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Abstract. Enumerative geometry, the art and science of counting geometric objects satis-
fying geometric conditions, has seen a resurgence of activity in recent years due to an influx
of new techniques that allow for enriched computations. This paper offers a historical survey
of enumerative geometry, starting with its classical origins and real counterparts, to new
advances in quadratic enrichment. We include a brief survey of the paradigm shift initiated by
Gromov-Witten theory, whose impact can be seen in recent results in quadratically enriched
enumerative geometry. Finally, we conclude with a brief overview of emerging directions
including random and equivariant enumerative geometry.

1. Introduction

Enumerative geometry is, colloquially speaking, the study of counting geometric things.
When a mathematician asks “how many X satisfy property Y ” they are often met with the
answers zero or infinitely many. Enumerative geometry deals with questions whose answers
lie between these, where one has a finite amount of data to latch onto and study. Famous
examples in this area include the Apollonian problem of finding the eight circles tangent to
three on the plane, Salmon and Cayley’s computation that there are 27 lines on a smooth
cubic surface, and Kontsevich’s recursive formula for the finite numbers Nd of degree d
rational curves interpolating 3d− 1 points on the projective plane.

The power of enumerative geometry comes from the statement of conservation of number,
which says that the answer to the problem is well-defined and independent of initial parameters,
provided the parameters are generically chosen. For example any two smooth cubic surfaces
have 27 lines, or very pedantically, the set of lines on any smooth cubic surface has cardinality
27. When we ask a specific enumerative geometry problem, e.g., finding the flexes on a
smooth planar cubic, we are naturally handed a finite set of solutions. Conservation of
number says that given two instances of the problem, the finite sets of solutions are the same
in number, i.e., when we count solutions with multiplicity, we obtain the same value. To that
end we posit the following:

Pseudo-definition: We say a theory of enumerative geometry is enriched if its solutions
are sets equipped with additional structure that generalize multiplicity (we typically refer to
this generalization as weight or mass), and it has a conservation of number statement that
the weighted sums of these structures agree for any two generic instantiations of the problem.

In classical enumerative geometry, solutions are weighted by their multiplicity. In this note,
we explore a few instances of enriched enumerative geometry, including:
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▷ Signed real enumerative geometry : We work over the real numbers, and each solution
is weighted not only by its multiplicity but also by a sign + or −, where a negative
sign captures a local change in orientation. The sum of these signed contributions is
conserved so long as the sum is finite.

▷ Gromov–Witten theory : We generally work over the complex numbers, though con-
siderable work has been done to study Gromov–Witten invariants over other fields.
Each solution is weighted by a finite group of automorphisms, and in general the sum
of the reciprocals of the orders of automorphism groups of solutions is conserved.

▷ Quadratically enriched enumerative geometry : We work over an arbitrary field k,
and each solution is weighted by a (virtual) symmetric bilinear form over k. The
solution is conserved in the group completion of the monoid of isomorphism classes of
symmetric bilinear forms, the Grothendieck–Witt ring GW(k).

▷ Random enumerative geometry : We work over the real numbers, and instantiate a
problem according to some notion of randomness. The finite set of solutions is instead
replaced by an expected value of the number of solutions.1

▷ Equivariant enumerative geometry : We are again over the complex numbers, working
over an object with some finite symmetry group G acting on the moduli space of
potential solutions. Our solution sets are naturally G-sets, and conservation says that
two sets of solutions are in G-equivariant bijection.

The purpose of these conference proceedings is to expose readers to the development of
some of these ideas and how they flow together. A tremendous amount of detail, nearly
all, is missing from these notes, so it is not intended to be a technical introduction or a
thorough historical introduction to any one of these collections of work. As J.F. Adams once
wrote, this work should be viewed as “an essay in machine appreciation; it is not intended to
qualify the reader for a mechanic’s certificate” [Ada78]. In particular, this article should be
supplemented by the many cited references for anyone interested in legitimately learning the
mathematics discussed here. To that end, we have omitted certain definitions and results
and skipped certain parts of historical narrative, instead focusing on specific things according
to our own interests and within the context of this conference proceedings. Nevertheless
we hope this might serve as interesting reading to anyone who has ever heard the phrase
“enriched enumerative geometry” and wondered what it was all about.
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1This doesn’t quite fit the pseudo-definition of enrichment above, but it fits nicely into the story we’re
telling here.
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2. Classical enumerative geometry

While enumerative geometry is often said to have begun in antiquity with the work of
the great Greek geometers, perhaps its two most important components (algebraic closure
and conservation of number) did not crystallize until the 19th century. Throughout the
Renaissance, original Greek texts saw direct Latin translations, rather than translation by
way of the Arabic translations from the Islamic Golden Age centuries prior. The wave of
interest in ancient Greek culture at this time was felt throughout many disciplines and
art forms, and mathematics was not immune: a renewed focus was placed upon studying
classical Greek geometry in the style of the ancients. Moreover the now mythic status of
these geometers of antiquity led mathematicians to devote a great deal of effort to work
out exactly what mathematics may have been contained in the many texts lost to time. A
key example of this is Viète’s 1600 text Apollonius Gallus [Viè00] in which he attempts
to reconstruct the arguments from the lost books in Apollonius of Perga’s foundational
treatment on conics. While mathematicians both during the Renaissance and today are
familiar with Euclid’s Elements, many believe that the loftiest peaks of Greek geometry are
lost to time. Throughout the mathematical literature of antiquity, Elements is contrasted
with Euclid’s lost work Porisms, in which “higher geometry” was said to be developed.
Mathematicians including Maclaurin and Newton have developed theories about what may
have been contained in this text, and the tradition of postulating about the Porisms continues
into the modern day.

We begin our story of classical enumerative geometry in France at the beginning of the
19th century. At the École Polytechnique, geometry was taught alongside analysis to civil
engineers, politicians, military officers, as well as future mathematicians. Analysis, in contrast
to algebra or geometry, enjoyed a rare position of prestige, viewed even outside mathematics
as a tremendous educational endeavor critical to the education of anyone desiring to rise the
ranks of Napoleonic France. Gaspard Monge, a professor of geometry at École Polytechnique,
published his treatise on descriptive geometry2 in 1799 — this is demarcated by Coolidge
as the beginning of the resurrection of projective geometry from its Greek origins. Monge
was an incredibly renowned geometer in his own right, but his influence is perhaps best felt
through the generation of students he graduated, and the subsequent geometric revolution
that their ideas inspired. He held his position until he was ousted by Laplace (who detested
Monge and devalued his mathematics by extension) in 1815.

We focus on two key figures who studied at École Polytechnique during this period of
time: Jean-Victor Poncelet and Michel Chasles. Both shared a dream of establishing a pure
geometry, which would bring geometry onto the same footing as algebra and analysis. Pure
geometry would be a language, akin to algebra or analysis, in which computations could be
carried out. The so-called ideal solutions would exist in direct analogy to how imaginary
numbers exist as solutions of real equations [Che24] and would allow for general geometric
statements which treat many cases at the same time. Both Poncelet, and later Chasles,
viewed Monge’s descriptive geometry as a stepping stone towards this goal, although they
had disagreements in its scope.

2Descriptive geometry should be distinguished from analytic geometry in that the latter makes reference
to coordinates, while the former attempts to be as coordinate-free as possible.
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One of Poncelet’s core principles which he wished to include in pure geometry was his
notion of continuity – this held that certain geometric invariants3 were invariant under small
parametrized changes. As a motivating (if not mildly ahistorical) example, consider the
following:

Problem 2.1 (The Circles of Apollonius). Given three circles on the plane, how many are
tangent to all three?4

The answer to this problem (provided we interpret circles and planes in a projective
way over the complex numbers, which the reader may correctly object is ahistorical) is
eight. In this context, we may interpret Poncelet’s principle of continuity as indicating the
following: given three initial circles and the eight tangent circles, by slightly perturbing the
equation of any of our initial circles, the tangent circles grow or shrink or translate in order to
accommodate tangency, but no new solutions are created and no existing solutions destroyed.
We invite the reader to think about this as homotopy invariance, and indeed this can be
reinterpreted as the statement that a general algebraic section of OP3(2)⊕3 is transverse to
the zero section at eight points,5 and this fact is invariant under a small perturbation of the
section.6

Michel Chasles’ studies at École Polytechnique were briefly interrupted by his conscription
into Napoleon’s forces, after which he tried his hand in finance before returning to mathematics.
In 1837 he published his Aperçu Historique, considered one of the great historical texts on
geometry, but also one of the most questionable. While Poncelet frequently had to teach
analysis and viewed pure geometry as an independently valuable field of geometry, he
considered coordinate-dependent arguments as a distraction from the pure intuition which
must underly geometry; Poncelet was not an undivisive figure in his endeavors, getting into
public arguments with figures like Cauchy and Gergonne. Chasles, on the other hand, drifted
into flawed historiography in his efforts to champion pure geometry. His attempts to recreate
Euclid’s Porisms cast them as part of a direct mathematical genealogy which passed through
Monge’s descriptive geometry and arrived at his own work [MS22]. Like Poncelet, he situated
pure geometry in direct contrast to analytic geometry, but pursued its development in a very
different way.

Chasles’ theory of characteristics provided brilliant insight, and set the stage for what
would become Schubert calculus. As an example, consider the following:

3The application to enumerative geometry which would come later is the behavior of projective invariants
under continuous changes, although Poncelet studies many metric invariants in his book.

4This problem is attributed to Apollonius of Perga (who Geminus of Rhodes nicknamed the excellent
geometer), although no original writing on this problem exists. The attribution comes from nearly half a
millennium later, in work of Pappus of Alexandria, which was resurrected and popularized by Viète [Viè00].

5While P5 is a moduli space of conics, enumerative questions dealing with circles leverage projective
three-space as a moduli space of circles. This can be described of the linear subspace P3 ⊂ P5 of those conics
passing through the two points [1 : i : 0] and [1 : −i : 0] (called the circle points by Chasles). The locus of
circles tangent to a fixed one forms a quadric hypersurface in P3, and by Bézout’s theorem, three generic
such hypersurfaces meet transversely in eight distinct points.

6The invariance of this statement boils down to the observation that locally, transversality is the statement
that a particular matrix has nonzero determinant. This property is preserved under any very small deformation
of the entries in the matrix.



THE EVOLUTION OF ENUMERATIVE GEOMETRY 5

Problem 2.2. Given i points and 5− i lines on the plane, how many conics pass through
these points and are tangent to these lines?

Working with P5 as a space of conics, Bézout’s theorem tells us to compute the degree of
the hypersurfaces corresponding to passing through a point or being tangent to a line, which
are one and two, respectively. The answer then appears to be 25−i, a statement implied by
de Jonquière’s prior work [dJ66]. In hindsight, we can appeal to pole-polar duality to see
that this cannot be correct, as it implies in the dual projective plane that there are 32 conics
passing through five points. The problem with this is a defect in P5 as a moduli space for
conics – it contains a locus of doubled lines and line pairs which can contribute degenerate
solutions to results that attempt to leverage Bézout’s theorem on this space.7

Chasles’ insight was that, given a family of conics, the condition µ of passing through a
point and ν of being tangent to a line should both be considered, and any condition on conics
is a linear combination of these. The number of conics passing through i points and tangent
to 5− i lines can then be computed as 2min{i,5−i}. Using his theory of characteristics, Chasles
counted the smooth conics tangent to five given conics as 3264, correcting an erroneous
computation of Steiner which fell victim to the same issue creating the number 32 above. In
contemporary language, Chasles’ computations can be thought of as occurring in the Chow
ring of the moduli space of complete conics, where µ and ν are the pullback of the hyperplane
class to the projective plane and its dual, respectively [EH16, §8.2]. We refer the reader to
[Kle80] for a more detailed account of this story.

In the next generation of geometers, a student of Chasles named Hieronymous Zeuthen
built upon the foundation of pure geometry that had been initiated. Unlike Poncelet and
Chasles who preferred a pure geometry in which pictures did not guide intuition, Zeuthen
visualized singularities and intersection multiplicity in a dynamic way, and carried out explicit
computations with algebraic equations in order to study geometry. Zeuthen’s survey paper
on enumerative geometry for the German encyclopedia of mathematics, later translated into
French together with Pieri, highlights the usage of Poncelet’s conservation of number in
enumerative geometry, and is still considered one of the great texts in enumerative geometry.

Hermann Schubert was also deeply influenced by Chasles’ perspectives on geometry,
publishing his thesis on the three-dimensional analog of the Circles of Apollonius problem.
Inspired by Chasles and by Poncelet’s principle of continuity, Schubert advocated for what
he called the principle of conservation of number. This held that the numerical answer to
an enumerative problem was independent of the initial parameters chosen (e.g., there are
three circles tangent to any three on the plane, or 27 lines on any cubic surface), provided
they are chosen suitably generically. While Poncelet’s idea of continuity communicated that
relationships between geometric figures were invariant under small parametrized changes,
Schubert’s perspective was decidedly more static — he viewed the principle of conservation
of number as a computational technique: an enumerative theorem may be proven by picking
parameters and then solving this instantiation of the given problem.

7Explicitly, there is a 2-dimensional family of conics described by the square of an equation of a line.
Geometrically, these are lines considered with multiplicity two - in particular any point of intersection between
a doubled line and another curve is (technically speaking) a point of tangency, and contributes to a count of
conics satisfying a given tangency condition. One has to throw out this contribution in order to obtain the
desired honest geometric count.
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With this principle in hand, Schubert began developing a calculus to enumerate geometric
objects in three-dimensions satisfying certain conditions (these and many of their higher-
dimensional generalizations are now called Schubert problems). These ranged from relatively
simple problems like counting the two lines meeting four lines in three-space, to counting the
number of quadric hypersurfaces tangent to nine generic quadric hypersurfaces in three-space.
Schubert called his mathematics the calculus of conditions (we now call it Schubert calculus).
Kleiman’s overview of the developments of Hilbert’s 15th problem and Schubert calculus
give a significantly more detailed historical overview as well as an exposition of beautiful
examples of Schubert calculus in action [Kle76a].

Despite the fact that all his computations have proven over time to be correct, Schubert
provided no semblance of a proof that his calculus of conditions was valid. This drew the ire
of mathematicians including Zeuthen, Halphen, Study, and Kohn. The shaky bedrock upon
which this theory was built led to Hilbert including Schubert calculus as the fifteenth of his
eponymous problems at the turn of the century.

2.1. Resolving Hilbert’s 15th problem. Schubert’s calculus of conditions, Chasles’s
theory of characteristics, and much of 19th century enumerative geometry, lacked a rigorous
foundation. This framework emerged from work of van der Waerden in 1929 [vdW30], lever-
aging simplicial cohomology, a tool coming from algebraic topology, and work of Lefschetz
[Kle76b]. The idea was the following: rather than study some algebraic locus (say, a hyper-
surface representing some geometric condition) we should instead investigate its associated
cohomology class. The condition of a circle being tangent to a fixed circle, for instance, is
the class 2h ∈ H2(CP3;Z), and changing the fixed circle does not affect the cohomology
class. To carry out a computation which combines conditions, we want to compute the
number of points in the intersection, which is obtained by multiplying these classes using
the ring structure on singular cohomology. To compute the number eight in the Circles of
Apollonius problem for instance, we compute that the number of circles tangent to three
of them is 23h3 ∈ H6(CP3;Z), which after integrating is equal to 8. One may say that the
Chow ring is the home for Schubert’s computations, as it is the home for intersection theory
of algebraic varieties, however most of the spaces over which these classical computations are
carried out were cellular varieties, hence the cycle class map from the Chow ring to singular
cohomology is an isomorphism, and the computation is agnostic as to whether we view it
as occurring in Chow groups or cohomology.8 Viewing these computations as occurring
in singular cohomology is not only historically sound, it is pedagogically useful here – the
observation that an enumerative computation can be carried out via a characteristic class is
crucial in efforts to enrich classical enumerative geometry to other contexts. It also provides
an elegant resolution to the principle of continuity as discussed, that a characteristic class
computed by a section depends only on the homotopy class of the section – i.e. it is invariant
under continuous deformations, not just algebraic ones.

2.2. Parameterized problems: towards thinking about stacks. Following the develop-
ment of theories like singular cohomology, the difference between counting solutions to an

8Viewing computations as Chow-valued can mislead us in attempts to enrich enumerative computations to
other settings — for instance attempting to build equivariant enumerative geometry using equivariant Chow
groups produces answers valued in the complex representation ring of the group, which is not sufficient to
recover the G-action on the solutions themselves (see for instance [Bra25b, Example 5.22]).
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enumerative problem and computing a homology class became more or less indistinguishable.
Indeed many enumerative problems whose rigorous solutions eluded 19th century geometers
can be now thought of as easy computations in the cohomology ring of a certain moduli space.
Schubert calculus has a very different meaning today than it did a century ago; instead of
referring to the procedure of solving and enumerating linear intersection problems it now
means (to many) the study of cohomology of homogeneous spaces under a simple Lie group.

Many moduli spaces one wishes to study, however, cannot be accurately captured as an
algebraic variety or manifold. Often this is due to the moduli space attempting to describe
objects which are parametrized in some sense. A motivating problem is the following classical
interpolation problem:

Problem 2.3. How many rational degree d curves pass through 3d − 1 points in general
position on P2?

The development of stacks in the 1960’s introduced a mathematical foundation that refined
the existing study of moduli spaces for these sorts of questions. This led to a resurgence of
enumerative geometry as well as a shift of focus towards Gromov-Witten theory and related
theories, which we discuss more in Section 4.

3. Real counts in enumerative geometry

The study of algebraic geometry over the reals is much more complicated than over the
complex numbers due to the lack of algebraic closure. In enumerative algebraic geometry
this is felt in the failure of conservation of number. Consider for instance the classical count
of 27 lines on a smooth complex cubic surface [Cay49].

Theorem 3.1 ([Sch58]). A real smooth cubic surface can have 3, 7, 15, or 27 real lines.

One perspective to take on this is that the moduli of smooth complex cubic surfaces is
connected, and the incidence variety of cubic surfaces equipped with a line ramifies only over
the singular cubic surfaces, hence any smooth cubic surface contains the same number of
lines over C. Over the reals, the moduli of smooth real cubic surfaces is disconnected, having
five connected components corresponding to the number of real lines and real tritangents
[Seg42, §23].

Indeed this type of behavior is the primary complicating factor in studying smooth objects
in real algebraic geometry — over the complex numbers a codimension one discriminant locus
has real codimension two, whereas over the reals it has real codimension one, chopping up a
space into many connected components. As an example to keep in mind when contemplating
complexity, every smooth planar curve of degree d over C looks identical to a topologist,
whereas over the real numbers the number of connected components in the moduli space of
real smooth planar curves of degree d grows exponentially in d2 [OK03]; the classification of
their possible shapes is part of Hilbert’s 16th problem, and is completely open for d ≥ 8.

Perhaps one of the earliest cases of real counts to enumerative problems is one we have
already seen – this is the Circles of Apollonius (Problem 2.1). The problem of counting circles
tangent to three over the reals was well-studied by Viète at the turn of the 17th century
in his famous book Apollonius Gallus [Viè00], after which it remained a consistent topic
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of study, enjoying solutions by Newton, Gergonne, and many others.9 For the purposes of
this narrative, however, we view this topic as lying more firmly in classical Euclidean and
projective geometry than in enumerative algebraic geometry.

In the late 1930’s, Beniamino Segre (a former student of Corrado Segre) had been studying
the geometry and topology of real algebraic varieties, particularly intersections, via their
limiting behavior. After fleeing fascism in Italy, he was interned in England, and it was
during this time he worked on perhaps his most well-known work, which was his treatise on
non-singular cubic surfaces [Seg42]. This book begins by studying the behavior of lines under
a degeneration from a cubic surface to a union of three planes. This topological perspective,
in contrast to the more algebraic one, allows for a more careful geometric analysis of cubic
surfaces over the real numbers, as highlighted by Zariski in his review of Segre’s book. In
particular, given a real line on a cubic surface, and a hyperplane containing that line, the
hyperplane cuts the cubic surface at a residual conic, intersecting the line at two points (Segre
called these parabolic points). Interchanging pairs of parabolic points gives an involution of
any real line, and lines are called hyperbolic or elliptic corresponding to whether the fixed
locus of the involution is real or complex, respectively [Seg42, §27]. This leads to the following
theorem.

Theorem 3.2. On a real smooth cubic surface, we have that

(3.1) #{hyperbolic lines} −#{elliptic lines} = 3.

This can be proven in a number of ways, for instance Benedetti and Silhol proved that
a real cubic surface inherits a Pin− structure whose modulo four reduction can distinguish
the two types of lines at the level of homology [BS95]. This can also be proven from the
perspective of open Gromov-Witten theory, see for instance [Sol06, HS12]. A perspective we
discuss here is what one may call absolute Euler classes.

Definition 3.3 ([OT14]). Let X be a closed real manifold of dimension n, and V → X a
real topological vector bundle which is relatively oriented10 in the sense that the line bundle
Hom(detTX, detV ) admits a trivialization θ. Then V admits an Euler class e(V, θ) which
depends on θ up to a sign. We call |e(V, θ)| the absolute Euler class of V .

Analogous to how a Chern class of a corank zero bundle is Poincaré dual to the vanishing
locus of a generic section, the absolute Euler class provides a signed count of the zeros of
a generic section. For example the absolute Euler class of Sym3S∗ → GrR(2, 4) is equal to
3, and the local index at a line is equal to +1 or −1 corresponding to whether the line is
hyperbolic or elliptic, respectively. From this perspective Equation (3.1) can be reinterpreted
as a formula arising from an absolute Euler class, and it becomes clear how to generalize
this to other settings. In [OT14, FK13] the authors compute the absolute Euler class for the
analogous symmetric bundles over the Grassmannian of lines in higher-dimensional space,
proving for instance a lower bound of (2n − 1)!! for the number of real lines on a general
smooth real hypersurface of degree 2n− 1 in Pn+1. A beautiful analog of this result for the
240 (−1)-curves on a real degree one del Pezzo can be found in [FK21], a spiritually similar
result for bitangents to real algebraic curves can be found in [BBG24], and a signed count of
rational curves on a generic real K3 surface can be found in [KR15].

9For an overview of solutions to this problem see [Cou61].
10C.f. Definition 5.2, note that for real line bundles being a square is the same as being trivial.
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3.1. Signed real enumerative geometry. The lesson to be learned from Segre’s work is
the following: while conservation of number may break over R, a certain signed count of
solutions may remain invariant, and this sign can encode beautiful information about the
local geometry. This is the jumping off point for quadratically enriched enumerative geometry,
which we touch on more in Section 5. Before doing this, we discuss another key appearance
of this idea, which is that of Welschinger invariants.

Recall that the number Nd of complex rational curves interpolating 3d− 1 points on P2 in
Problem 2.3 is invariant of the position of the points, provided they are in general position.
As we might expect, this same statement fails in the context of real curves – for instance
through 8 generic points in RP2 there can be 8, 10, or 12 real rational cubics interpolating
them [DK00]. Groundbreaking work of Welschinger tells us we should count the cubics
interpolating these points weighted by a sign. More explicitly:

Definition 3.4. If C is a rational curve of degree d, we define its Welschinger invariant to
be Wel(C) = (−1)n, where n is the number of isolated points of C.11 This is also sometimes
called the mass of the curve.

The remarkable theorem is the following:

Theorem 3.5 ([Wel06]). For 3d− 1 = n1 + 2n2 points on RP2, n1 of them real and n2 pairs
of complex conjugate points, we have that the quantity

Wd,n1 =
∑

C real deg d
through these points

Wel(C).

is independent of the choice of points (provided they are chosen generically).

4. The Emergence of Gromov–Witten theory

A survey of enumerative geometry would be remiss to omit a discussion of Gromov–Witten
theory, currently one of the most active areas of enumerative geometry. The goal of this section
is a departure from prior sections; this section primarily serves to introduce high-level aspects
of the subject that are most relevant to current trends in quadratically enriched enumerative
geometry, discussed in Section 5. This section does not seek to serve as a comprehensive
historical review or a complete technical introduction to the subject, which would be beyond
the scope of this work. Considering this warning to the reader, we include technical references
introducing the subject in varying levels of detail [PT14, FP97, KV07, Ros14].

Motivated by symplectic geometry and rigidity questions, Gromov introduced the study
of pseudo-holomorphic curves and their existence in the presence of a symplectic structure
on an almost complex smooth manifold [Gro85]. In 1988, groundbreaking work of Witten
introduced topological sigma models as another means of studying maps from the Riemann
sphere to an almost complex manifold [Wit88]. These beautiful new perspectives on the
study of maps from spheres to complex manifolds arguably ignited the modern study of

11Recall a real point on a real rational curve is said to be isolated if its directions of tangency form a
complex conjugate pair.
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Gromov–Witten invariants in symplectic and algebraic geometry and topology, which we
focus on in this section.

Our perspective on Gromov–Witten theory is the algebraic study of rational curves in
algebraic varieties, a question which has appeared in various forms throughout this article:

Problem 4.1. How many rational curves lie on a smooth complex projective variety?

When X is CP2, a rational degree d curve on CP2 is a map f : CP1 → CP2 given by
f([s : t]) = [f0(s, t) : f1(s, t) : f2(s, t)] where the fi are degree d homogeneous polynomials.
This is the natural algebraic analogue of the question of studying maps from the Riemann
sphere to a complex manifold, which is a simple to state and notoriously difficult to answer.

The starting point for Problem 4.1 is for CP2, which is the question of how many degree
d rational plane curves exist for any d. With no additional restrictions, there are infinitely
many for each d. We may ask the same question after imposing the condition that we
seek to count rational curves that pass through a prescribed number of points in general
position in CP2. A dimension argument shows that the space of degree d rational, nodal
plane curves is 3d− 1 dimensional, which leads us to computing the finite solutions Nd to
Problem 2.3. Many well-known variations on this problem are considered classical, and they
have historically captured the attention of algebraic geometers independent of developments
Gromov–Witten theory. A celebrated result of Caporaso-Harris leverages the geometry of
the Severi varieties parameterizing nodal plane curves of degree d and geometric genus g to
give a recursive formula enumerating the number of nodal plane curves of degree d passing
through an appropriate number of points [CH98].

One of the early successes of Gromov–Witten theory was the proof of a recursive formula in
d for the number of degree d rational plane curves, denoted Nd, given by Kontsevich and Manin
[KM94, 5.2.1]. In rapid succession, Gromov–Witten theory was developed symplectically
and algebraically [Kon95, RT94, RT95, MS12, BM96, Beh97], leading to a flurry of results in
enumerative geometry that had previously been unattainable using existing methods. Though
these results are too numerous to name individually, we mention a few [Giv96, Vak00, BL00].

Given a smooth, projective, complex algebraic variety X and β ∈ H2(X,Z), Gromov–
Witten theory studies stable maps from nodal curves of arbitrary genus to X. The moduli
stack of genus g, n-marked stable maps, denoted M g,n(X, β) is a proper Deligne-Mumford
stack of finite type [Kon95, Section 1.3.1 p.3]. Note when X = CP2, β = d · ℓ where d ≥ 1
and ℓ is the class of a line, and g = 0, M0,3d−1(CP2, d · ℓ) can be thought of as the moduli
stack parameterizing nodal, rational plane curves of degree d with 3d− 1 marked points.

Diverging slightly from the ethos of previous sections, in order to motivate certain quadrati-
cally enriched results we use the remainder of this section to define Gromov–Witten invariants.
Defining Gromov-Witten invariants is best done in cases, and we focus on the case when
the relevant moduli space is smooth. When X is convex in the sense of [KM94, 2.4.2], for
example X = CPr for some r, M0,n(X, β) is smooth [Kon95, 1.3.2]. For each 1 ≤ i ≤ n there
is an evaluation map

evi : M0,n(X, β) → X, (C
f→ X, p1, . . . , pn) 7→ f(pi),

and these can be defined more generally when X is not convex and g > 0. Given p1, . . . , pn
be n points of X and their Poincaré duals by γi ∈ H2dim(X)(X), the cohomology class
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ev∗i γi ∈ H∗(M0,n(X, β)) represents the class of stable maps whose image passes through pi
for each i. Thus the n-fold cup product ev∗1γ1 ∪ · · · ∪ ev∗nγn in H∗(M0,n(X, β)) represents the
class of stable maps whose image passes through pi for all 1 ≤ i ≤ n. The Gromov–Witten
invariant counting genus 0, degree β stable maps passing through p1, . . . , pn is the degree

(4.1) ⟨p1, . . . , pn⟩Xg,β := deg
(
[M0,n(X, β)] ∩ (∪n

i=1ev
∗
i γi)

)
.

There are more general ways of defining Gromov–Witten invariants, but this formulation of
the definition is most relevant for Section 5. For instance, we can define Gromov–Witten
invariants counting stable maps passing through cycles Vi with Poincaré duals γi ∈ Hni(X)
using the degree formulation in (4.1) more generally so long as [M0,n(X, β)] ∩ ∪n

i=1ev
∗
i γi is a

zero cycle.

Remark 4.2. An immediate consideration in the definition above arises when X is not convex
or when g > 0, in which case M g,n(X, β) is not smooth. In these instances, we cannot hope
to take the degree of ev∗1γ1 ∪ · · · ∪ ev∗nγn by capping with the fundamental class [M g,n(X, β)]
and pushing forward to a point, as M g,n(X, β) is singular and has irreducible components of
varying dimensions. Beautiful work of Li-Tian [LT98] and Behrend-Fantechi [BF97] shortly
thereafter constructs a virtual fundamental class for finite type Deligne-Mumford stacks. In
particular, there is a virtual fundamental class [M g,n(X, β)]virE• of the expected dimension
given a perfect obstruction theory E• for M g,n(X, β) [Beh97]. The virtual fundamental class
[M g,n(X, β)]virE• can be used to define Gromov–Witten invariants in general. Gromov-Witten
invariants have been used to answer Problem 4.1 in various cases, two of which are discussed
below.

Based on the explanations given thus far, which are far from thorough, the definition
of Gromov-Witten invariants leaves much to the imagination in terms of computational
feasibility. Stunningly, powerful tools make these invariants computable in a number of cases
of interest. We give two examples that will be relevant in Section 5.

Gromov–Witten invariants of blow-ups of projective space. A natural course
of study following the curve counting results of Caporaso-Harris [CH98] and Kontsevich-
Manin [KM94] on enumerative curve counts for Pn is the study of Gromov–Witten invariants
of smooth, projective rational surfaces, i.e., surfaces which are deformation equivalent to
P1 × P1 or a blow-up of P2 at finitely many points x1, . . . , xr. Gromov–Witten invariants of
blow-ups of projective space have been studied by Göttsche-Pandharipande and Gathmann
[GP98, Gat01] amongst others; Gathmann studies the case of blow-ups of Pn. In particular,
such Gromov–Witten invariants can be interpreted in terms of counts of rational curves in P2

with specified tangent multiplicities at the points x1, . . . , xr.

Equivariant localization. Equivariant localization is a powerful tool in differential and
algebraic topology which allows one to compute integrals over a suitable space with a given
group action in terms of the fixed point locus of the group action. Building on results of
Atiyah-Bott in equivariant cohomology [AB84] and Edidin-Graham in equivariant Chow
groups [EG98], Graber-Pandharipande give a C∗-equivariant virtual localization formula
for a C∗-equivariant scheme X with a C∗-equivariant perfect obstruction theory E•, which
expresses [X]virE• in terms of the virtual fundamental classes and Euler numbers of the C∗-
fixed point locus [GP99]. Graber-Pandharipande show a consequence of this is a virtual



12 CANDACE BETHEA AND THOMAS BRAZELTON

localization formula for M g,n(X, β), which can be leveraged to express Gromov–Witten
invariants X = CPr as a sum over graphs corresponding to the C∗-fixed point loci [GP99].

These example cases motivate the work to-date on counting rational curves in quadratically
enriched enumerative geometry, covered in Section 5. To conclude this section, we give a brief
overview of the specific historical developments since the advent of Gromov-Witten theory
that most influence current work in quadratically enriched enumerative geometry today.

While powerful and quite general, Gromov–Witten invariants are not perfect. They
are often not enumerative, for example for threefolds in g > 0 cases they are typically
rational numbers rather than integers to account for automorphisms of stable maps. One
of the most prominent paths toward resolving some of the difficulties of Gromov–Witten
invariants is the introduction of Donaldson–Thomas invariants, which seek to count stable
sheaves in a given curve class on a Calabi-Yau 3-fold [DT98, Tho00]. The moduli space
of such sheaves has a perfect obstruction theory in the sense of Behrend-Fantechi [BF97]
that is in fact symmetric [Beh09, BF08]. Donaldson–Thomas invariants can be defined by
integrating over the associated virtual fundamental class of the moduli of stable sheaves.
While Donaldson–Thomas invariants have their own obstacles, see [PT14] for a discussion,
they are integral and can be computed motivically using the Behrend constructible function
on the moduli space [Beh09]. The comparison between Gromov–Witten invariants and
Donaldson–Thomas invariants is natural to explore, with several groundbreaking results on
their connections [MNOP06a, MNOP06b, BP08, OP10, Par23]. See Thomas-Pandaripande
[PT14] for a description of curve counting theories more generally, beautifully elucidating how
Gromov–Witten and Donaldson–Thomas invariants fit into broader enumerative theories.

In addition to counting stable maps to a target variety, significant study has also been
devoted to counting curves in a fixed linear system. Notably is the Yau–Zaslow formula of
Bryan–Leung, which counts genus g curves with n nodes in a fixed linear system on a K3
surface, remarkably given by the Dedekind η function [BL00]. See also work of Beauville,
Chen, and Fantechi-Göttsche-van Straten [Bea99, Che02, FGvS99]. We also mention the
Göttsche conjecture, first proved by Kool-Shende-Thomas and separately Tzeng shortly after
[KST11, Tze12], counting nodal curves in a linear series defined by a sufficiently ample line
bundle L on a smooth projective complex surface S in terms of a polynomial in L2, L.KS,
K2

S, and c2(S). This line of questioning around counts of nodal curves in a fixed linear series
has been studied in quadratically enriched enumerative geometry, results will be mentioned
in Section 5.

As Section 5.3 focuses on quadratic enrichments of Gromov–Witten invariants, we end this
section by noting that enriched Gromov–Witten invariants have appeared in existing work.
For example, celebrated work of Y-P Lee constructs Gromov–Witten invariants in K-theory
via integration over a virtual structure sheaf [Lee04], and Guéré recently studied K-theoretic
Gromov–Witten invariants using virtual localization for a finite group action [Gué23].

5. Quadratically enriched enumerative geometry

At the beginning of the 21st century, motivic homotopy theory emerged as a popular exciting
new direction in mathematics, rising to the forefront after Voevodsky’s Fields Medal-winning
resolution of the Bloch-Kato conjectures. Following work of Morel, it was understood that
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motivic spaces, the main objects of study in motivic homotopy theory, over a field k admit a
quadratic Euler characteristic valued in the Grothendieck–Witt ring GW(k). Following Marc
Hoyois’ thesis [Hoy15], which explored further applications of this A1-enhancement of the
Euler characteristic, Marc Levine, and simultaneously Jesse Kass and Kirsten Wickelgren,
began exploring potential ways to build an enumerative geometry whose answers take values in
GW(k) rather than Z. This is now called A1-enumerative geometry or sometimes quadratically
enriched enumerative geometry.

Definition 5.1. The Grothendieck–Witt ring GW(k) of a field k is the group completion
of the semi-ring of isomorphism classes of non-degenerate symmetric bilinear forms over k.
Explicitly it is generated by the rank one forms

⟨a⟩ : k × k → k

(x, y) 7→ xay.

In 2000, Barge and Morel developed a theory of oriented Chow groups (also called Chow–
Witt groups) , which are twisted by line bundles over the input scheme, and which have a
natural home in the world of motivic homotopy theory. These should be thought of as an
enhancement of Chow groups, in that they are generated by cycles equipped with some extra
“algebraic orientation data” which we neglect to define precisely here. The properties of these
groups were established in further detail by Fasel and Srinivas [Fas08, FS09], and it is natural
to think of them as providing an enhanced setting for intersection theory, where the degree
takes values in the Grothendieck–Witt ring. This is the primary tool leveraged by Levine to
explore quadratically enriched enumerative geometry [Lev20].

Analogous to how the top Chern class provides an enumerative count of the zeros of a
section of a corank zero vector bundle along a smooth compact manifold (or how the absolute
Euler class does the same for relatively oriented bundles in the real setting), one has an Euler
class for relatively oriented vector bundles in the motivic setting. More precisely:

Definition 5.2. Let X be a smooth proper k-scheme of dimension n, and let V → X be an
algebraic vector bundle of rank n, which is relatively oriented, in the sense that there is an
isomorphism of line bundles

(5.1) Hom(detTX, detV ) ∼= L⊗2

for some line bundle L → X. Then this bundle admits a well-defined Euler number n(V ) ∈
GW(k).

Roughly speaking, a relative orientation can be thought of as a way of choosing a square
root of the Jacobian determinant bundle, allowing one to quadratically count solutions to
enumerative problems arising from Euler number computations in a way that is analogous to
keeping track of signs in real enumerative geometry (see subsection 3.1. The remarkable result
is that the Euler number provides a quadratically enriched count of the zeros of an algebraic
section of the bundle in a way that is independent of the choice of section. This result can be
found in [BW23, 1.1], but is the culmination of a lot of work towards establishing a rigorous
theory of motivic Euler classes [BM00, Mor12, AF16, Lev20, LR20, KW21].

A seminal application of these techniques is the following quadratically enriched count of
27 lines on a cubic surface.
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Theorem 5.3 ([KW21]). We have that

n
(
Sym3S∗ → Grk(2, 4)

)
= 15 ⟨1⟩+ 12 ⟨−1⟩ ∈ GW(k).

The rank of this form is 27, recovering the classical count of 27 lines on a smooth cubic
surface. The signature is 3, which recovers Segre’s theorem discussed in Section 3. Over
finite fields, for examples, this reveals new constraints on the possible fields of definition for
hyperbolic and elliptic lines on cubic surfaces. This result has been generalized to provide a
count of lines on symmetric hypersurfaces in general (see [Pau22], [Lev19, §8], and [BW23,
§6.1]).

5.1. Computing local indices. One of the core problems in quadratically enriched enumer-
ative geometry is computing local indices. As the Euler class is the sum of the local indices
of the zeros of a section, the local index should be read as some local geometric data that a
single solution contributes to the overall count (think: a line being hyperbolic versus elliptic).

In the setting of Definition 5.2, the local index is computed as an A1-Brouwer degree of the
intrinsic derivative of the section σ : X → V around an isolated zero. One can pass to affine
charts (see [KW21, Lemma 19] for precise details), hence the problem reduces to producing an
element in GW(k) from an endomorphism of affine n-space with an isolated zero at the origin.
In [KW19], the authors argued that the A1-Brouwer degree at a rational point generalizes
the Eisenbud–Khimshiashvili–Levine signature formula over the reals [EL77, Him77]. This
form can be interpreted in a number of ways – it is a quadratic duality pairing explored by
Scheja and Storch for complete intersections [SS75], or can be thought of more generally as a
trace form arising from coherent duality. The so-called EKL form is very computable, and
was shortly generalized to local degrees at points with residue fields finite separable over
the base [BBM+21] and finally points with arbitrary residue field [BMP23]. It can now be
computed explicitly in Macaulay2 [BBE+24].

5.2. More results in quadratically enriched enumerative geometry. Since the seminal
work of Kass-Wickelgren and Levine, a tremendous amount of progress has been made
leveraging these techniques to provide enriched counts of classical questions in enumerative
geometry. We highlight a few of these which are not mentioned elsewhere in this paper.

A quadratically enriched Schubert calculus was developed by studying the Chow–Witt
groups of Grassmannians and flag varieties [Wen24, HMW24]. Many of these results are
obtained as an A1 degree or Euler number. Bézout’s theorem has seen a quadratic enrichment
[McK21], as has the Circles of Apollonius problem explored in Problem 2.1 [McK22]. An
enriched count of bitangents to a planar curve has been developed [LV21] and was further
explored in [KM24]. An enriched count of lines meeting four lines in three-space [SW19] and
higher-dimensional analogues of this [Bra25a] have been developed. Arithmetic inflection
for linear series along curves has been enriched [CDH23, CDL+24]. Other results include
[AK25, DGGM23, Dar22, EW23b, EMP25, KP24, Mur25]. Kummer uses quadratically
enriched invariants to give a signed count of 2-torsion points on real abelian varieties over R
and C [Kum23]. Pajwani-Pál make meaningful progress toward an arithmetically enriched
Yau-Zaslow formula in characteristic 0 in [PP25], which is an example of a quadratically
enriched rational curve count in a linear series. While this is different from the quadratically



THE EVOLUTION OF ENUMERATIVE GEOMETRY 15

enriched rational curve counts through given point conditions, this naturally leads to the
next subsection.

5.3. Quadratically enriched curve counting. A problem that has appeared throughout
this article culminates in the following question:

Problem 5.4. Let k be a field. Given general points p1, . . . , pr of P2
k such that all residue

fields k(pi) are separable over k, how many degree d rational plane curves pass through
p1, . . . , pr?

A quadratically enriched answer to this question would give a quadratic form whose rank is
equal to the Gromov–Witten invariant Nd, recovering the complex count of rational degree d
plane curves when r = 3d− 1, and whose signature is equal to the Welschinger invariant Wd,
recovering the signed count of real degree d plane curves. Recent work of J. Kass, M. Levine,
J. Solomon, and K. Wickelgren introduce precisely these quadratically enriched counts of
rational curves in a certain divisor class on a del Pezzo surfaces of degree ≥ 4 over perfect
fields of characteristic ̸= 2, 3 [KLSW23a]. This builds on prior work of M. Levine defining
quadratically enriched Welschinger invariants [Lev18]. Beyond recovering real and complex
rational curve counts, their work proposes a definition of rational curve counts over other
fields.

Let X denote a del Pezzo surface of degree ≥ 4 over a perfect field of characteristic ̸= 2, 3.
Using the notation of Section 4, let M0,n(X, d) denote the moduli space of genus 0 stable
maps of degree d to X, and let

ev : M0,n(X, d) → Xn, (C
f→ X, p1, . . . , pn) 7→ (f(p1), . . . , f(pn))

denote the total evaluation map. Kass-Levine-Solomon-Wickelgren [KLSW23a] define the
quadratically enriched rational curve counts to be

NX,d,σ := degA
1

(ev),

analogously to the definition in Equation (4.1) defining Gromov–Witten invariants as a
degree. Examples are given in [KLSW23a, Table 1]. This definition relies on the technical
condition of relative orientability of the total evaluation map, which is shown to be relatively

oriented away from a high codimension locus in X in [KLSW23b]. In general, degA
1

(ev) is a
quadratic form over Xn, not over k, but a unique class in GW(k) can be obtained when X is
A1-connected, for example when X is a smooth proper rational surface.

Remarkably, the quadratic forms NX,d,σ depend only on the list of separable field extensions
over k determined by the chosen points, {k(p1), . . . , k(pr)} [KLSW23a, Section 8]. Equally
remarkably, NX,d,σ can be computed as a sum of individual contributions of each curve, which
are quadratic enrichments of the Welschinger mass (Definition 3.4), which take into account
the fields of definition of branches of the curve at nodal points. In some cases, the numbers
NX,d,σ can be computed using the A1-Euler number of a certain oriented vector bundle over
X, see [KLSW23a, 9.1].

This work has generated significant activity since its inception. This includes connections
with tropically enriched enumerative geometry, which is discussed in the next subsection. See
also [BW25b, CW24].
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Importantly, this work occurs alongside the study of quadratically enriched Donaldson–
Thomas invariants. Given a smooth, projective 3-fold X, Viergever and Viergever-Levine
define quadratically enriched Donaldson–Thomas invariants using a perfect obstruction theory
for the Hilbert scheme Hilbn(X) of ideal sheaves of length n with support of dimension 0 on
X [Vie23, LV25]. There is an associated virtual fundamental class for Hilbn(X) using the
construction of [Lev21], which is used to define the enriched Donaldson–Thomas invariants.
Viergever and Viergever-Levine leverage work of Levine on virtual localization and a relative
orientation for Hilbn(X) for computations, see [Lev22a, Lev22b, Lev23]. Work of Espreafico-
Walcher in [EW23a] leverages the realization of Hilbn(A3) as the critical locus of a function and
the compactly supported A1-Euler characteristic to define quadratically enriched Donaldson–
Thomas invariants for A3 in GW(k).

5.4. Tropical and quadratic enumerative geometry. A well-established direction in
enumerative geometry (which we do not explore in these notes) is the use of methods from
tropical geometry to carry out computations in classical enumerative geometry. A beautiful
example of this is the Mikhalkin correspondence, which states that the number Nd of rational
degree d curves through 3d− 1 generic points on P2 can be computed as a count of rational
tropical curves with a given Newton polytope through 3d− 1 generically chosen points on the
plane (computed with multiplicity) [Mik05]. Mikhalkin further proved an analogue for real
rational curves interpolating points, which provides a tropical way to compute the signed
count of these curves weighted by their Welschinger invariants.

With this and A1-enriched Welschinger invariants in mind, it is natural to ask whether
these tropical methods developed by Mikhalkin can be given a quadratic enrichment in
order to capture both the classical and real counts simultaneously. This leads to a beautiful
sub-field of quadratically enriched enumerative geometry which can leverage tropical methods
to compute enriched solutions [MPS23, JPMPR24, JPP25]. For an expository introduction
to these ideas see [Pau24].

6. A few emergent directions

There are many exciting new directions in enumerative geometry, and far too many to
do justice in this paper. Here we highlight two directions, one coming from the theory of
random algebraic geometry and the other coming from equivariant mathematics.

6.1. Random enumerative geometry. Over the reals, conservation of number fails as
previously discussed. However we can still ask the question: what is the expected number
of real solutions? Here we discuss two ways to approach such a problem, one coming from
probability theory and the other from Hodge theory and hyperbolic geometry.

The easiest place to see the failure of conservation of number (and hence the easiest place
to establish a testbed for a random theory of enumerative geometry) is in the fundamental
theorem of algebra — that a univariate polynomial f ∈ R[x] of degree n may fail to have n real
roots, counted with multiplicity. Motivated by this question, Kac investigated the following
question in the 1940’s: what is the expected number of real roots of a randomly chosen real
polynomial of some degree n? One first has to define what they mean by “random,” and in
Kac’s work he assumes that the coefficients are distributed according to a normal distribution
on R. With this in mind he gives an exact formula for the expected value, together with



THE EVOLUTION OF ENUMERATIVE GEOMETRY 17

an asymptotic of 2
π
log(n) [Kac42, Kac48]. An entirely different, although spiritually similar,

approach to this problem came from the work of Stephen Oswald Rice, a researcher at Bell
Labs working in signal processing and random noise [Ric44]. These results can be extended
to provide formulas for random maps on manifolds [BL, §4] – these sorts of generalizations
are called Kac-Rice formulas.

This flavor of question (what is the expected behavior of a randomly chosen algebraic object
over the reals) leads to a new program of mathematics called random algebraic geometry
[Ler]. A key application of these techniques is to leverage tools like the Kac-Rice formula to
compute the expected number of real solutions to an enumerative problem – we may call this
random enumerative geometry. A motivating result in this direction is the following:

Theorem 6.1 ([BLLP19]). The expected number of real lines on a random real cubic surface
is 6

√
2− 3.

This theorem is proven by choosing random sections of the symmetric bundle Sym3S∗ over
the Grassmannian of lines in RP3, then running the aforementioned machinery to compute the
expected number of zeros. Implicit in this work is a choice of a certain Gaussian probability
distribution, and the answer to the problem will very naturally depend on this choice. These
methods have been used, among other applications, to study random Schubert calculus
[BL20] and to extend these randomized questions away from the reals and toward the p-adics
[AEML22].

Returning to lines on real cubic surfaces, an entirely different approach to the same problem
above comes from analyzing the moduli of real cubic surfaces, and attempting to compare the
volumes of the five connected components. A priori this is a poorly phrased problem, as there
is no natural metric to compute volume on the moduli space of cubic surfaces (being, as it is,
a quotient of a Zariski open subset of projective space by the action of an infinite group).
Miraculously, we can leverage techniques from Hodge theory to endow it with a hyperbolic
metric! More precisely, we can study the variation of Hodge structure on real cubic threefolds
covering our real cubic surfaces, analyze their images under a period map, and finally compute
the volume of each connected component of the moduli space via Vinberg’s algorithm or
similar techniques. For the specific problem of computing lines on real cubic surfaces, this
was accomplished in groundbreaking work of Allcock-Carlson-Toledo [ACT10]. This program
of mathematics has already seen wide-ranging applications, from the classification of real
cubic fourfolds [FK10] to the study of real binary octics [Chu11].

As to the potential of both approaches for gaining intuition and revealing structure in real
enumerative geometry, it seems we have only just scratched the surface of what is possible.

6.2. Equivariant enumerative geometry. In this last subsection, we abandon any pretense
of modesty to discuss an ongoing program of work by the authors and others to leverage
tools from equivariant homotopy theory in order to provide equivariantly enriched counts
of classical questions in enumerative geometry. Given an enumerative problem and some
symmetry, it is natural to ask how the symmetry group interacts with the solutions to the
problem.12

12Related but orthogonal work in this direction includes [Rob85, Dam91, CHT24]
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When G is a finite group, we can build a theory of equivariant Euler classes for G-
equivariant complex topological vector bundles along G-manifolds, which allows us to prove
an equivariant conservation of number result under mild hypotheses [Bra25b]. Roughly
speaking this states that the symmetries of an equivariant enumerative problem are always
conserved. For instance, given a smooth cubic with automorphism group G, the group always
acts on the 27 lines in the same way [Bra25b]. Another application of the equivariant Euler
number has been given in [BB24], where the authors give an enriched count of orbits to
the 28 bitangents of any smooth, non-hyperelliptic, symmetric quartic curve. Equivariant
counts of orbits of solutions to enumerative problems have also appeared in the context
of counting solutions to enumerative problems in families that are invariant under a finite
group action. Equivariant counts have been provided for counting nodes in a G-invariant
pencil of conics [Bet25] and rational cubics interpolating a G-invariant set 8 general points in
CP2 [BW25a], both of these results recover a real signed count of nodal conics and rational
cubics respectively when C2 acts on CP2 by pointwise complex conjugation. The intersection
of real symmetric hypersurfaces has also been explored [LLM24]. Equivariantly enriched
Gromov-Witten invariants for smooth, projective complex varieties with the action of a finite
group will appear in upcoming work of the first named author and Wickelgren.

An interesting direction is to ask how symmetry interplays with the Galois group of an
enumerative problem (in the sense of [Her51, Jor70, Har79]). Using variation of Hodge
structure techniques analogous to those discussed in Section 6.2, the second-named author
and Raman showed the Galois group of lines on a S4-symmetric cubic surface is the Klein
four-group [BR25]. Using entirely different techniques derived from the world of stacks,
Landi investigated the same question for cubic surfaces with an involution and computed the
Galois group of their lines [Lan25], and Pichon-Pharabod and Telen extended this work by
numerically certifying monodromy computations of Galois groups for all symmetric cubic
surfaces [PPT25]. Upcoming work of the second named author, Landi and Raman explores
these ideas in greater detail.
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[BBG24] Thomas Blomme, Erwan Brugallé, and Cristhian Garay, Bitangents of real algebraic curves:
signed count and constructions, feb 2024, arXiv:2402.03993 [math].

[BBM+21] Thomas Brazelton, Robert Burklund, Stephen McKean, Michael Montoro, and Morgan Opie,
The trace of the local A1-degree, Homology, Homotopy and Applications 23 (2021), no. 1, 243–255.
MR 4162156

[Bea99] Arnaud Beauville, Counting rational curves on K3 surfaces, Duke Math. J. 97 (1999), no. 1,
99–108. MR 1682284

[Beh97] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), no. 3,
601–617. MR 1431140

[Beh09] Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2)
170 (2009), no. 3, 1307–1338. MR 2600874

[Bet25] Candace Bethea, An enriched count of nodal orbits in an invariant pencil of conics, may 2025,
arXiv:2310.08980 [math].

[BF97] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88.
MR 1437495

[BF08] Kai Behrend and Barbara Fantechi, Symmetric obstruction theories and Hilbert schemes of
points on threefolds, Algebra Number Theory 2 (2008), no. 3, 313–345. MR 2407118

[BL] Paul Breiding and Antonio Lerario, Random Algebraic Geometry.
[BL00] Jim Bryan and Naichung Conan Leung, The enumerative geometry of K3 surfaces and modular

forms, J. Amer. Math. Soc. 13 (2000), no. 2, 371–410. MR 1750955
[BL20] Peter Bürgisser and Antonio Lerario, Probabilistic Schubert calculus, Journal für die reine und

angewandte Mathematik (Crelles Journal) 2020 (2020), no. 760, 1–58 (en), Publisher: De
Gruyter Section: Journal für die reine und angewandte Mathematik.

[BLLP19] Saugata Basu, Antonio Lerario, Erik Lundberg, and Chris Peterson, Random fields and the
enumerative geometry of lines on real and complex hypersurfaces, Mathematische Annalen 374
(2019), no. 3-4, 1773–1810 (en).

[BM96] K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math.
J. 85 (1996), no. 1, 1–60. MR 1412436

[BM00] Jean Barge and Fabien Morel, Groupe de Chow des cycles orientés et classe d’Euler des fibrés
vectoriels, Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 330 (2000),
no. 4, 287–290 (fr).

[BMP23] Thomas Brazelton, Stephen McKean, and Sabrina Pauli, Bézoutians and the A1-degree, Algebra
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[FGvS99] B. Fantechi, L. Göttsche, and D. van Straten, Euler number of the compactified Jacobian and

multiplicity of rational curves, J. Algebraic Geom. 8 (1999), no. 1, 115–133. MR 1658220
[FK10] S. Finashin and V. Kharlamov, Topology of real cubic fourfolds, Journal of Topology 3 (2010),

no. 1, 1–28. MR 2608475
[FK13] Sergey Finashin and Viatcheslav Kharlamov, Abundance of real lines on real projective hy-

persurfaces, International Mathematics Research Notices. IMRN (2013), no. 16, 3639–3646.
MR 3090704



THE EVOLUTION OF ENUMERATIVE GEOMETRY 21

[FK21] S. Finashin and V. Kharlamov, Two kinds of real lines on real del Pezzo surfaces of degree 1,
Selecta Mathematica. New Series 27 (2021), no. 5, Paper No. 83, 23. MR 4304558

[FP97] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic
geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Part 2, Amer. Math. Soc.,
Providence, RI, 1997, pp. 45–96. MR 1492534

[FS09] J. Fasel and V. Srinivas, Chow–Witt groups and Grothendieck–Witt groups of regular schemes,
Advances in Mathematics 221 (2009), no. 1, 302–329 (en).

[Gat01] Andreas Gathmann, Gromov-Witten invariants of blow-ups, J. Algebraic Geom. 10 (2001), no. 3,
399–432. MR 1832328

[Giv96] Alexander B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices
(1996), no. 13, 613–663. MR 1408320
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of tropical plane curves and their properties, Advances in Geometry 24 (2024), no. 4, 553–576.
MR 4813080

[JPP25] Andrés Jaramillo Puentes and Sabrina Pauli, Quadratically enriched tropical intersections,
Journal für die Reine und Angewandte Mathematik. [Crelle’s Journal] 821 (2025), 151–193.
MR 4884068

[Kac42] M. Kac, On the average number of real roots of a random algebraic equation.
[Kac48] , On the Average Number of Real Roots of a Random Algebraic Equation (II), Proceedings

of the London Mathematical Society s2-50 (1948), no. 1, 390–408 (en).
[Kle76a] Steven L. Kleiman, Problem 15: rigorous foundation of Schubert’s enumerative calculus, Math-

ematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern
Illinois Univ., De Kalb, Ill., 1974), Proc. Sympos. Pure Math., vol. Vol. XXVIII, Amer. Math.
Soc., Providence, RI, 1976, pp. 445–482. MR 429938

[Kle76b] , Problem 15: rigorous foundation of Schubert’s enumerative calculus, Proceedings of
Symposia in Pure Mathematics (Felix Browder, ed.), vol. 28.2, American Mathematical Society,
Providence, Rhode Island, 1976, pp. 445–482 (en).

[Kle80] , Chasles’s enumerative theory of conics: a historical introduction, Studies in algebraic
geometry, MAA Stud. Math., vol. 20, Math. Assoc. America, Washington, DC, 1980, pp. 117–138.
MR 589410

[KLSW23a] Jesse Kass, Marc Levine, Jake Solomon, and Kirsten Wickelgren, A quadratically enriched count
of rational curves, 0–47, arXiv:2307.01936.



22 CANDACE BETHEA AND THOMAS BRAZELTON

[KLSW23b] , A relative orientation for the moduli space of stable maps to a del Pezzo surface, 0–80,
arXiv:2307.01941.

[KM94] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative
geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244

[KM24] Mario Kummer and Stephen McKean, Bounding the signed count of real bitangents to plane
quartics, manuscripta mathematica 173 (2024), no. 3-4, 1003–1013, arXiv:2303.02008 [math].

[Kon95] Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves
(Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368.
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[Viè00] François Viète, Apollonius Gallus, Paris, 1600.
[Vie23] A. M. Viergever, Low degree motivic donaldson-thomas invariants of the three-dimensional

projective space, 0–27, arXiv:2312.09882.
[Wel06] Jean-Yves Welschinger, Towards relative invariants of real symplectic four-manifolds, GAFA

Geometric And Functional Analysis 16 (2006), no. 5, 1157–1182 (en).
[Wen24] Matthias Wendt, Chow-Witt rings of Grassmannians, Algebraic & Geometric Topology 24

(2024), no. 1, 1–48. MR 4721362
[Wit88] Edward Witten, Topological sigma models, Comm. Math. Phys. 118 (1988), no. 3, 411–449.

MR 958805


	1. Introduction
	2. Classical enumerative geometry
	2.1. Resolving Hilbert's 15th problem
	2.2. Parameterized problems: towards thinking about stacks

	3. Real counts in enumerative geometry
	3.1. Signed real enumerative geometry

	4. The Emergence of Gromov–Witten theory
	5. Quadratically enriched enumerative geometry
	5.1. Computing local indices
	5.2. More results in quadratically enriched enumerative geometry
	5.3. Quadratically enriched curve counting
	5.4. Tropical and quadratic enumerative geometry

	6. A few emergent directions
	6.1. Random enumerative geometry
	6.2. Equivariant enumerative geometry

	References

