ≤ q + 1, since we only care about
the residue of c modulo q2 − 1. �

We can now state explicitly what each set in the partition of Fq looks like:

Proposition 2.12. The hyperbolic, elliptic, and parabolic sets over the finite field Fq are given by:

Hq(a) =
{
ζcq−1 + ζA−cq−1 : 1 ≤ c ≤ q − 1 and 2c 6≡ A (mod q − 1)

}
,

Eq(a) =
{
ζ
A+k(q−1)
q2−1 + ζ

Aq−k(q−1)
q2−1 : 1 ≤ k ≤ q + 1 and 2k 6≡ A (mod q + 1)

}
,

Pq(a) =

{{
±2a1/2

}
if χq(a) = 1;

∅ if χq(a) = −1.

Proof. For x hyperbolic, we know that ω(x, a) = ζcq−1 for some c by Remark 2.10. We should see for
which c we are getting hyperbolic elements. Since√

x2 − 4a = ω(x, a)− ω̄(x, a),

we can check whether this quantity is defined over Fq (meaning that x2 − 4a is a residue). This is
equivalent to checking that it is fixed under the Frobenius. Note that

ω(x, a)− ω̄(x, a) = ζcq−1 − ζA−cq−1 .

Applying the Frobenius, we see(
ζcq−1 − ζA−cq−1

)q
= ζqcq−1 − ζ

q(A−c)
q−1 = ζcq−1 − ζA−cq−1 .

Thus for any c, we have that ζcq−1 + ζA−cq−1 gives an element for which
√
x2 − 4a ∈ Fq. We should verify

that it is not accidentally producing a parabolic element, i.e. that we are not accidentally getting√
x2 − 4a = 0. This would occur for some c if√

x2 − 4a = ζcq−1 − ζA−cq−1 = 0,

that is, if 2c ≡ A (mod q − 1).
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For elliptic elements, we want to verify that
√
x2 − 4a is not defined over Fq, equivalently that it is

not fixed under the Frobenius. So we want to throw out any k for which(
ζ
A+k(q−1)
q2−1 − ζAq−k(q−1)

q2−1

)
=
(
ζ
A+k(q−1)
q2−1 − ζAq−k(q−1)

q2−1

)q
.

This would give us the equality

ζ
A+k(q−1)
q2−1 − ζAq−k(q−1)

q2−1 = ζ
Aq+k(q2−q)
q2−1 − ζAq

2−k(q2−q)
q2−1

= ζ
Aq+k(1−q)
q2−1 − ζA−k(1−q)

q2−1 .

Rearranging, we see that this is the same as

2ζ
A+k(q−1)
q2−1 = 2ζ

Aq−k(q−1)
q2−1 .

Since 2 is invertible in Fq2 we are left with the congruence

A+ k(q − 1) ≡ Aq − k(q − 1) (mod q2 − 1).

This is equivalent to 2k ≡ A (mod q + 1). So we must omit these k’s out in order to ensure we are
getting an elliptic element. �

We will be interested in the images of the hyperbolic, elliptic, and parabolic sets under the Dickson
polynomial Dn(x, a). In particular if we can understand the images over these sets, as well as their
potential intersection, then we can completely understand im(Dn(x, a)).

Lemma 2.13. [CGCM88, Lemma 8] Let x, y ∈ F×q , and let x = u + a/u and y = v + a/v, where

u ∈ F×q , and v ∈ F×
q2

so that vq+1 = a. Then if un = vn for some n ≥ 0, this implies that

un = an/un = vn = an/vn.

In particular they are all equal to an/2 or −an/2.

This result allows us to restrict the values of any possible overlap in the hyperbolic and elliptic
images.

Proposition 2.14. There are only two possible values for the intersection of the hyperbolic and
elliptic images, namely

Dn (Hq(a), a) ∩Dn (Eq(a), a) ⊆
{
±2an/2

}
.

Proof. Suppose that x ∈ Hq(a) and y ∈ Eq(a) so that Dn(x, a) = Dn(y, a). Then there are some c and
k for which

ω(x, a)n = ζncq−1

ω(y, a)n = ζ
n(A+k(q−1)
q2−1 .

In order to have Dn(x, a) = Dn(y, a), by Proposition 2.6 we have that ω(x, a)n = ω(y, a)n or ω(x, a)n =
ω̄(y, a)n.

In the first case, suppose that ω(x, a)n = ω(y, a)n. Since y is elliptic, we have that ω(y, a)q+1 = a
by Proposition 2.11. Therefore by invoking Lemma 2.13 using u = ω(x, a) and v = ω(y, a), we have

that ω(x, a)n = ω(y, a)n = ±an/2. In particular this implies that

Dn(x, a) = Dn(y, a) = ±2an/2.

In the latter case, if ω(x, a)n = ω̄(x, a)n, we can observe that

ω̄(y, a)q+1 =
aq+1

ω(y, a)q+1
=
aq+1

a
= aq = a.
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Invoking Lemma 2.13 with v = ω̄(y, a), we have then that

ω(x, a)n = ω̄(y, a)n = ±an/2,

and therefore Dn(x, a) = Dn(y, a) = ±2an/2. �

3. Evaluation of the residue sum

As remarked earlier, our strategy for studying the residue sum Sq(Dn(x, a)) will be to investigate
the sum over the hyperbolic, elliptic, and parabolic sets, as well as over their overlaps. To this end,
we introduce some new notation: for any subset B ⊆ Fq, we denote by SBq (Dn(x, a)) the sum over the

distinct elements in Dn(B, a). If C ⊆ Fq is another subset, we denote by SB,Cq (Dn(x, a)) the sum over
distinct elements of Dn(B, a)∩Dn(C, a), and we have similar notation for triple intersections. In this
notation, the total sum will be computed as

Sq(Dn(x, a)) = S
Hq(a)
q (Dn(x, a)) + S

Eq(a)
q (Dn(x, a)) + S

Pq(a)
q (Dn(x, a))

− SHq(a),Eq(a)q (Dn(x, a))− SHq(a),Pq(a)q (Dn(x, a))

− SEq(a),Pq(a)q (Dn(x, a)) + S
Hq(a),Eq(a),Pq(a)
q (Dn(x, a)).

Our preliminary observations about the quantities ω(x, a) as x varies over the hyperbolic and elliptic
sets indicate that elements in Dn(Hq(a), a) and Dn(Eq(a), a) will be able to be characterized using
roots of unity defined over Fq or its quadratic extension Fq2 .

Notation 3.1. We will see that the residue sums Sq(Dn(x, a)) in Theorem 1.2 depend upon various
properties of n, in particular the highest power of 2 dividing n and the order of n in F×q and F×

q2
(which

relates to divisors shared between n and q − 1 and q + 1). To that end, we fix some notation:

d := gcd(n, q − 1) m :=
n

d

δ := gcd (n, q + 1) µ :=
n

δ
.

We will also let 2h denote the highest power of 2 dividing q − 1, 2` denote the highest power of 2
dividing q + 1, and 2r the highest power of 2 dividing q2 − 1.

We remark the following relationship between 2r and the divisors d and δ which will come in handy
throughout our computations.

Proposition 3.2. Let d, δ, h, `, and r be as in Notation 3.1

(1) We have q−1
d is odd if and only if 2h | n.

(2) We have q+1
δ is odd if and only if 2` | n.

(3) Both q−1
d and q+1

δ are odd if and only if 2r−1 | n.
(4) Both n

d and n
δ are even if and only if 2r | n.

Proof. (1) and (2) follow directly from the definition of h and `.

As for (3), we notice that one of q+1
2 or q−1

2 will be odd, and therefore h and ` cannot both be
strictly greater than one. In particular, this tells us that max {h, `} = h + `− 1 = r − 1, from which
the result follows.

For the forward direction of (4), let 2s || n. Then n
d even implies that s > h and n

δ even implies that
s > `. In particular s > max{h, `} = r − 1, and hence s ≥ r.

For the backwards direction of (4), if 2r | n, then since r = h+ ` and h, ` ≥ 1, we have that 2h+1 | n
and 2`+1 | n, implying that both n

d and n
δ are even. �

It will also benefit us to record some parity constraints that can occur on these values. We will refer
back to this result frequently.
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Proposition 3.3. Continuing our notation from above:

(1) Both q−1
d and q+1

δ cannot be even.

(2) If both q−1
d and q+1

δ are odd, then we cannot have both n
d and n

δ odd.

(3) If 2r−1 || n, then n
d and n

δ have opposite parity.

Proof. The first result follows from the fact that q is an odd prime power, hence one of q−1
2 or q+1

2

must be odd. In particular since 2|d and 2 | δ, one of q−1
d and q+1

δ must be odd.

For the second observation, we remark that 4 | (q − 1) or 4 | (q + 1). This implies that either 4 | d
or 4 | δ (since we are assuming both q−1

d and q+1
δ are odd), and therefore 4 | n. However, we must

have that 2 || (q − 1) or 2 || (q + 1), and therefore 2 || d or 2 || δ. In particular there are more powers
of 2 dividing n than divide one of d or δ, and therefore at least one of n

d or n
δ must be even.

For the third observation, we have by Proposition 3.2 that 2r−1 | n is equivalent to both q−1
d and

q+1
δ being odd. However 2r - n means that n

d and n
δ cannot both be even. Via observation (2) of this

proposition, they cannot both be odd, therefore they must have opposite parity. �

3.1. Summing over the hyperbolic and elliptic images. Using the characterization of the hy-
perbolic and elliptic sets in Proposition 2.12, we can understand the hyperbolic and elliptic images,
and therefore their sums.

We first treat the hyperbolic case. Via the Binet formula expansion, we may see that

(4) Dn(Hp(a), a) =

{
ζmcq−1

d

+ ζ
m(A−c)
q−1
d

: 1 ≤ c ≤ q − 1, 2c 6≡ A (mod q − 1)

}
.

We remark that the residue of c modulo q−1
d matters when recording elements in the hyperbolic image,

however the condition 2c 6≡ A (mod q − 1) is not equivalent to the condition 2c 6≡ A (mod q−1
d ). So

we can have elements c so that 2c ≡ A (mod q−1
d ), but 2c 6≡ A (mod q− 1). This is how elements like

±2an/2 can appear in the hyperbolic image. In order to deal with this, we can provide an alternative
description of the hyperbolic image.

Proposition 3.4. The hyperbolic image can be described as

{
ζmcq−1

d

+ ζ
m(A−c)
q−1
d

: 2c 6≡ A mod
q − 1

d

} q−1
d

c=1

∪
{

2ζncq−1 : 2c≡A mod q−1
d

but
2c 6≡A mod q−1

} q−1
d

c=1

Thus to characterize the hyperbolic image, it suffices to understand when these congruences can be
solved. As we see in the following proposition, this depends upon the parity of A and q−1

d , as well as
whether or not d = 2.
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Proposition 3.5. We have that the hyperbolic image Dn(Hq(a), a) is equal to

{
2χq(a)n/dan/2

}
d = q − 1;{

ζmcq−1
d

+ ζ
m(A−c)
q−1
d

} q−1
d

c=1

A odd, q−1
d even;{

ζmcq−1
d

+ ζ
m(A−c)
q−1
d

: c 6≡ 1
2

(
A+ q−1

d

)
mod q−1

d

} q−1
d

c=1

∪
{

2(−1)n/dan/2
}

A odd, q−1
d odd;{

ζmcq−1
d

+ ζ
m(A−c)
q−1
d

: c 6≡ A
2 mod q−1

d

} q−1
d

c=1

A even, q−1
d odd, d = 2;{

ζmcq−1
d

+ ζ
m(A−c)
q−1
d

: c 6≡ A
2 mod q−1

d

} q−1
d

c=1

∪
{

2an/2
}

A even, q−1
d odd, d 6= 2;{

ζmcq−1
d

+ ζ
m(A−c)
q−1
d

: c 6≡ A
2 ,

A
2 + q−1

2d mod q−1
d

} q−1
d

c=1

∪
{
−2an/2

}
A even, q−1

d even, d = 2;{
ζmcq−1

d

+ ζ
m(A−c)
q−1
d

: c 6≡ A
2 ,

A
2 + q−1

2d mod q−1
d

} q−1
d

c=1

∪
{

2an/2, −2an/2
}

A even, q−1
d even, d 6= 2.

Proof. We know that solutions to 2c ≡ A (mod q−1
d ) exist if and only if gcd

(
2, q−1d

)
divides A, and

in this setting there are precisely gcd
(

2, q−1d

)
such solutions.

(1) In the case that d = q − 1, we have that the hyperbolic image is simply {2}. However, since
d = q − 1, we can write n = n

d (q − 1), from which we can see that

an/2 =
(
a
q−1
2

)n
d

= χq(a)n/d.

Since these are both congruent to ±1, they square to 1, so we may rewrite 2 = 2χq(a)n/dan/2.
When discussing potential overlap in the hyperbolic and elliptic images later, it will benefit us
to characterize the hyperbolic image in this a priori more convoluted form.

(2) In this case gcd
(

2, q−1d

)
is even, which does not divide A since it is odd. Thus there are no

solutions.
(3) If A is odd and q−1

d is odd, then there is a unique solution of the form c = 1
2

(
A+ q−1

d

)
+ ` q−1d

for some `. Multiplying this equality by 2 we obtain

2c = A+
q − 1

d
+ 2`

q − 1

d
= A+ (2`+ 1)

q − 1

d
.

We note that (2`+ 1) is odd, while d is always even. Therefore 2`+1
d will never be an integer,

and thus 2c 6≡ A (mod q − 1). Plugging in this c, we obtain

2ζ
µ( 1

2(A+ q−1
d )+` q−1

d )
q−1
d

= 2ζ
µ 1

2(A+ q−1
d )

q−1
d

ζ
µ` q−1

d
q−1
d

= 2ζ
n
2
(A+ q−1

d
)

q−1

= 2ζ
An

2
q−1ζ

q−1
2

n
d

q−1 = 2(−1)n/dan/2.

(4) If A is even and q−1
d is odd, then there is a unique solution, namely c ≡ A

2 (mod q−1
d ). Any

such solution will be an integer of the form c = A
2 + ` q−1d for some `, so we may multiply by 2

to obtain

2c = A+ 2`
q − 1

d
.
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If d = 2, then this solution yields 2c ≡ A (mod q− 1), so we must omit this value. In this case
we see that

Dn(Hq(a), a) =

{
ζmcq−1

d

+ ζ
m(A−c)
q−1
d

: c 6≡ A

2
mod

q − 1

d

} q−1
d

c=1

.

If d 6= 2, then it is not the case that c has to satisfy 2c ≡ A (mod q − 1). This tells us that

Dn(Hq(a), a) =

{
ζmcq−1

d

+ ζ
m(A−c)
q−1
d

: c 6≡ A

2
mod

q − 1

d

} q−1
d

c=1

∪
{

2ζ
mA

2
q−1
d

}
.

Here we compute that ζ
mA

2
q−1
d

= ζ
An

2
q−1 = an/2.

(5) If A is even and q−1
d is even, then there are two solutions, namely c ≡ A

2 mod q−1
d and c ≡

A
2 + q−1

2d mod q−1
d . Let’s look at these two solutions individually.

(a) For the case c ≡ A
2 , we have that c is an integer of the form c = A

2 + ` q−1d . Multiplying by

2 we obtain 2c = A+ 2` q−1d . If d = 2, we have that 2c ≡ A (mod q − 1), so this c yields
a parabolic element.

(b) For the case c ≡ A
2 + q−1

2d , we have that c = A
2 + q−1

2d + ` q−1d for some `. Multiplying by 2
yields

2c = A+ (2`+ 1)
q − 1

d
.

As 2`+ 1 is odd and d is even, this choice of c will never satisfy 2c ≡ A (mod q − 1).

�

Corollary 3.6. The size of the hyperbolic set is:

|Dn(Hq(a), a)| =
⌊
q − 1

2d

⌋
+


1 A · q−1d odd;

1 A even, and d 6= 2;

0 otherwise.

Lemma 3.7. The hyperbolic sum is

S
Hq(a)
q (Dn(x, a)) =



2χq(a)n/dan/2 d = q − 1;

0 A odd, q−1
d even;

(−1)n/dan/2 A odd, q−1
d odd;

−an/2 A even, q−1
d odd, d = 2;

an/2 A even, q−1
d odd, d 6= 2;

−2an/2 A even, q−1
d even, d = 2;

0 A even, q−1
d even, d 6= 2.

Proof. We may sum over the hyperbolic image as computed in Proposition 3.5 to obtain

S
Hq(a)
q (Dn(x, a)) =



2χq(a)n/dan/2 d = q − 1;

0 A odd, q−1
d even;

(−1)n/dan/2 A odd, q−1
d odd;

−an/2 A even, q−1
d odd, d = 2;

an/2 A even, q−1
d odd, d 6= 2;

−an/2 + (−1)n/dan/2 A even, q−1
d even, d = 2;

an/2 + (−1)n/dan/2 A even, q−1
d even, d 6= 2.

In the latter two cases, n
d is odd since q−1

d is even, yielding the statement of the proposition. �
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A similar analysis can be used to characterize the elliptic image. We observe via Proposition 2.12
and the Binet formula that the elliptic image is
(5)

Dn(Ep(a), a) =

{
ζ
n(A+k(q−1))
q2−1 + ζ

n(Aq−k(q−1))
q2−1 : 1 ≤ k ≤ q + 1

δ
and 2k 6≡ A mod q + 1

}
=

{
ζnAq2−1ζ

µk
q+1
δ

+ ζnAq
q2−1ζ

−µk
q+1
δ

: 1 ≤ k ≤ q + 1

δ
, 2k 6≡ A (mod

q + 1

δ
)

}
∪
{

2ζnAq2−1ζ
µk
q+1
δ

: 2k≡A mod q+1
δ

but
2k 6≡A mod q+1

}
.

Again we may better characterize this in various cases.

Proposition 3.8. We have that the elliptic image Dn(Eq(a), a) is equal to

{
2χq(a)n/δan/2

}
δ = q + 1;{

ζnAq2−1ζ
µk
q+1
δ

+ ζnAq
q2−1ζ

−µk
q+1
δ

} q+1
δ

k=1

A odd, q+1
δ even;{

ζnAq2−1ζ
µk
q+1
δ

+ ζnAq
q2−1ζ

−µk
q+1
δ

: k 6= 1
2

(
A+ q+1

δ

)} q+1
δ

k=1

∪
{

2(−1)n/δan/2
}

A odd, q+1
δ odd;{

ζnAq2−1ζ
µk
q+1
δ

+ ζnAq
q2−1ζ

−µk
q+1
δ

: k 6= A
2

} q+1
δ

k=1

A even, q+1
δ odd, δ = 2;{

ζnAq2−1ζ
µk
q+1
δ

+ ζnAq
q2−1ζ

−µk
q+1
δ

: k 6= A
2

} q+1
δ

k=1

∪
{

2an/2
}

A even, q+1
δ odd, δ 6= 2;{

ζnAq2−1ζ
µk
q+1
δ

+ ζnAq
q2−1ζ

−µk
q+1
δ

: k 6= A
2 ,

A
2 + q+1

2δ

} q+1
δ

k=1

∪
{
−2an/2

}
A even, q+1

δ even, δ = 2;{
ζnAq2−1ζ

µk
q+1
δ

+ ζnAq
q2−1ζ

−µk
q+1
δ

: k 6= A
2 ,

A
2 + q+1

2δ

} q+1
δ

k=1

∪
{

2an/2,−2an/2
}

A even, q+1
δ even, δ 6= 2.

Proof. We can solve for the congruence 2k ≡ A mod q+1
δ .

(1) When δ = q+ 1, we can write n = n
δ (q+ 1), from which we see that any element in the elliptic

image takes the form

ζ
n(A+k(q−1))
q2−1 + ζ

n(Aq−k(q−1))
q2−1 = 2ζ

n
δ
A(q+1)

q2−1 = 2an/δ.

We remark that if δ = q + 1, we may write

an/2 =
(
an/δ

)δ/2
=
(
an/δ

) q+1
2

= an/δ
(
an/δ

) q−1
2

= an/δχq(a
n/δ).

We may verify that χq(a
n/δ) = χq(a)n/δ, from which we compute

an/δ = χq(a)n/δan/2.

(2) In this case there are no solutions to 2k ≡ A (mod q+1
δ ).

(3) In this case, there is a unique solution, namely an integer of the form k = 1
2

(
A+ q+1

δ

)
+ ` q+1

δ

for some `. Multiplying by 2 we get

2k = A+ (2`+ 1)
q + 1

δ
.

Since δ is even, we have that 2`+1
δ will never be an integer, so such a k will not satisfy 2k ≡ A

(mod q + 1).

(4) There is a unique solution, k ≡ A
2 (mod q+1

δ ). This will be some integer of the form

k =
A

2
+ `

q + 1

δ
.
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Multiplying by 2, we have that

2k = A+ 2`
q + 1

δ
.

Thus we have to break into cases based on whether δ = 2 or δ 6= 2.
(5) We see that when k = A

2 + q+1
2δ , that the associated element in the elliptic image is

ζ
n(A+(A2 + q+1

2δ )(q−1))
q2−1 + ζ

n(Aq−(A2 + q+1
2δ )(q−1))

q2−1 = ζ
nA q+1

2

q2−1

(
ζ
n
δ
q2−1

2

q2−1 + ζ
−n
δ
q2−1

2

q2−1

)
= an/2

(
(−1)n/δ + (−1)−n/δ

)
.

Since q+1
δ is even, we have that n/δ is odd, so the above reduces to −2an/2.

�

Corollary 3.9. The size of the elliptic set is:

|Dn(Eq(a), a)| =
⌊
q + 1

2δ

⌋
+


1 A · q+1

δ odd;

1 A even, and δ 6= 2;

0 otherwise.

Lemma 3.10. The elliptic sum is

S
Eq(a)
q (Dn(x, a)) =



2χq(a)n/δan/2 δ = q + 1;

0 A odd, q+1
δ even;

(−1)n/δan/2 A odd, q+1
δ odd;

−an/2 A even, q+1
δ odd, δ = 2;

an/2 A even, q+1
δ odd, δ 6= 2;

−2an/2 A even, q+1
δ even, δ = 2;

0 A even, q+1
δ even, δ 6= 2.

Proof. We may sum over the elliptic image to get

S
Eq(a)
q (Dn(x, a)) =



2χq(a)n/δan/2 δ = q + 1;

0 A odd, q+1
δ even;

(−1)n/δan/2 A odd, q+1
δ odd;

−an/2 A even, q+1
δ odd, δ = 2;

an/2 A even, q+1
δ odd, δ 6= 2;

−an/2 + (−1)n/δan/2 A even, q+1
δ even, δ = 2;

(−1)n/δan/2 + an/2 A even, q+1
δ even, δ 6= 2.

In the latter two cases, since q+1
δ is even and coprime to n/δ, we have that n/δ is odd, which gives

the statement of the lemma. �

In order to characterize potential overlaps in the images of the hyperbolic, elliptic, and parabolic
sets, it will be easier to break into the case of a a residue and non-residue.

3.2. Overlaps in the non-residue case. Via Proposition 2.14, we know that any overlap in the
hyperbolic and elliptic images must be a subset of

{
±2an/2

}
, and similarly we know the parabolic

image to be
{

2an/2
}

when a is a residue, and empty otherwise. So it suffices to determine when either

of ±2an/2 lie in the hyperbolic and elliptic image.

We remark however that these images will occur in the hyperbolic image precisely when the second
set in Equation 4 is nonempty, therefore we can understand these images via the work already done
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in Proposition 3.5. Similarly for the elliptic case we have solved for when ±2an/2 lies in the elliptic
image in Proposition 3.8. We can summarize these findings as follows.

Proposition 3.11. If a is a non-residue, then the elliptic and hyperbolic overlap is the following:

Dn(Hq(a), a) ∩Dn(Eq(a), a) =

{{
2an/2

}
2r | n;

∅ otherwise.

Proof. Via Proposition 3.5 when A is odd, we will have 2(−1)n/dan/2 in the hyperbolic image if q−1
d is

odd (including when q−1
d = 1). Similarly via Proposition 3.8, we will have 2(−1)n/δan/2 in the elliptic

image when q+1
δ is odd (including when q+1

δ = 1). Therefore in order to have any overlap we must

have that the parities of n
d and n

δ coincide. Since both q−1
d and q+1

δ are odd, via Proposition 3.3 in
order for the parities of n

d and n
δ to agree, they must both be even. This condition is equivalent to

2r | n by Proposition 3.2. �

In the case where A is odd, we can decompose the hyperbolic sum by making the d = q − 1 case a
separate condition as follows:

S
Hq(a)
q (Dn(x, a)) =


2(−1)n/dan/2 d = q − 1;

0 q−1
d even;

(−1)n/dan/2 q−1
d odd, 6= 1,

=

{
(−1)n/dan/d q−1

d odd;

0 q−1
d even,

+

{
(−1)n/dan/2 d = q − 1;

0 else.

A similar argument shows that

S
Eq(a)
q (Dn(x, a)) =

{
(−1)n/δan/2 q+1

δ odd;

0 q+1
δ even,

+

{
(−1)n/δan/2 δ = q + 1;

0 else.

Lemma 3.12. Let A be odd. Then the sum is given as

Sq(Dn(x, a)) =

{
0 2r−1 | n;

−(−1)
n
d
+n
δ an/2 2r−1 - n,

+

{
(−1)n/dan/2 d = q − 1;

0 else,
+

{
(−1)n/δan/2 δ = q + 1;

0 else.

Proof. We can combine the three conditions:{
(−1)n/dan/d q−1

d odd;

0 q−1
d even,

+

{
(−1)n/δan/2 q+1

δ odd;

0 q+1
δ even,

−

{
2an/2 n

d ,
n
δ even;

0 else.

Rewriting these conditions using h, `, and r = h+ `, we have{
(−1)n/dan/d 2h | n;

0 2h - n,
+

{
(−1)n/δan/2 2` | n;

0 2` - n,
−

{
2an/2 2h+` | n;

0 2h+` - n.

Combining conditions, we can see that this simplifies to
0 2r | n;

(−1)n/dan/2 + (−1)n/δan/2 2r−1 || n;

(−1)n/dan/2 2r−1 - n, ` > h;

(−1)n/δan/2 2r−1 - n, h > `.

Via Proposition 3.3, when 2r−1 || n, we have that n
d and n

δ have opposite parities, so we can merge

the 2r−1 || n and 2r | n conditions.
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When ` > h, we have that ` = r − 1, so 2r−1 - n is equivalent to q+1
δ being even, which implies n

δ is
odd. Similarly in the last case, n

d is odd, so we can merge the last two conditions. This gives{
0 2r−1 | n;

−(−1)
n
d
+n
δ an/2 2r−1 - n.

Adding back the d = q − 1 and δ = q + 1 conditions, we obtain the desired statement. �

3.3. Overlaps: the residue case. In the residue setting, the parabolic image is precisely {2an/2}.
Thus we need to study when 2an/2 can lie in the hyperbolic and elliptic images in order to understand
when they admit overlap with the parabolic image.

We can begin with the hyperbolic-elliptic overlap. We note that in almost all the cases in which
they have overlap, the number at which they overlap is 2an/2, which is parabolic. In particular, when
this occurs, we will have

S
Hq(a),Eq(a)
q (Dn(x, a))− SHq(a),Eq(a),Pq(a)q (Dn(x, a)) = 0.

We note that this difference will only ever be nonzero when −2an/2 lies in both the hyperbolic and
elliptic images. However this cannot occur.

Proposition 3.13. Let a be a residue. Then

S
Hq(a),Eq(a)
q (Dn(x, a))− SHq(a),Eq(a),Pq(a)q (Dn(x, a)) = 0.

Proof. We see that in the residue case, χq(a) = 1. So −2an/2 can only lie in the hyperbolic image

when q−1
d even, while −2an/2 can only lie in the elliptic image when q+1

δ is even. However these both

can’t simultaneously occur by Proposition 3.3. Thus any hyperbolic-elliptic overlap occurs at 2an/2

which therefore is parabolic as well. �

We can easily characterize the hyperbolic-parabolic and elliptic-parabolic overlaps by observing
when 2an/2 lies in the hyperbolic and elliptic images.

Proposition 3.14. Let a be a residue. Then

S
Hq(a),Pq(a)
q (Dn(x, a)) =

{
2an/2 d 6= 2;

0 otherwise.

Proposition 3.15. Let a be a residue. Then

S
Eq(a),Pq(a)
q (Dn(x, a)) =

{
2an/2 δ 6= 2;

0 otherwise.

Now we can characterize the entire sum by combining these sums and their overlaps. Before doing
so, we can begin to cancel some of the sums with others. First we can combine the elliptic sum with
the elliptic-parabolic overlap:

S
Eq(a)
q (Dn(x, a))− SEq(a),Pq(a)q (Dn(x, a)) =



2an/2 δ = q + 1;

−an/2 q+1
δ odd, δ = 2;

an/2 q+1
δ odd, δ 6= 2;

−2an/2 q+1
δ even, δ = 2;

0 q+1
δ even, δ 6= 2,

−

{
2an/2 δ 6= 2;

0 otherwise,

=


0 δ = q + 1;

−an/2 q+1
δ odd, 6= 1;

−2an/2 q+1
δ even,



16 BRAZELTON, HARRINGTON, LITMAN, AND WONG

=

{
−an/2 q+1

δ odd;

−2an/2 q+1
δ even,

+

{
an/2 δ = q + 1;

0 else.

Combining the hyperbolic and the hyperbolic-parabolic overlap we see

S
Hq(a)
q (Dn(x, a))− SHq ,(a)Pq(a)q (Dn(x, a)) =



2an/2 d = q − 1;

−an/2 q−1
d odd, d = 2;

an/2 q−1
d odd, d 6= 2;

−2an/2 q−1
d even, d = 2;

0 q−1
d even, d 6= 2,

−

{
2an/2 d 6= 2;

0 otherwise,

=


0 d = q − 1;

−an/2 q−1
d odd, 6= 1;

−2an/2 q−1
d even,

=

{
−an/2 q−1

d odd;

−2an/2 q−1
d even,

+

{
an/2 d = q − 1;

0 else.

Lemma 3.16. Let a be a residue. Then

Sq(Dn(x, a)) =

{
0 2r−1 | n;

−an/2 2r−1 - n,
+

{
an/2 δ = q + 1;

0 else,
+

{
an/2 d = q − 1;

0 else.

Proof. We first combine the conditions{
−an/2 q+1

δ odd;

−2an/2 q+1
δ even,

+

{
−an/2 q−1

d odd;

−2an/2 q−1
d even,

=

{
−2an/2 2r−1 | n;

−3an/2 else.

Adding back 2an/2 from the parabolic sum and the d = q − 1 and δ = q + 1 conditions yields the
statement of the theorem. �

Combining Lemma 3.12 and Lemma 3.16 yields the main theorem of the paper.

3.4. Examples. A priori, in order to totally characterize the sum of a family of Dickson polynomials,
we must understand the quadratic character of a, whether (q − 1), (q + 1), or 2r−1 divide n, and the
parities of n

d and n
δ . In the case of the Lucas polynomials Ln(x) = Dn(x, a), many of these conditions

coalesce — for example the quadratic character of −1 is dependent upon the residue of our prime
modulo four, which also determines possible parities of n

d and n
δ . In fact, modulo a fixed prime,

knowledge of d and δ alone determines the residue sum.

Example 3.17. As in Figure 1, consider when p = 7. In this case there are a very limited number
of possibilities for d and for δ. Since the values d and δ completely determine S7(Ln), we provide the
following table.

Figure 1. Possible values for S7(Ln).

d δ S7(Ln)

2 2 1
2 4 1
2 8 -1

d δ S7(Ln)

6 2 2
6 4 2
6 8 0

To provide an example when p ≡ 1 (mod 4), we can write an analogous table for p = 29, although
as expected it is much larger. Possible even values for d = gcd(n, 28) are d ∈ {2, 4, 14, 28}, while
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δ = gcd(n, 60) must be even as well, and thus lies in δ ∈ {2, 4, 6, 10, 12, 20, 30, 60}. However we remark
that as 28 and 60 are both divisible by 4, we have that 4 | d if and only if 4 | δ, which gives us a
restriction on the possible pairs that can show up. This yields the following table.

Figure 2. Possible values for S29(Ln).

d δ S29(Ln)

2 2 1
2 6 1
2 10 1
2 30 0

d δ S29(Ln)

4 4 0
4 12 0
4 20 0

.

d δ S29(Ln)

14 2 1
14 6 1
14 10 1
14 30 0

d δ S29(Ln)

28 4 1
28 12 1
28 20 1

.

Example 3.18. As another example, let Tn(x) = cos(n arccos(x)) denote the nth Chebyshev polyno-
mial. It is well known that these are related to the Dickson polynomials for a = 1 via the equality

Dn(2x, 1) = 2Tn(x).

In particular this implies that for odd characteristic we have

Sq(Tn(x)) =
1

2
Sq(Dn(x, 1)).

Invoking Theorem 1.2, we may provide a characterization of this sum. As in the Lucas case, it admits
an extremely constrained number of possible values. We may verify for all n and q that

Sq(Tn(x)) ∈
{
±1

2
, 0, 1

}
.

4. Further Directions and Conclusion

One natural direction to follow is to find other two step recurrences for which the above techniques
can be employed. If one defines the polynomials Pn(x) recursively by

Pn(x) = Ax · Pn−1(x) +B · Pn−2(x),

given initial conditions

P0(x) = C and P1(x) =
AC

2
x,

where A,B ∈ Z and C is an even integer, then Pn(x) shares many of the same properties with the
Dickson polynomials Dn(x, a). In particular, Pn(x) is of degree n for each n, is odd for n odd and
even for n even, and admits the following Binet formula expansion:

Pn(x) =
C

2
(α(x)n + β(x)n) ,

where α(x) =
Ax+
√

(Ax)2+4B

2 and β(x) =
Ax−
√

(Ax)2+4B

2 . By studying the quadratic character of

A2x2 + 4B, we obtain sets akin to the hyperbolic, elliptic, and parabolic from above. If we set
A = B = 1, then Pn(x) = C

2 Ln(x) and the values for Sq(Pn) are in the set
{−C

2 , 0, C2 , C
}

.

Another family of interest would be the Fibonacci polynomials, given by the initial conditions
F1(x) = 1, F2(x) = x, and the recurrence relation

Fn(x) = x · Fn−1(x) + Fn−2(x).

Due to the discrepancy between the indexing conventions on Dickson polynomials versus Fibonacci
polynomials, the Fibonacci polynomials of even degree will always be odd, and hence Sp(F2n) = 0 for
all p and n. An investigation of Sp(Fn) at the prime 7 when n is odd displays that sums over residues
of Fibonacci polynomials are far less constrained than their Lucas counterparts.
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Figure 3. Investigation of S7(F2n−1) for 1 ≤ n ≤ 40.

n S7(Fn)

1 1
3 4
5 3
7 0
9 5
11 3
13 6
15 6

n S7(Fn)

17 1
19 6
21 3
23 0
25 0
27 3
29 6
31 1

n S7(Fn)

33 6
35 6
37 3
39 5
41 0
43 3
45 4
47 1

n S7(Fn)

49 1
51 4
53 3
55 0
57 5
59 3
61 6
63 6

n S7(Fn)

65 1
67 6
69 3
71 0
73 0
75 3
77 6
79 1

An interesting direction of research would be to classify these sums in an analogous procedure to that
presented in this paper, and begin to characterize the size of the image sets of Fibonacci polynomials
modulo p. We observe that there is some (p2 − 1)-fold periodicity in this table which is analogous to

that observed for the Dickson polynomials. These values are also palindromic about p2−1
2 , which in

the Dickson polynomials is explained by replacing n by p2 − 1− n in Theorem 1.2.
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