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Abstract. We introduce the CpMackeyFunctors package for Macaulay2, which allows for computations with

Mackey functors over a cyclic group of prime order.

1. Introduction

Mackey functors are algebraic objects which encode abstract induction and restriction operations parame-
terized by subgroups of a finite group G. These first arose in representation theory as an axiomatic framework
for induction theorems for representation rings [Gre71, Dre73], but have since found applications to a wide
range of contexts involving finite group actions. Among other examples, Mackey functors appear in nature in
the following structures:

▷ group (co)homology and Tate cohomology of G-modules,
▷ the Bredon equivariant (co)homology of G-spaces [May96, Chapter XIII],
▷ algebraic K-theory of group rings [Oli88, Chapter 11] or of rings with G-action [Bra22],
▷ class groups, Mordell–Weil groups, and Shafarevich–Tate groups associated to G-Galois extensions of

number fields (where they are often known as modulations) [NSW08, BB04], and
▷ Grothendieck–Witt rings of quadratic forms [CG20].

We highlight that many of these examples fall within the realm of equivariant stable homotopy theory, where
it has become standard to define invariants valued in Mackey functors. The standard analogy is that Mackey
functors play the role that abelian groups do in nonequivariant algebraic topology. Just as calculations in
algebraic topology frequently necessitate homological algebra, the development of homological algebra for
Mackey functors is expected to have computational consequences in the equivariant setting.

In more detail, Mackey functors for a fixed group G form a closed symmetric monoidal abelian category, so
it is possible to make sense of familiar notions such as projective resolutions, Tor, and Ext therein. However,
these structures are difficult to access in concrete calculations, and all such computations are currently done
by hand.

In the package CpMackeyFunctors, we remedy this by implementing Mackey functors for cyclic groups of
prime order and the aforementioned constructions. To our knowledge, this is the first computer package for
working with Mackey functors, and we hope it will prove useful throughout equivariant mathematics.

1.1. Acknowledgments. This work was carried out at the UW-Madison Macaulay2 Workshop in summer
2025 (DMS-2508868). We are grateful to the NSF and the university for their support. The first-named
author is supported by NSF DMS-230324. The second-named author was partially supported by NSF grant
DMS-2135960. The fifth-named author was partially supported by NSF grant DMS-2052977.

2. Mackey functors and homomorphisms

For a finite group G, there are many equivalent definitions of a G-Mackey functor. Perhaps the most
concise, due to Lindner [Lin76], is stating that a Mackey functor is a coproduct-preserving functor from the
category of spans of finite G-sets to abelian groups:

MackG := Fun⊕(Span(FinG),Ab).

Since every finite G-set decomposes into a direct sum of transitive ones, it suffices to specify the values of a
Mackey functor on transitive G-sets, which are all torsors for G/H for some subgroup H ≤ G, well-defined
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up to conjugacy. This leads to a finite amount of data. In particular when the group is cyclic of prime order,
the definition is very concise.

Definition 2.1. Let p be a prime number. A Cp-Mackey functor M is the data of two abelian groups
M(Cp/e) (called the underlying module) and M(Cp/Cp) (called the fixed module), together with restriction,
transfer, and conjugation homomorphisms of the form

res : M(Cp/Cp) → M(Cp/e)

tr : M(Cp/e) → M(Cp/Cp)

conj : M(Cp/e) → M(Cp/e),

subject to the following axioms:

(1) conj ◦ res = res and tr ◦ conj = tr
(2) conj is an automorphism of order dividing p
(3) For each x ∈ M(Cp/e) we have

res(tr(x)) =

p−1∑
i=0

conji(x).

In this package, we encode a Cp-Mackey functor as a new type, called CpMackeyFunctor. It is a
hash table encoding the data of the prime, the underlying and fixed modules, and the three homo-
morphisms (restriction, transfer, and conjugation). To create a new Mackey functor, the user can call
makeCpMackeyFunctor(p,R,T,C). This takes in four pieces of data, namely the prime p and the three
homomorphisms res, tr, and conj. For example, we can construct a very simple Mackey functor as follows:

Computation 2.2.

i1 : needsPackage "CpMackeyFunctors";

i2 : M:=makeCpMackeyFunctor(2,id_(ZZ^1),matrix({{2}}),id_(ZZ^1))

o2 = Res : | 1 |

1 ---------------> 1 - Conj : | 1 |

ZZ <--------------- ZZ <

Tr : | 2 |

o2 : CpMackeyFunctor

Notation 2.3. The data of a Cp-Mackey functor is often concisely encoded in what is called a Lewis diagram,
which displays the five pieces of data in the following shape:

fixed

underlying

restrictiontransfer

conjugation

For example, the C2-Mackey functor in Computation 2.2 can be described by the following Lewis diagram

Z

Z
12

1

2.1. Examples of Cp-Mackey functors. We highlight some general examples of Cp-Mackey functors, as
well as their method implementations in our package.
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Example 2.4. The zero Mackey functor is given by the following Lewis diagram:

0

0

This can be constructed as makeZeroMackeyFunctor(p) for any prime p.

Example 2.5. There are a number of constructions of Cp-Mackey functors out of a single abelian group,
possibly with an action by Cp.

(1) Given any Cp-module M , we write c : M → M for the action of a chosen generator of Cp. We can
write down thefixed point Mackey functor of M , denoted FP(M), via the Lewis diagram:

MCp

M

incl.
∑p−1

i=0 ci

c

The restriction map is the inclusion, the transfer map is summation over orbits, and the conjugation
map is c : M → M . This is implemented as makeFixedPointMackeyFunctor(p,c).

(2) Given any Cp-module M , we can define the orbits Mackey functor via the Lewis diagram:

M/Cp

M

∑p−1
i=0 ciquot.

c

This is implemented as makeOrbitMackeyFunctor(p,c).
(3) Given a prime p and an abelian group M , there is a Cp-Mackey functor that is zero on the underlying

level, and M on the fixed level:

M

0

00

0

This can be constructed as makeZeroOnUnderlyingMackeyFunctor(p,M).

Example 2.6 (Free Mackey functors). There are free Mackey functors which play a distinguished role in our
construction of projective resolutions. We describe the sense in which they are “free” in Proposition 2.11.

(1) The Burnside Mackey functor for a finite group G assigns to G/H the Grothendieck group of finite
H-sets. For G = Cp, this is given by the following Lewis diagram:

Z⊕ Zt

Z

rest·

1

where Z ⊕ Zt res−−→ Z is the map a + bt 7→ a + bp. For any prime p, this can be constructed as
makeBurnsideMackeyFunctor(p) or makeFixedFreeMackeyFunctor(p).
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(2) We can also take the free Cp=Mackey functor on an underlying generator, defined as

Z

Z[Cp]

γ·

where γ is a generator for Cp. The restriction sends 1 7→
∑p−1

i=0 γi, and the transfer sends γi 7→ 1 for
all i. This can be constructed via makeUnderlyingFreeMackeyFunctor(p). We give this Mackey
functor the special notation B.

Example 2.7 (Examples from representation theory). For a field k, there is a G-Mackey functor which assigns
to G/H the Grothendieck group of H-representations over k, where the transfer maps encode induction of
representations and the restriction maps encode restriction of representations. Our package includes such
examples for G = Cp and k = R or k = C.

(1) The real representation Cp-Mackey functor for p odd has underlying module Z with trivial conjugation
action, and fixed module Z{λ0, λ1, . . . , λ(p−1)/2} where λi is the two-dimensional real representation
given by rotation by (2πi)/p radians for i > 0 and λ0 is the trivial one-dimensional representation.
The restriction map is defined by λi 7→ 2 for i > 0 and λ0 7→ 1. The transfer map is defined by

x 7→ x ·
∑(p−1)/2

0 λi. Altogether, this Cp-Mackey functor is given by the following Lewis diagram:

Z{λ0, λ1, . . . , λ(p−1)/2}

Z

resx 7→x·
∑(p−1)/2

0 λi

1

If p is even, then the real representation Mackey functor coincides with the complex representation
Mackey functor as described in the next item.

This Mackey functor can be constructed as makeRealRepresentationMackeyFunctor(p).
(2) The complex representation Cp-Mackey functor has underlying module Z with trivial conjugation

action, and fixed module Z{λ0, λ1, . . . , λp−1} where λi is the one-dimensional complex representation

given by multiplication by e2πi/p. The restriction map is defined by λi 7→ 1. The transfer map is
defined by x 7→ x · (

∑p−1
0 λi). Altogether, this Cp-Mackey functor is given by the following Lewis

diagram:

Z{λ0, λ1, . . . , λp−1}

Z

λi 7→1x 7→x·
∑p−1

0 λi

1

This Mackey functor can be constructed as makeComplexRepresentationMackeyFunctor(p).

2.2. Mackey functor homomorphisms.

Definition 2.8. A morphism of Cp-Mackey functors f : M → N consists of a pair of homomorphisms
(fCp/e, fCp/Cp

)

M(Cp/Cp) N(Cp/Cp)

M(Cp/e) N(Cp/e)

fCp/Cp

res restr

conj

fCp/e

tr

conj

such that for all x ∈ M(Cp/e) and y ∈ M(Cp/Cp) we have
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(1) fCp/e(conj(x)) = conj(fCp/e(x));
(2) fCp/e(res(y)) = res(fCp/Cp

(y));
(3) fCp/Cp

(tr(x)) = tr(fCp/e(x)).

In other words, f commutes with res, tr, and conj.

We implement a type MackeyFunctorHomomorphism, which is again a hash table. It encodes the homo-
morphisms on the underlying and the fixed modules, and the source and target Mackey functors can be
extracted.

Example 2.9. If M is a Mackey functor, we obtain its identity homomorphism as id M.

Example 2.10. If f : M → N and g : N → Q are composable Mackey functor homomorphisms, their
composite can be obtained as g*f.

2.3. The category of Mackey functors. Mackey functors and Mackey functor homomorphisms form a
category, denoted MackCp

. By sending a Mackey functor to its fixed or underlying module, we obtain natural
functors to abelian groups. A crucial fact is that these functors are corepresentable.

Proposition 2.11. Let p be a prime number.

(1) The functor MackCp
→ Ab sending M to its fixed module M(Cp/Cp) is corepresented by the Burnside

Mackey functor A (Example 2.6(1)), in the sense that this forgetful functor is naturally isomorphic
to the functor

HomMackCp
(A,−) : MackCp

→ Ab.

(2) The functor MackCp
→ Ab sending M to its underlying module M(Cp/e) is corepresented by the

free Mackey functor on an underlying generator B (Example 2.6(2)), in the sense that this forgetful
functor is naturally isomorphic to the functor

HomMackCp
(B,−) : MackCp

→ Ab.

Since epimorphisms in Mackey functors are exactly levelwise epimorphisms, this implies that both A and
B are projective in the category MackCp

. Moreover, the Yoneda lemma implies that every Mackey functor
admits a surjection from some (possibly infinite) direct sum of copies of A⊕B. Thus A⊕B is a projective
generator for MackCp – this fact will be very helpful to us, both for constructing random Mackey functors
and in construction resolutions. Before getting to this, we discuss the abelian category structure on MackCp

.

3. Homological algebra of Cp-Mackey functors

3.1. The abelian category of Mackey functors. Given any two Cp-Mackey functor homomorphisms
f, g : M → N , we can add them by simply adding the module homomorphisms on the fixed and underlying
levels. This gives the set HomMackCp

(M,N) the structure of an abelian group; in particular we might say
that MackCp

is pre-additive. Additionally, we can take direct sums of two Mackey functors. If M and N are
Cp-Mackey functors, their sum (implemented as M++N) is defined as

M(Cp/Cp)

M(Cp/e)

restr

conj


⊕


N(Cp/Cp)

N(Cp/e)

restr

conj


=

M(Cp/Cp)⊕N(Cp/Cp)

M(Cp/e)⊕N(Cp/e)

res 0

0 res

tr 0

0 tr



conj 0

0 conj



.



6 T. BRAZELTON, D. CHAN, B. MUDRAK, B. SPITZ, C. VOGELI, C. WANG, M.R. ZENG, AND S. ZOTINE

Finally, we have a well-defined kernel and cokernel of any Mackey functor homomorphism f : M → N ,
implemented as ker f and coker f, respectively, and defined as:

ker(fCp/Cp
) coker(fCp/Cp

)

ker f = ker(fCp/e) coker f = coker(fCp/e)

res restr

conj

res

conj

Altogether, MackCp
has the structure of an abelian category. Moreover, we will soon see that it is a closed

symmetric monoidal abelian category, which will allow us to define Ext and Tor groups therein. Before doing
so, we discuss how the structures discussed so far can be used to construct random Mackey functors.

3.2. Random Mackey functors and homomorphisms. Every Cp-Mackey functor M can be written as
the cokernel of some map between projective Mackey functors. In particular, we have an exact sequence

A⊕k1 ⊕Bk2 → A⊕ℓ1 ⊕Bℓ2 → M → 0.

Therefore to construct a “random finitely generated Cp-Mackey functor”, it suffices to pick random integers
(k1, k2, ℓ1, ℓ2), construct a random map of the form above, then take its cokernel. By corepresentability

(Proposition 2.11) this is equivalent to picking k1 random elements in (A⊕ℓ1 ⊕B⊕ℓ2)(Cp/Cp) and k2 random

elements in (A⊕ℓ1 ⊕ B⊕ℓ2)(Cp/e). Since Macaulay2 already includes functionality for choosing random
elements of finitely generated modules, this is easy to implement.

This strategy is implemented in our method makeRandomCpMackeyFunctor, which takes as input a prime
number p and creates a random Cp-Mackey functor.

Computation 3.1.

i2 : rand1 = makeRandomCpMackeyFunctor 3

o2 = Res : | 62 |

cokernel | 65 | ----------------> cokernel | 2015 | - Conj : | 521 |

<---------------- <

Tr : | -1 |

o2 : CpMackeyFunctor

i3 : rand2 = makeRandomCpMackeyFunctor 3

o3 = Res : | -86 |

cokernel | 135 | -----------------> cokernel | 1935 | - Conj : | -179 |

<----------------- <

Tr : | 57 |

o3 : CpMackeyFunctor

With a similar method, we can use makeRandomMackeyFunctorHomomorphism to make a random homo-
morphism between rand1 and rand2.

Computation 3.2.

i4 : f = makeRandomMackeyFunctorHomomorphism(rand1, rand2)

o4 = fix : | -27 |

cokernel | 135 | <------------------ cokernel | 65 |

^ | ^ |

| | | |

| v | v

cokernel | 1935 | <------------------ cokernel | 2015 |

^ | und : | -774 | ^ |

- -

o4 : MackeyFunctorHomomorphism
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3.3. The symmetric monoidal structure. The category MackCp has a closed symmetric monoidal
structure, defined by the box product

−⊠− : MackCp ×MackCp → MackCp .

Definition 3.3. Given two Cp-Mackey functors M and N , their box product, denoted M ⊠N , is defined as
the Mackey functor(

(M(Cp/Cp)⊗N(Cp/Cp))⊕ (M(Cp/e)⊗N(Cp/e))
)
/∼

M(Cp/e)⊗N(Cp/e)

[a⊗b,c⊗d]7→res(a)⊗res(b)+
∑p−1

i=0 conji(c)⊗conji(d)x⊗y 7→[0,x⊗y]

conj⊗conj

where ∼ is the congruence generated by

(tr(x)⊗ b, 0) ∼ (0, x⊗ res(b))

(a⊗ tr(y), 0) ∼ (0, res(a)⊗ y)

(0, x⊗ y) ∼ (0, conj(x)⊗ conj(y)).

The box product of two Mackey functors can be computed as boxProduct(M,N) or as M**N, as in the
following example. Sometimes the Mackey functors and homomorphisms we obtain can be quite large. The
prune method returns a smaller isomorphic presentation of the Cp-Mackey functor or a homomorphism by
computing the minimal length representatives of the three structural maps.

Computation 3.4.

i5 : prune(rand1 ** rand2)

o5 = Res : | 2 |

cokernel | 5 0 0 0 0 0 | ----------------> cokernel | 5 0 | - Conj : | 1 |

<---------------- <

Tr : | -1 |

o5 : CpMackeyFunctor

Proposition 3.5 (Properties of the box product).

(1) We have natural isomorphisms A⊠M ∼= M ∼= M ⊠A for any M ∈ MackCp . That is, the Burnside
Mackey functor A is the unit for the symmetric monoidal structure on MackCp

defined by the box
product.

(2) For any M,N ∈ MackCp
we have an isomorphism M ⊠N ∼= N ⊠M , natural in both M and N , such

that the composite M ⊠N ∼= N ⊠M ∼= M ⊠N is the identity.

More concisely, we often say that the box product defines a symmetric monoidal structure on MackCp
.

It turns out that MackCp
is closed symmetric monoidal in the sense that the box product participates in a

“tensor-hom” adjunction.

Definition 3.6. Given two Cp-Mackey functors M and N , we define their internal hom, denoted [M,N ] ∈
MackCp

, as the following Mackey functor:

HomMackCp
(M,N)

Hom(M(Cp/e), N(Cp/e))

f 7→fCp/eh7→(
∑p−1

i=0 conji(h),tr◦h◦res)

conj

The statement that MackCp
is closed symmetric monoidal is the statement that, for every M,N,P ∈

MackCp
, we have an isomorphism

HomMackCp
(M ⊠N,P ) ∼= HomMackCp

(M, [N,P ]),
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natural in M , N , and P .
The internal hom is implemented in the following method:

Computation 3.7.

i6 : prune internalHom(rand1,rand2)

o6 = Res : | -1 |

cokernel | 5 | ----------------> cokernel | 5 | - Conj : | 1 |

<---------------- <

Tr : | 2 |

o6 : CpMackeyFunctor

Proposition 3.8 (Properties of the internal hom).

(1) For any M ∈ MackCp
, we have a natural isomorphism [A,M ] ∼= M .

(2) For any M ∈ MackCp , we have a natural isomorphism [M, 0] ∼= 0
(3) For any X,Y ∈ ModZ[Cp], we have a natural isomorphism

FP (Hom(X,Y )) ∼= [FP(X),FP(Y )] .

where Hom(X,Y ) denotes the internal hom of Z[Cp]-modules.

3.4. Homological Algebra. Given the symmetric monoidal abelian category MackCp
, we can now carry

out homological algebra computations – i.e. we can ask to take resolutions, derived functors, etc.
Our first method provides a resolution of a Cp-Mackey functor M . This method takes in two inputs: M

and an integer n, and outputs a list of Cp-Mackey functor homomorphisms providing the first n terms in a
free resolution of M .

Computation 3.9.

i2 : M:=makeCpMackeyFunctor(2,id_(ZZ^1),matrix({{2}}),id_(ZZ^1))

o2 = Res : | 1 |

1 ---------------> 1 - Conj : | 1 |

ZZ <--------------- ZZ <

Tr : | 2 |

o2 : CpMackeyFunctor

i3 : res(M,2)

o3 = { fix : | 2 1 2 | , fix : | -1 -1 -2 | , fix : | -2 | }

1 <------------------- 3 | 0 2 0 | | 0 |

ZZ ZZ | 1 0 2 | | 1 |

^ | ^ | 3 <---------------------- 3 3 <------------------- 1

| | | | ZZ ZZ ZZ ZZ

| v | v ^ | ^ | ^ | ^ |

1 <------------------- 3 | | | | | | | |

ZZ und : | 1 1 1 | ZZ | v | v | v | v

^ | ^ | 3 <---------------------- 3 3 <------------------- 2

- - ZZ und : | -1 0 -1 | ZZ ZZ und : | -1 -1 | ZZ

^ | | 0 -1 -1 | ^ | ^ | | -1 -1 | ^ |

- | 1 1 2 | - - | 1 1 | -

o3 : List

Since we have kernels and cokernels, we have access to (co)homology, and we can therefore compute derived
functors. In particular we have implemented Tor and Ext computations. These methods take in two Mackey
functors and an integer i, computing the ith Tor or Ext group.

Computation 3.10.

i4 : prune Tor_1(M,M)

o4 = Res : 0

cokernel | 2 0 | -----------> 0 - Conj : 0

<----------- <

Tr : 0



Cp-MACKEY FUNCTORS IN MACAULAY2 9

o4 : CpMackeyFunctor

i5 : prune Ext^4(M,M)

o5 = Res : 0

cokernel | 2 | -----------> 0 - Conj : 0

<----------- <

Tr : 0

o5 : CpMackeyFunctor

The following properties are immediate:

Proposition 3.11 (Properties of Ext and Tor). For any M,N ∈ MackCp
we have

(1) Tor0(M,N) = M ⊠N
(2) Ext0(M,N) = [M,N ]
(3) Exti(A,−) and Exti(B,−) are identically zero for i > 0.

We discuss an interesting conjecture arising from our computations of Ext-groups of Cp-Mackey functors
in Section 5, but we first discuss some examples of how to use this package to verify existing computations in
the literature.

4. Example Computations

In this section we recall some computations with Mackey functors from the literature and demonstrate
how they could have been performed using the CpMackeyFunctors package in Macaulay2.

4.1. Equivariant algebraic K-theory. The first examples we consider are from a paper of Chan–Vogeli
[CV25] on the Galois-equivariant algebraic K-theory of finite fields. For any prime p, there is a unique degree
p extension Fqp of the finite field Fq. The algebraic K-groups of such fields were computed by Quillen.

Theorem 4.1 ([Qui72]). The algebraic K-groups of Fqp are given by

Kn(Fqp) ∼=


Z n = 0

Z/(qip − 1) n = 2i− 1

0 else.

The Galois group of Fqp over Fq is G = Cp, and the action of Cp on Fqp extends to an action on the
algebraic K-groups. When n = 2i− 1 > 0 is odd, we can pick a generator γ of Cp such that the action of γ
on K2i−1(Fqp) ∼= Z/(qip − 1) is multiplication by qi.

Associated to the Cp-module K2i−1(Fqp) is the orbit Cp-Mackey functor with Lewis diagram

Z/(q − 1)

Z/(qip − 1)

p−1∑
j=0

qij1

qi

which, for brevity, we will denote by Ri. This Mackey functor is denoted by the symbol ⊖i in [CV25].
For any abelian group M let us write ⟨M⟩ for the Mackey functor with M as its fixed group and 0 as its

underlying group. The following result plays a crucial role in the resolution of extension problems arising
from spectral sequences in [CV25].

Proposition 4.2 ([CV25, Proposition 3.0.2]). For any primes p and q, any abelian group M , and any i we
have Ext1(Ri, ⟨M⟩) = Ext1(⟨M⟩, Ri) = 0.

For any given abelian group and fixed values of p, q and i this computation can easily be implemented
in the Cp-Mackey functors package for Macaulay2. For instance, the following code snippet checks the
proposition with the choices M = Z, p = 5, q = 7, and i = 3.

Computation 4.3.
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i2 : p=5; q=7; i=2;

i5 : K = cokernel matrix {{q^(i*p)-1}}; -- the underlying level of Ri

i6 : gamma = map(K,K,q^i); -- action of Cp on K

o6 : Matrix K <-- K

i7 : Ri = makeOrbitMackeyFunctor (p,gamma)

o7 = Res : | 5884901 |

cokernel | -48 282475248 | ---------------------> cokernel | 282475248 | - Conj : | 49 |

<--------------------- <

Tr : | 1 |

o7 : CpMackeyFunctor

i8 : M = makeZeroOnUnderlyingMackeyFunctor (p,ZZ^1)

o8 = Res : 0

1 -----------> 0 - Conj : 0

ZZ <----------- <

Tr : 0

o8 : CpMackeyFunctor

i9 : prune (Ext^1(Ri,M)).Fixed

o9 = 0

o9 : ZZ-module

i10 : prune (Ext^1(M,Ri)).Fixed

o10 = 0

o10 : ZZ-module

4.2. Equivariant cohomology. Our next set of examples recovers calculations first preformed by Mingcong
Zeng [Zen18] in his work on equivariant cohomology. Before stating the results we need a definition.

Definition 4.4. A Cp-Mackey functor is cohomological if it has the property that tr ◦ res is multiplication
by p.

The category CohMackCp
of cohomological Cp-Mackey functors is an abelian subcategory of all Cp-Mackey

functors, although it is not a Serre subcategory. If M and N are two cohomological Cp-Mackey functors

we will write ExtCohi(M,N) for Ext computed in CohMackCp
. Cohomological Ext is computed in the

CpMackeyFunctors package using ExtCoh(i,M,N).

Theorem 4.5 ([Arn85, BSW17]). For any prime p the global projective dimension of CohMackCp
is 3.

In particular, the groups ExtCohi(M,N) are zero for i > 3.
We now review the computational result of Zeng. For a fixed prime p we write B1 for the Cp-Mackey

functor ⟨Z/p⟩. We write Z for the fixed point Cp-Mackey functor associated to the trivial Cp-action on Z.
Both B1 and Z are cohomological.

Proposition 4.6 ([Zen18, Example 2.34]). The cohomological Ext groups ExtCohi(B1,Z) are given by

ExtCohi(B1,Z) =

{
B1 i = 3

0 else.

Since the global dimension of CohMackCp is 3, the proposition is checked as soon as one checks that values

of ExtCohi for i ≤ 3. Running the following code snippet confirms the proposition when p = 7.

Computation 4.7.

i2 : p=11;

i3 : B1 = makeZeroOnUnderlyingMackeyFunctor (p,cokernel matrix({{11}}))

o3 = Res : 0

cokernel | 11 | -----------> 0 - Conj : 0

<----------- <

Tr : 0

o3 : CpMackeyFunctor

i4 : Z = makeFixedPointMackeyFunctor(p,id_(ZZ^1))

o4 = Res : | 1 |

1 ----------------> 1 - Conj : | 1 |
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ZZ <---------------- ZZ <

Tr : | 11 |

o4 : CpMackeyFunctor

i5 : for i to 3 do (

print prune ExtCoh(i,B1,Z)

)

Res : 0

0 -----------> 0 - Conj : 0

<----------- <

Tr : 0

Res : 0

0 -----------> 0 - Conj : 0

<----------- <

Tr : 0

Res : 0

0 -----------> 0 - Conj : 0

<----------- <

Tr : 0

Res : 0

cokernel | 11 | -----------> 0 - Conj : 0

<----------- <

Tr : 0

For two cohomological Cp-Mackey functors M and N we can also consider the Tor cohomological Mackey
functors TorCohi(M,N). Some interesting values of TorCoh groups are computed by Zeng.

Proposition 4.8 ([Zen18, Example 2.38]). The cohomological Tor groups TorCohi(B1, B1) are given by

TorCohi(B1,Z) =

{
B1 i = 0, 3

0 else.

Cohomological Tor computations can easily be performed using the CpMackeyFunctors package.

Computation 4.9.

i2 : p=11;

i3 : B1 = makeZeroOnUnderlyingMackeyFunctor (p,cokernel matrix({{11}}))

o3 = Res : 0

cokernel | 11 | -----------> 0 - Conj : 0

<----------- <

Tr : 0

o3 : CpMackeyFunctor

i4 : for i to 3 do (

print prune TorCoh(i,B1,B1)

)

Res : 0

cokernel | 11 0 0 | -----------> 0 - Conj : 0

<----------- <

Tr : 0

Res : 0

0 -----------> 0 - Conj : 0

<----------- <

Tr : 0

Res : 0

0 -----------> 0 - Conj : 0

<----------- <

Tr : 0

Res : 0

cokernel | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 | -----------> 0 - Conj : 0

<----------- <

Tr : 0
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5. An interesting conjecture

It is well-known that the homological algebra of Cp-modules exhibits periodic behavior. In this section,
we conjecture that Cp-Mackey functors exhibit similar behavior based on experiments run with our package
CpMackeyFunctors.

5.1. Periodicity for Cp-modules. We begin by reviewing the situation for Cp-modules.
It is a standard fact that the cohomology of modules over finite cyclic groups 2-periodic. In terms of

Ext-groups, this means that for any Cp-module M ,

ExtiCp
(Z,M) ∼= Exti+2

Cp
(Z,M), i > 0.

This fact follows, for instance, from the explicit 2-periodic resolution of Z as a Cp-module [CE56, XII.7]

(5.1) Z ZCp ZCp ZCp · · · ,ε γ−1 N

where ε : ZCp → Z is the augmentation, and N = 1 + γ + · · ·+ γp−1 ∈ ZCp is the additive norm element. In
fact, this resolution implies a more fundamental periodicity result for Cp-modules.

Proposition 5.1. Any Cp-module M admits a projective resolution

M P0 P1 P2 · · ·∂1 ∂2 ∂3

such that ∂i = ∂i+2 for all i > 1.

We thank Dave Benson for sharing the proof of this fact.

Proof. Let Z0 be a first syzygy of M , that is, the kernel of a surjection P0 → M where P0 is projective. Then,

M P0 Z0 ⊗ ZCp Z0 ⊗ ZCp Z0 ⊗ ZCp · · ·id⊗(γ−1) id⊗N

is a resolution of M satisfying the desired property, where the first differential Z0⊗ZCp → P0 is the composite

Z0 ⊗ ZCp Z0 ⊗ Z ∼= Z0 P0.
id⊗ε

□

5.2. Periodicity conjectures for Cp-Mackey functors. Motivated by sample computations on 1000
randomly generated Cp-Mackey functors over various primes, we conjecture that an analogue of Proposition 5.1
holds for Cp-Mackey functors.

Conjecture 5.2. Every Cp-Mackey functor admits an eventually 4-periodic projective resolution.

We record a consequence of Conjecture 5.2 which may be easier to approach.

Conjecture 5.3. For all Cp-Mackey functors N,M , there exists an integer n0 such that

Extn+4(M,N) ∼= Extn(M,N)

and
Torn+4(M,N) ∼= Torn(M,N)

for all n ≥ n0.

These conjectures will be investigated in future work.
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