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CANDACE BETHEA AND THOMAS BRAZELTON

Abstract. Recall that a non-singular planar quartic is a canonically embedded non-hyperelliptic
curve of genus three. We say such a curve is symmetric if it admits non-trivial automor-
phisms. The classification of (necessarily finite) groups appearing as automorphism groups
of non-singular curves of genus three dates back to the last decade of the 19th century. As
these groups act on the quartic via projective linear transformations, they induce symme-
tries on the 28 bitangents. Given such an automorphism group G = Aut(C), we leverage
tools from equivariant homotopy theory to prove that the G-orbits of the bitangents are
independent of the choice of C, and we compute them for all twelve types of smooth sym-
metric planar quartic curves. We further observe that techniques deriving from equivariant
homotopy theory directly reveal patterns which are not obvious from a classical moduli
perspective.

1. Introduction

The study of bitangents to plane quartics dates back to the 19th century, and has been one of
the pillars of classical enumerative algebraic geometry. In 1850, Jacobi [Jac50] was the first
to compute that the number of bitangents to a smooth planar quartic was 28, using work
of Plücker from two decades earlier [Plü34]. This was extended to general quartics shortly
thereafter by Hesse [Hes55]. The configurations of these lines, their combinatorics, and their
sweeping connections throughout mathematics were objects of deep fascination throughout
the 19th century, and their connections to other fields of geometry, e.g., Lie algebras, continue
to be topics of interest to modern mathematicians [Man06]. The automorphism groups of
genus three (non-hyperelliptic) curves have been completely classified, and we provide a
historical overview of this work in Subsection 2.2. Since a planar quartic is a canonically
embedded non-hyperelliptic genus three curve, any automorphism of a genus three curve
will extend to an automorphism of the projective plane, and such an automorphism group
will be finite by the Hurwitz formula. In particular the bitangents of such a curve will
inherit a natural action from the automorphism group of the curve. Leveraging tools from
equivariant homotopy theory, we prove the action on the bitangents is independent of the
choice of symmetric quartic, and we compute it in each case.

Theorem 1.1. Let G be any group which appears as the automorphism group of a genus
three non-hyperelliptic curve. Then for any such curve C with G ∼= Aut(C), the action of
G on the bitangents of C is independent of the choice of C, and is given by the following
G-set:1

1See Section 4 for an explanation of the notation.
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Type Aut(C) Order 28 bitangents

I PSL2(7) 168 [PSL2(7)/S3]
II C×2

4 ⋊ S3 96 [C×2
4 ⋊ S3/C6] + [C×2

4 ⋊ S3/C8]
III C4 ⊚ A4 48 [C4 ⊚ A4/C2] + [C4 ⊚ A4/C12]
IV S4 24 [S4/C

o
2 ] + [S4/C

e
2 ] + [S4/S3]

V P 16 [P/C
(1)
2 ] + [P/C

(2)
2 ] + [P/C

(3)
2 ] + [P/CZ

4 ]
VI C9 9 3[C9/e] + [C9/C9]

VII D8 8 [D8/e] + 2[D8/C
(1)
2 ] + 2[D8/C

(2)
2 ] + [D8/C

Z
2 ]

VIII C6 6 4[C6/e] + [C6/C2] + [C6/C6]
IX S3 6 3[S3/e] + 3[S3/C2] + [S3/S3]
X K4 4 4[K4/e] + 2[K4/C

L
2 ] + 2[K4/C

∆
2 ] + 2[K4/C

R
2 ]

XI C3 3 9[C3/e] + [C3/C3]
XII C2 2 12[C2/e] + 4[C2/C2]

Example 1.2. As an example, we visualize the 28 bitangents on the following Edge quartic.2

This admits a clear D8 symmetry on the xy-plane, which extends to an S4-symmetry by
passing between the different affine patches.

Figure 1. The Edge quartic, defined by the equation 25(x4 + y4 + z4) −
34(x2y2+x2z2+y2z2), and its 28 real bitangents graphed with their S4 orbits.

We prove Theorem 1.1 by leveraging the machinery of [Bra24] by first formulating the count
of bitangents on a G-symmetric quartic as a G-equivariant vector bundle, and computing its
MUG-valued Euler class — this proves that the action of G ∼= Aut(C) on the bitangents is
independent of C. We pick candidate curves in each automorphism class from [Dol12, Hen76]
and compute equations for each of the bitangents using code modified from [PSV11]. After
this we determine the orbits of lines and their isotropy under the action of the automorphism
group. We provide figures in each case, and discuss rationality where it is relevant.

2See Remark 4.4 for a further discussion of Edge quartics.
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Remark 1.3. There are multiple ways to argue that the action of the automorphism group
on bitangents (and even θ-characteristics) is independent of the choice of curve, as in Theo-
rem 1.1. A classical way is to observe that each component of the moduli space is connected,
although we remark that our technology works even when this might fail. After finishing
this preprint, the authors were made aware of a third way to prove this independence, which
had appeared in a preprint of Braden and Disney–Hogg a few months prior [BDH24] by
leveraging that curves in the same component of the moduli space have equivalent rational
representations, and the orbit decomposition can be recovered by the rational representation.
In particular the table in our Theorem 1.1 can be found in Table 6 of [BDH24], although
the authors there do not specify the isotropy type of each orbit.

Remark 1.4. (Other related literature)

• The orbits of the automorphism group of the Klein quartic on its 28 bitangents is
well-studied, and visualizable over P1

F7
([Cox83, JvOS94]). In general the equivariant

enumerative geometry of the Klein quartic has been a popular direction of research
since the mid-to-late 1800’s — the action on the even theta characteristics is in
[DK93], and the action on the Steiner complexes and Aronhold sets in [JvOS94]. See
[Dol12, Remark 6.5.4] for more information.

• The bitangents of non-hyperelliptic curves of genus three with cyclic automorphisms
of degree 3, 6, or 9 was recently studied in a paper of Liang [Lia20].

Remark 1.5. (On rationality) In 1873, Zeuthen proved that a smooth real quartic can
have 3, 8, 16, or 28 bitangents, and this depends precisely on the topology of the real curve
[Zeu74]. One might ask whether results in this paper can make general statements about the
number of real bitangents to smooth real planar quartics with given automorphism group,
in a way analogous to [Bra24, Theorem 1.3]. When the automorphism group is real (lies in
PGL3(R)), orbits of odd size necessarily are defined over the reals. Beyond this, we cannot
say much as there isn’t a clear connection between automorphism types (in the decomposition
in Theorem 1.1) and the real topology of a curve — we can observe this explicitly by traveling
through a family of curves of a given type and seeing that the number of real bitangents can
vary wildly. For example a Type XII quartic can have no real points, two non-nested ovals,
two nested ovals, or three ovals.

1.1. Outline. The paper is organized as follows. Section 2 gives background information
on canonical quartic plane curves which groups can arise as non-trivial automorphisms of
them. Section 3 defines the vector bundle which parameterizes the enumerative problem of
counting bitangents to symmetric quartics, following the construction of [LV21], shows it’s an
equivariant vector bundle for any group G which arises as a non-trivial automorphism group
of a canonical quartic, and leverages the equivariant Euler number of [Bra24] to conclude
that the equivariant count of bitangents on a G-symmetric quartic is independent of the
choice of quartic. Section 4 gives example quartics for each group and graphs orbits of real
bitangents for each. Section 5 concludes the paper with a subgroup lattice of automorphism
groups of canonical quartics.

1.2. Data availability. Throughout the paper are various Computation environments.
These refer to numerical solutions for bitangents to example quartic curves for each type,
whose orbits under the automorphism group of the curve were then checked on a computer
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(but can also be verified by hand). Explicit equations for all the lines for the example
quartics referenced, grouped into their orbits, as well as the code the authors used to compute
bitangents to planar quartics is available here:

https://tbrazel.github.io/supplementary/lines.pdf

1.3. Acknowledgements. The second named author would like to thank Joe Harris for
helpful conversations related to this work. The authors would also like to thank Linden
Disney–Hogg for catching a computational error in the main theorem. Candace Bethea
was supported by the National Science Foundation award DMS-240209 for the duration of
this work. Thomas Brazelton was supported by an NSF Postdoctoral Research Fellowship
(DMS-2303242).

2. Background

2.1. Quartics, the basics. Nonsingular curves of genus g ≥ 2 come in two flavors, being
canonical and hyperelliptic, depending on whether the canonical class is very ample. When
the canonical class of C is very ample, we have that Γ(C,Ω1

C) is a vector space of dimension
g, and a choice of basis of holomorphic forms defines an embedding C → Pg−1 called a
canonical embedding. Any automorphism induces an automorphism of Ω1

C by pullback, and
therefore extends to an automorphism of Pg−1, hence the automorphism groups of canonical
curves are all geometric in the sense that they act on the embedded curve via projective
linear transformations.

It is a classical fact that a general non-hyperelliptic curve of genus g ≥ 3 admits no nontrivial
automorphisms. This motivates the following definition.

Definition 2.1. We say a non-hyperelliptic non-singular curve of genus g is symmetric if it
admits any automorphism other than the identity.

2.2. Automorphisms of smooth quartics. Here we provide a highly incomplete history
of the classification of the automorphism groups of genus three non-singular hyperelliptic
curves. This is a history which is scattered throughout the literature, and references papers
plagued by minor errors, so we feel it is worth recounting.

In 1878, Schwarz proved that the automorphism group of a compact Riemann surface of
genus g ≥ 2 is finite. One argues this by observing that for a non-hyperelliptic curve, the
automorphism group acts faithfully on the Weierstrass points of the curve, of which there
are only finitely many. In 1892, Hurwitz determined an upper bound on the size of such
automorphism groups, being 84(g−1) [Hur92]. This bound is not always attained, however a
famous example is the so-called Klein quartic (Type I in our classification), which was studied
extensively by Felix Klein [Kle78]. When g = 3, the Klein quartic has an automorphism
group of size 168, attaining the upper bound proven by Hurwitz.

During this time, Kantor had been working on understanding what kinds of periodic trans-
formations existed on the projective plane, informed by algebraic questions arising from the
Hermite and Frobenius programs on quadratic forms [Kan95a]. In modern language, we
might understand this as the study of cyclic subgroups of PGL3(C). In the course of this
work, Kantor observed the following result.

https://tbrazel.github.io/supplementary/lines.pdf
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Theorem 2.2. [Kan95b, p. 40] Given any finite subgroup G ≤ PGL3(C), there exists a
planar curve of genus g ≥ 3 which is G-invariant.

Given this result, one might fix a genus g and study which finite groups can act on smooth
non-hyperelliptic planar curves of genus g, and one may ask what the full automorphism
groups of such curves are. Kantor claimed in this same work to classify the automorphism
groups of plane quartic curves, however this classification contained many errors which were
correctly shortly thereafter by Wiman in 1896 [Wim96]. In particular, following Hurwitz’
work [Hur92], one knows that the prime factors of #Aut(C) will only ever be 2, 3, or 7, which
was known to Wiman [Wim96, p. 223]. Although it does not satisfy modern standards of
rigor, Wiman correctly identifies all the possible orders of automorphism groups of genus
three non-hyperelliptic non-singular curves, and provides an indication as to the generators
of these groups.

In 1910, Ciani extended this classification to all irreducible quartics (not necessarily nonsin-
gular) [Cia10]. There are subtleties, however, in such a classification, as we can see in the
following example, where we drift beyond the reach of the Hurwitz theorem.

Example 2.3. Observe that the quartic x3y + z4 (which is singular at the point [0 : 1 : 0])
admits a symmetry of arbitrary order r ≥ 7 given by (x, y, z) 7→ (ζrx, ζ

r−3
r y, z) [Cia10, N. 19].

In particular its automorphism group is necessarily infinite.

Throughout the 20th century, it is unclear which results were known or lost in the literature.
Henn recomputed the automorphism groups of genus three non-hyperelliptic curves via the
action on Weierstrass points in his 1976 work, obtaining a classification of finite groups occur-
ring as automorphism groups of smooth planar quartics [Hen76]. This essentially recovered
the computation done by Wiman nearly a century earlier.

Around the mid-1960’s, many mathematicians published work studying compact Riemann
surfaces equipped with non-trivial involutions. This body of work is far too encompassing
to mention all of the relevant players, but we highlight a particular program of mathematics
emanating from work of A. Kuribayashi, which studied the moduli of compact Riemann
surfaces equipped with non-trivial automorphisms [Kur66, Kur76], leveraging tools from
Teichmüller theory. In [KK77] the authors study smooth projective genus three curves
which are cyclic covers of the projective line or of an elliptic curve, and determine their
automorphism groups, again recovering the classification initially due to Wiman.

At the dawn of the 21st century, as computer-aided research became increasingly ubiquitous
in mathematics, Breuer made tremendous progress by determining all finite groups which
act on a curve of genus ≤ 48 [Bre00]. This leveraged group-theoretic constraints on such
groups arising from covering space theory, and was accomplished via an exhaustive search
through a library of finite groups in GAP [GAP24]. Magaard, Shaska, Shpectorov and
Völkein provide a lovely discussion of how to re-derive the classification for genus g = 3
from the data obtained by Breuer (that paper also contains rich historical background for
the interested reader) [MSSV02].

A beautiful resource for automorphisms of quartics can be found in Dolgachev’s book [Dol12,
§6.5], which recasts the research of Kantor and Wiman in modern language and rigor. Before
this book was published, a fantastic paper of Bars [Bar05] sketches the classification of
automorphism groups of quartics, following both Henn’s thesis and the aforementioned paper
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of Komiya and Kuribayashi. Bars’ note corrected errors in the classification appearing in
the lecture notes which would later become Dolgachev’s book.

With all this in mind, we state the following classification, which we feel it is fair to attribute
to Wiman, although we refer the reader to [Dol12, p. 270] for a rigorous proof.

Theorem 2.4. [Wim96] The following groups G are the only groups occurring as the auto-
morphism group of a smooth plane quartic. In each case we provide an equation for quartics
F (x, y, z) of that type, with generators for its automorphism group (c.f. [Bar05, Dol12]).

Here ζn denotes a primitive nth root of unity, and in PSL2(7) we have α :=
ζ57−ζ27√

−7
, β =

ζ67−ζ7√
−7

and γ =
ζ37−ζ47√

−7

Type Aut(C) GAP ID F (x, y, z) Generators in PGL3(C)

I PSL2(7) [168,42] x3y + y3z + z3x

ζ47 0 0
0 ζ27 0

0 0 ζ7

,

0 1 0
0 0 1

1 0 0

,

α γ β
β α γ

γ β α


II C×2

4 ⋊ S3 [96,64] x4 + y4 + z4
0 0 1
1 0 0

0 1 0

,

−i 0 0
0 0 1

0 i 0


III C4 ⊚ A4 [48,33] x4+y4+z4+(4ζ3+2)x2y2

 1+i
2

−1+i
2

0
1+i
2

1−i
2

0

0 0 ζ3

,

 1+i
2

−1−i
2

0
−1+i

2
−1+i

2
0

0 0 ζ23


IV S4 [24,12] x4+y4+z4+a(x2y2+y2z2+

z2x2)

0 0 1
1 0 0

0 1 0

,

0 −1 0
1 0 0

0 0 1


V P [16,13] x4 + y4 + z4 + ax2y2

−1 0 0

0 1 0
0 0 1

 ,

i 0 0

0 −i 0
0 0 1

,

0 −1 0

1 0 0

0 0 1


VI C9 [9,1] x4 + xy3 + yz3

ζ3 0 0

0 1 0
0 0 ζ9


VII D8 [8,3] x4+y4+z4+ax2y2+bxyz2

i 0 0

0 −i 0
0 0 1

,

0 1 0

1 0 0
0 0 1


VIII C6 [6,2] z3y + x4 + ax2y2 + y4

−1 0 0

0 1 0
0 0 ζ3


IX S3 [6,1] x3z+y3z+x2y2+axyz2+

bz4

ζ3 0 0
0 ζ23 0
0 0 1

,

0 1 0
1 0 0
0 0 1


X K4 [4,2] x4 + y4 + z4 + ax2y2 +

by2z2 + cx2z2

−1 0 0
0 1 0

0 0 1

,

1 0 0
0 −1 0

0 0 1


XI C3 [3,1] z3y+x(x−y)(x−ay)(x−

by)

1 0 0

0 1 0
0 0 ζ3


XII C2 [2,1] x4+y4+z4+x2(ay2+byz+

cz2) + dy2z2

−1 0 0
0 1 0

0 0 1



The equations are subject to the following constraints:
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• Type IV: we have a ̸= 0 since this yields a Type II curve, and a ̸= 3
2
(−1 ±

√
−7),

otherwise one obtains a Type I curve.
• Type V: a /∈

{
0, ±2

√
−3, ±6

}
. If a = 0 or a = ±6 we obtain a Type II quartic, and

if a = ±2
√
−3 we obtain a Type III quartic.

• Type VII: b ̸= 0. For b = 0 we obtain a Type V quartic.
• Type VIII: a ̸= 0. For a = 0 we obtain a Type III quartic.
• Type IX:3a ̸= 0, otherwise we obtain a Type IV quartic.
• Type X: all the values {±a,±b,±c} are distinct, otherwise we obtain a Type VII
curve.

• Type XI: if either a = ζ3 or b = ζ3 we obtain a Type VI curve. If either a = −1 or
b = −1 we obtain a Type VIII curve.

• Type XII:4 If b = 0 we obtain a Type X quartic. If a = −2, b = 0, and c = −d, we
obtain a Type IX curve.

The reader may notice subgroup containment between some of these groups — we discuss
how this manifests in our computations in Section 5.

Remark 2.5. The quartic equations appearing in Theorem 2.4 are in fact the only quartic
equations (up to projective transformation) with the given automorphism group. One proves
this by first providing normal forms for cyclic actions, then doing a case-by-case analysis as
in [Dol12, §6.4]. When free parameters appear, they correspond to the dimension of the
moduli of smooth planar quartics having the given automorphism group. In that sense,
the free coefficients in the equations Theorem 2.4 give an indication of how the moduli of
symmetric quartics is stratified.

3. The Euler number for bitangents

The proof of Theorem 1.1 relies on the fact that we can obtain a G-equivariant count of the
28 bitangents to a smooth quartic C for G ∼= Aut(C) using the equivariant Euler number of
[Bra24], and this count will be independent of choice of quartic with automorphism group G.
We use the bundle parameterizing bitangents to smooth quartics following the construction
of [LV21], which we recount exactly below.

Let

S → (P2)∨

denote the tautological bundle over the moduli of lines in P2. Let X := P(Sym2S∨) so that
a point on X is a pair (L,Z) where L ⊆ P2 is a line and Z ⊆ L is a degree two subscheme.

3Our equation differs slightly from [Dol12] by rescaling variables.
4Our equation for a Type XII quartic matches that found in [Dol12, Theorem 6.5.2], which is a priori

different from [Dol12, Lemma 6.5.1] and [Hen76, Bar05]. A Type XII quartic is of the form x4+x2L2(y, z)+
L4(y, z), where Lk denotes a homogeneous binary form of degree k. By the classical theory of quantics,
we recall that every binary quartic form admits a canonical form y4 + dy2z2 + z4 after a projective linear
transformation, a fact that dates back to Cayley but can be found in [Ell13, Chapter XII]. This is the source
of the quartic equation we use here.
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Writing π : X → P2∨ for the natural projection map, we have the commutative diagram:

(1)

π∗Sym2S∨ Sym2S∨

X (P2)∨.π

Note that any fiber ofOX(−1) ⊆ π∗Sym2S∨ determines a choice of equations defining Z ⊆ L,
whence the quotient of

(2) OX(−1) → π∗Sym2S∨

parameterizes quadratic equations on L vanishing along Z. Squaring, we obtain the com-
posite

(3) OX(−2) → Sym2S∨ ⊗ Sym2S∨ → Sym4S∨.

The vector bundle for our enumerative problem will be the quotient bundle

E := Sym4S∨/OX(−2),

which will parameterize quartic polynomials on L vanishing at the square of an equation of
Z. In other words, the quotient Sym4S∨ → E over the fiber (L,Z) in

(4) 0 → OX(−2) → Sym4S∨ → E → 0

realizes E as the evaluation of a quartic polynomial on L along 2Z.

Theorem 3.5. Let G ≤ PGL3 be contained in any group appearing as the automorphism
group of a smooth non-hyperelliptic plane quartic. Then

E → X

constructed above is a G-equivariant vector bundle, and any planar quartic C with G ≤
Aut(C) induces a G-equivariant section of this bundle whose zeros count the bitangents to
C.

Proof. The G-action on P2 defines an action on P2∨ and thus on S → (P2)∨. The sym-
metric power Sym2S∨ → (P2)∨ is thus a G-vector bundle, and the projectivization X :=

P(Sym2S∨)
π→ (P2)∨ is as well. As the actions onX, Sym2S∨, and π∗Sym2S∨ are all inherited

from that on (P2)∨, diagram (1) commutes equivariantly.

Since the G-action on OX(−1) is inherited from that of π∗Sym2S∨, the inclusion OX(−1) →
π∗Sym2S∨ is G-equivariant. Squaring, we deduce that

OX(−2) ↪→ (π∗Sym2S∨)⊗2

is G-equivariant as well. Since over any particular (L,Z) in X, the composition

OX(−2)(L,Z) ↪→ ((Sym2S∨)⊗2)(L,Z) → (Sym4S∨)(L,Z)

is just the composition of inclusions of the space spanned by the square of a quadratic on Z,
⟨q2Z⟩ 7→ ⟨q2Z⟩ 7→ ⟨q2Z⟩, into the space (Sym4S∨)(L,Z) of all degree 4 polynomials on L,

OX(−2) → Sym4S∨



BITANGENTS TO SYMMETRIC QUARTICS 9

is G-equivariant. In order to argue that the quotient bundle E can be chosen equivariantly,
we pick a G-invariant Hermitian metric in Sym4S∨ in order to induce an equivariant splitting
of the short exact sequence of bundles

OX(−2) → Sym4S∨ → E.

Therefore E → X is a G-equivariant vector bundle, and G-equivariant planar quartics induce
equivariant sections of the bundle. □

We state this conclusion again explicitly:

Corollary 3.6. Let G be as in Theorem 2.4. Then the bitangents of any smooth planar
quartic which is G-symmetric have G-orbits given by the Euler class nG(E).

If f is a quartic polynomial defining a G-symmetric, smooth, non-hyperelliptic plane quartic
C and σf is the section X → E determined by C, then σf vanishing at (L,Z) exactly means
that L is a bitangent of C with points of bitangency at Z ⊂ L. Thus the fact that σf is a G-
equivariant section and C has 28 bitangents exactly means that Z(σf ) = {(L,Z) : σf (L,Z) =
0} is a size 28 G-set, and G acts transitively on the disjoint union of orbits of bitangents and
points of bitangency of C. This count of bitangents is independent of symmetric quartic C
with Aut(C) ∼= G since the Euler number is independent of choice of section:

Corollary 3.7. Let G be any group which appears as the automorphism group of a genus
three non-hyperelliptic curve. Then for any such curve C with G ∼= Aut(C), the action of G
on the bitangents of C is independent of the choice of C.

Proof. This is a direct consequence of equivariant conservation of number, pulling back an
Euler class for equivariant homotopical bordism to the Burnside ring of the group [Bra24,
Theorem 5.24]. □

Combining Theorem 3.5 and Corollaries 3.6 and 3.7 proves Theorem 1.1. Formulas in A(G)
for the 28 bitangents of G-symmetric quartics are given in the table included with the
statement of the main theorem in the introduction (see Theorem 1.1), which we omit here
for brevity.

Remark 3.8. It is worth noting that for any subgroup H of G we have a restriction map
ResGH : A(G) → A(H) that sends the class of any G-set to the H-set with H-action induced
from the action of G. In particular, any G-symmetric quartic C is H-symmetric, and a G-
action on the bitangents of C descends to an H-action on the bitangents of C via restriction.
We explore consequences of this for equivariant counts of bitangents in Section 5.

4. Symmetric quartics and their bitangents

In this section we compute the action of the automorphism group of a symmetric quartic on
its 28 bitangents for all 12 types. For H ≤ G a subgroup, we denote by [G/H] the isomor-
phism class of the G-set of left cosets of H in G. Every genuine, finite G-set decomposes as
such a sum.
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4.1. Type I: Klein quartics. The most well-studied symmetric quartic, which boasts its
own book [Lev01], and its own sculpture at SLMath (formerly MSRI)5, is the so-called Klein
quartic:

x3y + y3z + z3x.

Its automorphism group G168 is the maximum possible by the Hurwitz bound, making it a
prototypical example of what is called a Hurwitz curve. Its automorphism group is isomorphic
to the projective special linear group over the finite field with seven elements, which acts on
P2 in the following way:

PSL2(7) ∼=

〈0 0 1
1 0 0
0 1 0

 ,

−i 0 0
0 0 1
0 i 0

〉
≤ PGL3(C).

We give a partial indication as to how to visualize this group. The Klein quartic, considered
as a Riemann surface, can be tiled with 24 heptagons, and in fact it is a quotient of the
hyperbolic plane via the congruence subgoup Γ(7) ⊴ PSL(2,Z), whose quotient PSL2(7)
acts via deck transformations and becomes the automorphism group of the Klein quartic.
This group can be understood as the automorphisms attached to the tiling — a heptagon
can be sent to any other of the 24 heptagons, and has a sevenfold rotation, for a grand total
of 24× 7 = 168 = #PSL2(7) symmetries.6

Alternatively via the automorphism PSL2(7) ∼= PSL3(2), the automorphism group of the
Klein quartic can be visualized as the symmetries of the Fano plane as in Figure 2.

Figure 2. An artistic rendering of the sevenfold symmetries on the Fano
plane, drawn by Burkard Polster, found on John Baez’ blog [Bae13].

The automorphism group acts on bitangents, so we recover our first computation, which was
undoubtedly known to Klein.

Computation 4.1. The automorphism group of the Klein quartic acts transitively on the
28 bitangents, with isotropy given by the symmetric group S3 ≤ PSL2(7).

The Klein has exactly four real bitangents, which we visualize in Figure 3.

5The sculpture is called The Eightfold Way, created by Helaman Ferguson and installed in 1993. Thurston
wrote a paper about the Klein quartic in honor of the statue’s inauguration [Thu99].

6Reflections of the heptagons are not considered since they don’t preserve the complex structure.
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Figure 3. The four real bitangents graphed on the Klein quartic. All lines
lie in the same orbit.

4.2. Type II: the Dyck quartic. The quartic of type two has equation

x4 + y4 + z4,

and was first studied in an 1880 paper by W. Dyck [Dyc80], who ascertained that it admits
96 symmetries. The automorphism group has isomorphism type G96

∼= C×2
4 ⋊ S3, acting on

the projective plane in the following way:

(2) C×2
4 ⋊ S3

∼=

〈0 0 1
1 0 0
0 1 0

 ,

−i 0 0
0 0 1
0 i 0

〉
≤ PGL3(C).

Computation 4.3. Any Type II quartic has bitangents with orbits

[C×2
4 ⋊ S3/C6] + [C×2

4 ⋊ S3/C8].

While the Dyck quartic has no real points, it does admit real bitangents, where the points
of tangency are complex. These are given by

x− y − z

x+ y − z

x− y + z

x+ y + z,

and they all lie in the [C×2
4 ⋊ S3/C6] orbit.

Remark 4.4. Edge wrote an entire paper about this quartic in 1938 [Edg38], in which
he investigates its determinantal forms. Explicit equations for each of the 28 bitangents is
included in [Edg38, p. 14], though he attributes this computation to Cayley. In [Edg38, §14],
Edge extends his computations of bitangents and Cayley octads for the Dyck quartic to a
more general family of quartics, mainly those of the form

(1 + γ2)2(x4 + y4 + z4)− 2(1 + γ4)(y2z2 + x2y2 + x2z2) = 0.
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When γ = ζ8 is a primitive 8th root of unity, we obtain the Dyck quartic. For other values
of γ, quartics of this shape are called Edge quartics. The Edge quartic with γ = ±

√
5, from

Example 1.2, was studied in [PSV11, p. 713]; we note via our classification the automorphism
group is different — this Edge quartic is a Type IV quartic with a = −34

25
.

4.3. Type III: Order 48. Order 48, structure C4 ⊚ A4.

There is a unique Type III quartic given by the equation:

x4 + y4 + z4 + (4ζ3 + 2)x2y2,

with automorphism group given by

C4 ⊚ A4 =

〈1+i
2

−1+i
2

0
1+i
2

1−i
2

0
0 0 ζ3

 ,

 1+i
2

−1−i
2

0
−1+i

2
−1+i

2
0

0 0 ζ23

〉
≤ PGL3(C).

A GAP computation shows that the 28 bitangents break into two orbits of sizes 24 and four.
The first orbit has isotropy C2 ≤ C4 ⊚A4, which is the non-normal cyclic subgroup of order
two in A4, while the second orbit has isotropy given by the unique subgroup of order 12,
which is cyclic:

Computation 4.5. The bitangents to a Type III quartic have orbits

[C4 ⊚ A4/C2] + [C4 ⊚ A4/C12].

There are no real points, so we unfortunately cannot visualize this example.

4.4. Type IV: The pencil of octahedral quartics. Order 24, structure S4

Up to change of coordinates, Type IV quartics are given by the following pencil, which we
call the pencil of octahedral quartics

x4 + y4 + z4 + a(x2y2 + y2z2 + z2x2),

for a ̸= 3
2
(−1 ±

√
−7) (this would give the Klein) and a ̸= 0 (this would give the Dyck

quartic). As a varies, we sweep out a pencil of quartics, first studied by Wiman and Ciani
independently. A modern discussion of this pencil of quartics can be found in [DK93, §8].
The paper [RGA97] is dedicated solely to the study of this pencil, where the authors study
(among other things) the Fuschian uniformizations and the Jacobians of these quartics.

A Type IV quartic has automorphism group isomorphic to the symmetric group S4. For any
such a as above, we see the automorphism group is

S4
∼=

〈0 0 1
1 0 0
0 1 0

 ,

0 −1 0
1 0 0
0 0 1

〉
≤ PGL3(C).

Computation 4.6. The bitangents of a Type IV quartic have orbits

[S4/C
o
2 ] + [S4/C

e
2 ] + [S4/S3].

Here Co
2 is an odd copy of C2 ≤ S4, i.e. it is a single transposition, while Ce

2 is a product of
two disjoint transpositions, hence it is even.
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Example 4.7. When a = −3, we compute there are 16 real bitangents, forming the orbits
[S4/C

o
2 ] and [S4/S3]. We visualize this in Figure 4.

Figure 4. The orbits of the real bitangents on the Type IV quartic with
a = −3. Lines in green are in the [S4/C

o
2 ] orbit, and lines in pink are in the

[S4/S3] orbit.

4.5. Type V: Order 16. Order 16, structure P = C4 ⊚K4 the Pauli group.

Notation 4.8. The automorphism group of a type V surface is the Pauli group, which we
denote by P . In particular there are three non-central conjugacy classes of cyclic subgroups

of order two, which we denote by C
(1)
2 , C

(2)
2 , and C

(3)
2 , and the center is a cyclic group of

order four which we denote by CZ
4 .

Type V quartics are given by the equation

x4 + y4 + z4 + ax2y2

for a /∈
{
0, ±2

√
−3, ±6

}
. Their automorphism groups are of the form

P ∼=

〈−1 0 0
0 1 0
0 0 1

 ,

i 0 0
0 −i 0
0 0 1

 ,

0 −1 0
1 0 0
0 0 1

〉
≤ PGL3(C).

Computation 4.9. Any quartic of Type V has bitangents with orbits

[P/C
(1)
2 ] + [P/C

(2)
2 ] + [P/C

(3)
2 ] + [P/CZ

4 ].

Example 4.10. When a = −4 we see eight real bitangents, as in Figure 5.

4.6. Type VI: Order 9. Order 9, structure C9.

There is a unique Type VI quartic, given by the equation

x4 + xy3 + yz3,
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Figure 5. The orbits of the real bitangents on a Type V quartic. The four
in green form the the orbit whose isotropy is the central CZ

4 . The four lines in

pink are part of an orbit with C
(1)
2 isotropy.

whose automorphism group is cyclic of order nine:

C9
∼=

〈ζ3 0 0
0 1 0
0 0 ζ9

〉
≤ PGL3(C).

Computation 4.11. The Type VI quartic has bitangents with orbits

3[C9/e] + [C9/C9].

This quartic has four real lines, one in each orbit, in Figure 6.

4.7. Type VII: Order 8. Order 8, structure D8.

Type VII quartics are given by the equation

x4 + y4 + z4 + ax2y2 + bxyz2

for b ̸= 0. The automorphism group is given by

D8
∼=

〈i 0 0
0 −i 0
0 0 1

 ,

0 1 0
1 0 0
0 0 1

〉
≤ PGL3(C).

Writing the first generator as r and the second as s, we have three conjugacy classes of
subgroups of order two, namely

C
(1)
2 := ⟨s⟩ ∼=

〈
r2s

〉
C

(2)
2 := ⟨rs⟩ ∼=

〈
r3s

〉
CZ

2 :=
〈
r2
〉
,

where the superscript Z denotes that it is central.
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Figure 6. The orbits of real bitangents on the quartic of Type VI. In green are
lines in the first trivial isotropy orbit. In pink are lines in the 2nd trivial
isotropy orbit. In blue are lines in the 3rd trivial isotropy orbit. Finally in
orange are lines in the [C9/C9] orbit.

Computation 4.12. The bitangents of any Type VII quartic have orbits

[D8/e] + 2[D8/C
(1)
2 ] + 2[D8/C

(2)
2 ] + [D8/C

Z
2 ].

Example 4.13. For a = −3 and b = 1, we see eight real bitangents, pictured in Figure 7.

Figure 7. The orbits of real bitangents on an example quartic of Type VII.
The green lines have trivial isotropy, i.e. they live in the [D8/e] orbit, while
the pink -lines form the [D8/C

Z
2 ] orbit.

4.8. Type VIII: Order 6. Order 6, structure C6.

Type VIII quartics are given by

x4 + y4 + ax2y2 + yz3
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for a ̸= 0. Its automorphism group is given by

C6
∼=

〈−1 0 0
0 1 0
0 0 ζ3

〉
≤ PGL3(C).

Computation 4.14. The bitangents of any Type VIII quartic have orbits

4[C6/e] + [C6/C2] + [C6/C6].

Example 4.15. When a = −3, we see four real bitangents, two occurring in distinct orbits
with trivial isotropy, one in the orbit with C3 isotropy, and one fixed under the action of the
automorphism group, pictured in Figure 8.

Figure 8. The orbits of real bitangents on an example quartic of Type VIII.
In green are lines in the [C6/e] orbit. In pink are lines in the [C6/C2] orbit. In
blue are lines in the [C6/C6] orbit.

4.9. Type IX: Order 6. Order 6, structure S3

Type IX quartics are given by the equation

x3z + y3z + x2y2 + axyz2 + bz4

for a ̸= 0. Its automorphism group is given by

S3
∼=

〈ζ3 0 0
0 ζ23 0
0 0 1

 ,

0 1 0
1 0 0
0 0 1

〉
≤ PGL3(C).

Computation 4.16. The bitangents on any Type IX quartic are given by

3[S3/e] + 3[S3/C2] + [S3/S3].

Example 4.17. When a = −25 and b = 10, we compute eight real bitangents, pictured in
Figure 9.
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Figure 9. The orbits of real bitangents on an example quartic of Type IX. In
green,pink, and blue are lines in different [S3/e] orbits. The line in orange lies
in an [S3/C2] orbit. Not pictured is a bitangent z = 0 at infinity which forms
the [S3/S3] orbit.

4.10. Type X: Order 4. Order 4, structure K4

Type X quartics are given by the equation

x4 + y4 + z4 + ax2y2 + by2z2 + cx2z2

for a, b, c all distinct. Its automorphism group is given by

K4
∼=

〈−1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 −1 0
0 0 1

〉
≤ PGL3(C).

Computation 4.18. The bitangents on any Type X quartic have orbits

4[K4/e] + 2[K4/C
L
2 ] + [2K4/C

∆
2 ] + 2[K4/C

R
2 ].

Example 4.19. When (a, b, c) = (−9,−3,−8), we compute 16 real bitangents, forming four
orbits with trivial isotropy, pictured in Figure 10.

4.11. Type XI: Order 3. Order 3, structure C3

Type XI quartics are given by the equation

x(x− y)(x− ay)(x− by) + yz3,

for a, b such that a ̸= 1, b ̸= 1 − a, and (x − a)(x − b) ̸= x2 + x + 1. It has automorphism
group

C3
∼=

〈1 0 0
0 1 0
0 0 ζ3

〉
≤ PGL3(C).
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Figure 10. The orbits of real bitangents on an example quartic of Type X.
There are 16 bitangents, forming four orbits of the form [K4/e].

Computation 4.20. The bitangents on any Type XI quartic have orbits

9[C3/e] + [C3/C3].

Example 4.21. When a = 2 and b = 3, we compute four real bitangents, pictured in
Figure 11.

Figure 11. The orbits of real bitangents on an example quartic of Type XI.
Orbits with colors green, pink, and blue have trivial isotropy. The orange line
is in a [C3/C3] orbit, i.e. it is fixed by the automorphism group.

4.12. Type XII: Order 2. Order 2, structure C2.

All Type XII quartics are given by

x4 + y4 + z4 + x2(ay2 + byz + cz2) + dy2z2,
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for b ̸= 0, a ̸= −2, and c ̸= −d. Note that if b = 0 we obtain a Type X quartic, and if
a = −2, b = 0, and c = −d we obtain a Type IX curve.

This has automorphism group

C2
∼=

〈−1 0 0
0 1 0
0 0 1

〉
≤ PGL3(C).

Computation 4.22. The bitangents on any Type XII quartic have orbits

12[C2/e] + 4[C2/C2].

Example 4.23. For the Type XII quartic defined by the equation

x4 + x2(−y2 − 4z2) + y4 − y2z2 − z4,

we have four real bitangents, forming three orbits, pictured in Figure 12.

Figure 12. The orbits of real bitangents on an example quartic of Type XII.
Lines in green have trivial isotropy, while the lines in pink and blue are fixed
by the automorphism group.

5. The subgroup lattice and restriction

As mentioned in Remark 3.8, we may restrict our attention to a subgroup H ≤ G ∼= Aut(C)
of automorphisms for a given curve, and the action of that group on the bitangents is the
restriction of the G-set of bitangents to the subgroup H. As we have seen in Theorem 2.4, we
have families of curves attached to certain values of a, b, etc., and when these take particular
values the type of the quartic can change. Often how this occurs is that the entire family
is invariant under the automorphism group, however for a special value of a coefficient,
a new polynomial relation holds, introducing an extra automorphism to the equation and
enlarging the automorphism group of the curve. To that end, it is important to understand
which automorphism groups are subgroups of one another.
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We therefore copy a table from [Hen76] demonstrating subgroup inclusion. For each entry we
include both the type and automorphism group, and, where relevant, we label the inclusions
with the special values from the example forms of quartics provided in Theorem 2.4.

I |PGL2(7) II |C×2
4 ⋊ S3 III |C4 ⊚ A4 VI |C9

IV |S4 V |P VIII |C6

IX |S3 VII |D8

X |K4 XI |C3

XII |C2

e

a= 3
2
(−1±

√
−7)

a=0

a=0,±6

a=±2
√
−3

a=0

a=0 b=0

{±a,±b,±c}
not all
distinct

a=−1
or

b=−1

a=ζ3
or

b=ζ3

b=0

a=−2
b=0

c=−d

The groups as we’ve presented them may not be literally subgroups of one another, a pro-
jective change of basis may be needed. We explain the meaning behind the dashed arrows
in Remark 5.4.

Example 5.1. Some lovely examples of the phenomenon we’re discussing can be found in
[Dol12, pp. 269–270]; we include one such example here, where we show how to derive the
special values a = −6, 0, 6 where the pencil of Type V quartics becomes a Dyck quartic.
Recall the equation for a Type V quartic:

x4 + y4 + z4 + ax2y2.

It is clear that by setting a = 0 we obtain the Dyck quartic, but where do the other values
a = ±6 come from? We see that the Pauli group P is not literally a subgroup of C×2

4 ⋊S3 as
presented, nevertheless C×2

4 ⋊S3 contains a unique conjugacy class of subgroups isomorphic
to P . This is reflected via a change of basis matrix (unique up to conjugacy in C×2

4 ⋊ S3 —
note there are three conjugacy classes of P in C×2

4 ⋊ S3)

g =

1 1 0
1 −1 0
0 0 81/4

 .

Conjugating P by this change of basis, we see that gPg−1 ≤ C×2
4 ⋊ S3, and the equation for

a Type V quartic changes to be

(x+ y)4 + (x− y)4 + 81/4z4 + a(x+ y)2(x− y)2 = (a+ 2)x4 + (a+ 2)y4 + 8z4 + (12− 2a)x2y2.

We can now ask for which values of a does such a quartic satisfy the C×r
4 ⋊S3 symmetries in

Equation 2. The first generator cycles the variables, for which we see we need 12−2a = 0 for
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the x2y2 term to vanish, i.e. we need a = 6. For this choice of a we satisfy the full symmetry
group C×2

4 ⋊S3 and hence obtain the Type II quartic. The case a = −6 is similar, but using
a conjugate change of basis.

Remark 5.2. We remark this line of reasoning is basically equivalent to being aware of clever
relations for working with homogeneous polynomials and their vanishing loci. Dolgachev
remarks that the constraint above comes from knowing the identity

x4 + y4 =
1

8

(
(x+ y)4 + (x− y)4 + 6(x+ y)2(x− y)2

)
.

Leveraging identities such as these in projective geometry is characteristic of much of algebra
in the latter half of the 19th century.

What happens when this line of reasoning fails? Consider the following example:

Proposition 5.3. There are no special values of a, b, c, d for which a Type XII quartic
becomes a Type VIII quartic.

Proof. Since C6 is abelian and C2 is a subgroup as written, we just have to check whether any
special values of a, b, c, d exist for which a Type XII quartic can satisfy a sixfold symmetry.
Applying the generator for C6 to a Type XII quartic, we obtain

x4 + y4 + ζ3z
4 + x2(ay2 + bζ3yz + cζ23z

2) + dζ23y
2z2,

and there are no values of a, b, c, d for which this is equal to the original equation.7 □

Remark 5.4. This is precisely the meaning of the dashed arrows in our subgroup diagram.
In the language of the moduli of symmetric quartics, this means the Type VIII quartics don’t
lie on the boundary of the Type XII quartics, but rather they share a common boundary
at the Type III quartics. The argument for the dashed arrow from Type VII to Type IV is
omitted.

5.1. Leveraging Euler classes to explore restricted actions. We’ve seen that the locus
ofD8-symmetric quartics is not glued to the locus of S4-symmetric quartics, so from the naive
perspective of the moduli space, we shouldn’t expect that there is much coherence between
how these groups act on bitangents. Nevertheless we can see the following example:

Example 5.5. Consider the Edge quartic (of Type IV) with its restrictedD8 ≤ S4-symmetry
on the xy-plane. The D8-orbits of the lines are graphed in Figure 13

This is the same count as the D8-action on the bitangents of a Type VII quartic (Computa-
tion 4.12), despite the fact that the Edge quartic cannot be obtained by deforming a family
of quartics with automorphism group D8. So the fact that we obtained the same answer
above is perhaps not obvious from the moduli perspective. It is, however, obvious from the
perspective of equivariant Euler classes!

Proposition 5.6. Let H ≤ G be a subgroup, and let g ∈ G be arbitrary. Then we can
consider restricting a G-set along the inclusion of H in G, or along the group homomorphism
cg : H → G given by h 7→ ghg−1. These induce naturally isomorphic functors FinG → FinH .

7Note the existence of Type III quartics does not contradict this line of reasoning — the special values
for passing from XII to X and then from X to VII are contradictory, so an intermediate change of basis is
first needed, and new parameters need to be defined.
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Figure 13. The Edge quartic, with D8-orbits on its bitangents given by

[D8/e] + 2[D8/C
(1)
2 ] + 2[D8/C

(2)
2 ] + [D8/C

Z
2 ].

Proof. It suffices to observe that conjugacy by g is a natural isomorphism on the category
of finite G-sets. □

Corollary 5.7. Let E → M be any G-equivariant enumerative problem satisfying the
hypotheses in [Bra24, 1.1] (e.g. counting lines on symmetric cubic surfaces or counting
bitangents to planar quartics). Then the restricted Euler class nH(E), obtained as the
image of

πG
0 MUG → πH

0 MUH

nG(E) 7→ nH(E)

depends only on the conjugacy class of H in G.

Proof. Equivariant Euler classes valued in homotopical bordism are in the injective image
of the Burnside ring by [Bra24, 5.24], hence it suffices to prove the statement there. This
follows directly from group completing isomorphism classes of finite G-sets and applying
Proposition 5.6. □

This explains what we observed in Example 5.5. Although there we cannot deform Type
VII quartics into Type IV quartics, there are unique conjugacy classes of D8 and S4 in PGL3

occurring as the automorphism groups of quartics, and the copy of D8 is subconjugate to
S4.

Remark 5.8.

(1) This means that we can still restrict computations along the dashed arrows in our
subgroup lattice, despite the fact that the associated components in the moduli are
not attached directly to one another.

(2) This line of reasoning fails for isomorphic subgroups which are not conjugate —
given an S4-symmetric cubic surface, the restricted action on its lines via the two
non-conjugate cyclic subgroups of order two are different, as computed in [Bra24,
6.5].
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