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Abstract. We study the symmetric enumerative problem of finding a line on a symmetric cubic

surface. We show that this problem has Galois group isomorphic to the Klein 4-group. Additionally,

we prove that the moduli space of symmetric cubic surfaces is an arithmetic quotient of the complex

hyperbolic line. Our proofs use techniques from equivariant line geometry, Hodge theory, and

homotopy continuation.

1. Introduction

The Galois group of an enumerative problem is a classical object of study in enumerative algebraic

geometry. It was first introduced by Jordan as one of the main subjects of interest at the genesis of

Galois theory [Jor70]. This idea enjoyed a revival a century later when Harris proved that the Galois

group of an enumerative problem agrees with the monodromy group of its associated cover [Har79].

In modern mathematics Galois groups can be approached from a wide number of perspectives, from

Hodge theory and hyperbolic geometry [ACT02], to Lie theory [Man06], to numerical analysis and

homotopy continuation [LS09], to name a few.1

Contemporary geometers such as Klein were interested in exploring how symmetries of objects

manifest in enumerating various quantities attached to them. Recent work of the first-named

author introduces tools from equivariant homotopy theory to explore how Poncelet’s principle of

conservation of number interacts with symmetry, an example being that a smooth cubic surface

defined by a symmetric polynomial always has the same S4-symmetries on its lines [Bra24]. Such

cubic surfaces are called symmetric cubic surfaces.

In this paper we initiate an exploration of Galois groups of symmetric enumerative problems.

This flavor of question is well-studied in geometric group theory; for example, many have studied

rigidity phenomena for finite index subgroups of lattices in Lie groups (e.g. [Mar91] and [FW08])

and equivariant problems for their non-linear analogues like mapping class groups and Out(Fn) (e.g.

[BH73], [MH75], [FH07], and [LLS24]). However the setting we pursue is of a completely different

shape — since the Galois group of lines on a cubic surface (and many related problems) is finite,

we cannot leverage such tools, e.g. Teichmüller theory, to approach this question, and alternative

techniques are needed.

Our main result is a computation of the Galois group of lines on symmetric cubic surfaces,

which we show is equal to the Klein 4-group. This is carried out via a combination of moduli-

theoretic techniques, classical analysis of the Weyl group of the E6 lattice, as well as group-theoretic

1For a lovely introduction to the history and appearance of Galois groups in enumerative geometry, we refer the reader
to [SY21].
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computations in GAP and contemporary certified tracking homotopy continuation algorithms. Along

the way we prove that the moduli of stable symmetric cubic surfaces is an arithmetic quotient of the

complex hyperbolic line. The latter result mirrors the landmark work of Allcock, Carlson, and Toledo

at the turn of the century [ACT02], where they show the moduli space of stable cubic surfaces is an

arithmetic quotient of complex hyperbolic 4-space. We explore the appearance of our Klein 4-group

K4 in both the Weyl group of E6 and in the projective orthogonal group PO(4, 1,F3).

1.1. Main results. Before we state our main theorems more formally, we fix some notation. Let

M (resp. Ms) denote the moduli space of smooth (resp. stable) cubic surfaces. Similarly, let S
(resp. Ss) denote the moduli space of smooth (resp. stable) symmetric cubic surfaces. Finally, let

HS4 ⊂ CH1 denote the symmetric discriminant locus of the period map.

Theorem 1.1. There are analytic isomorphisms of orbifolds S ∼= PΓ\(CH1 − HS4) and Ss ∼=
PΓ\CH1, where Γ < U(1, 1) is an arithmetic lattice. Moreover the inclusion of moduli spaces S → M
is compatible with the embedding of locally symmetric orbifolds PΓ\CH1 → P Γ̂\CH4 ∼= Ms.

For the precise statement of Theorem 1.1, its semistable extension, and its proof, see Theorem 4.11.

Roughly, the idea behind the proof is to record the S4-action in the period data and use the S4-

invariant subspace to define the period domain associated to symmetric cubic surfaces. We also

determine the arithmetic group Γ explicitly in Proposition 4.9.

Let M̃ (resp. S̃) denote the space of (resp. symmetric) cubic surfaces equipped with a line.

Recall that Jordan showed that the connected 27 lines cover M̃ → M has Galois group W (E6), the

Weyl group of E6. Allcock–Carlson–Toledo recovered this fact Hodge-theoretically by considering an

appropriate congruence cover of their uniformized moduli space P Γ̂\CH4 and using the exceptional

isomorphism W (E6) ∼= PO(4, 1,F3). The following monodromy group result is an equivariant analog

of Jordan’s theorem for the symmetric 27 lines cover S̃ → S:

Theorem 1.2. The (disconnected) symmetric 27 lines cover S̃ → S has monodromy group

isomorphic to the Klein 4-group K4 < W (E6).

The action of K4 on 27 labeled lines is explicitly worked out as permutations in Data A.4. This

allows us to completely characterize the covering space S̃ — it has 12 connected components, with

each one corresponding to an explicit K4-set; see Corollary 5.16 for details.

There are a few reasons why Theorem 1.2 is surprising. First off, the symmetric group S4 and

symmetric monodromy group K4, thought of as subgroups of W (E6), intersect trivially — this

means that if we want to witness the S4-action on a symmetric cubic surface through monodromy,

we must leave the symmetric locus in the total moduli space. Second, a number of restrictions

coming from Hodge theory constrain the monodromy group to a group of order 96. However, these

restrictions provably do not suffice, as we can name explicit elements of this restricted subgroup

that cannot arise via symmetric monodromy. This stands in direct contrast with reasoning used

when studying similar problems, such as in [ACT10, Section 8].

1.2. Paper structure. In Section 2, we review the construction of the (marked) moduli space

of cubic surfaces, and explicitly realize the moduli space of symmetric cubic surfaces as a GIT
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quotient. In Section 3 we give an overview of the work of Allcock–Carlson–Toledo, including

fundamental facts about framed cubic surfaces and their associated period maps, which yields their

main theorem, a uniformization of the moduli of cubic surfaces by complex hyperbolic 4-space. In

Section 4, we analogously define a period map for symmetric cubic surfaces via symmetric framings

of cubic surfaces, and uniformize the moduli space of symmetric cubic surfaces by the complex

hyperbolic line. This section finishes with a Hodge theoretic restriction of symmetric monodromy

to a group of order 96, which it turns out will properly contain the symmetric monodromy group.

In Section 5 we determine that the symmetric monodromy group is the Klein 4-group K4, and

we describe how it acts on the 27 lines. Moreover, we show that the 27 lines cover over the

symmetric locus S̃ → S splits into 12 connected components, and explicitly determine the K4-set

structure associated to each connected component. Finally, Section 6 describes how to alternatively

witness the symmetric monodromy group K4 in W (E6) and PO(4, 1,F3) via representation theoretic

constructions. Appendix A contains explicit data regarding how the symmetric group S4 and the

generators of the symmetric monodromy group K4 act on the 27 lines on the Fermat cubic surface.

1.3. Acknowledgements. We thank Benson Farb, Frank Sottile, and Jesse Wolfson for their

interest and all independently asking us what the monodromy group is for the problem of finding

lines on symmetric cubic surfaces. We thank Taylor Brysiewicz and Kisun Lee for their help with

homotopy continuation and certified tracking software. Lastly, we thank Daniel Allcock for his

interest and elucidating answers regarding various group theoretic aspects of his work with James

A. Carlson and Domingo Toledo.

1.4. Notation. We use \mathcal letters to indicate parameter spaces, being both vector spaces

parametrizing polynomials and moduli spaces of their vanishing loci.

notation meaning

W C[x0, . . . , x3](3)
V C[x0, . . . , x3]S4

(3)

S moduli of symmetric cubic surfaces

M moduli of cubic surfaces

decoration meaning

(−)sm or no decoration moduli of smooth objects

(−)s moduli of stable objects

(−)ss moduli of semistable objects

(̃−) moduli of cubic surfaces equipped with a line

(̂−) moduli of marked cubic surfaces

2. Moduli constructions

The content of this section is standard and well-known — see [Zhe21] for example. We will review

how to construct the moduli space of (marked) smooth cubic surfaces as a GIT quotient, and then

analogously construct the moduli space of (marked) symmetric cubic surfaces. We end this section

with a quick discussion of stability and semistability of cubic surfaces, concluding with the facts
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that the Cayley nodal cubic is the only non-smooth symmetric stable cubic surface, and that the

tricuspidal cubic is the only non-stable symmetric semistable cubic surface.

2.1. Parameter space of cubic surfaces. Let W = C[z0, z1, z2, z3](3) denote the 20-dimensional

vector space of degree 3 homogeneous polynomials in 4 variables. Every f ∈ W\{0} defines a cubic

surface Z(f) in P3, and two elements f1 and f2 determine the same surface Z(f1) = Z(f2) if and

only if f1 = λf2 for some λ ∈ C∗. Thus P(W) ∼= P19 can be naturally thought of as the parameter

space of cubic surfaces in P3.

There is a linear action of SL(4,C) on Wsm given by g · f := f ◦ g−1. This induces a left action

of PGL(4,C) on the projectivization P(W).

Definition 2.1. Consider the left SL(4,C)-action on W induced by permuting coordinates on P3.

For f ∈ W, we say that f is

(1) smooth if its associated cubic surface is smooth,

(2) stable if the orbit SL(4,C) · f is closed, and the stabilizer subgroup is finite,

(3) semistable if 0 is not in the closure of the orbit SL(4,C) · f .

We denote by Wsm (respectively Ws, and Wss) the subsets of W corresponding to smooth cubic

surfaces (respectively stable, and semistable). It is classically known that we have containments

Wsm ⊆ Ws ⊆ Wss.

The action of SL(4,C) on each of these loci extends to an action of PGL(4,C) on their projec-

tivizations. We can take the respective GIT quotients to construct various moduli spaces of cubic

surfaces.

Definition 2.2. We denote by

Msm := PGL(4,C)\\P(Wsm),

Ms := PGL(4,C)\\P(Ws),

Mss := PGL(4,C)\\P(Wss),

the moduli space of smooth/stable/semistable cubic surfaces.

Convention 2.3. When we write a moduli space without a subscript, e.g. M, we implicitly mean

the moduli of smooth objects.

The following classical result characterizes stable and semistable cubic surfaces by their singulari-

ties.

Theorem 2.4 (Hilbert, [Hil93]). A cubic surface is stable if and only if it its singularities are

ordinary nodes. A cubic surface is semi-stable if and only if its singularities are ordinary nodes or

A2 singularities.

Lemma 2.5 ([ACT02, 4.6]). The cubic form z30 − z1z2z3 is the unique closed SL(4,C)-orbit of

semistable non-stable cubic surfaces.
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Since points in the GIT quotient Mss correspond to closed orbits, this indicates that there is a

unique point in the moduli space of semistable cubic surfaces corresponding to a point which is not

stable. This is given by the unique tricuspidal cubic surface, defined by the equation mentioned,

and pictured in Figure 1.

Let W̃sm denote the parameter space of smooth cubic forms equipped with an incident line.

Concretely, this is the incidence variety

W̃sm = {(f, ℓ) ∈ Wsm ×Gr(2, 4) : ℓ ⊂ Z(f)}.

The GIT quotient M̃ = PGL(4,C)\\PW̃sm is the moduli space of smooth cubic surfaces equipped

with a line. Since the natural projection W̃sm → Wsm is PGL(4,C)-equivariant, it descends to a

map of moduli spaces M̃ → M.

2.2. Marked parameter space of cubic surfaces. Recall that a free finitely generated Z-module

L equipped with an integral symmetric (resp. symplectic) non-degenerate bilinear form q defines a

symmetric (resp. symplectic) lattice structure (L, q). The lattice structure on the intersection form

of a smooth cubic surface is classically obtained by viewing the surface as a blowup of the projective

plane at six points.

Proposition 2.6. Let X = V (f) ⊂ P3 denote a smooth cubic surface determined by some cubic

form f ∈ Wsm. Then H = H2(X,Z) is a free Z-module of rank 7, and the cup product ⟨·, ·⟩
determines a signature (1, 6) symmetric unimodular lattice structure (H, ⟨·, ·⟩).

Let ηX ∈ H denote the canonical class on X and (L, q) ∼= ⟨1⟩ ⊕ ⟨−1⟩⊕6 be an abstract lattice

isomorphic to (H, ⟨·, ·⟩). Fix some η ∈ L so that (L, q, η) ∼= (H, ⟨·, ·⟩, ηX).

Definition 2.7. A marking of a smooth cubic surface X is an isomorphism of lattices

ϕ : (H, ⟨·, ·⟩, ηX) → (L, q, η).

We say a cubic form with marking (f1, ϕ1) is equivalent to the pair (f2, ϕ2) if there exists some

g ∈ PGL(4,C) so that g(f1) = f2 and ϕ2 = ϕ1 ◦ g∗. We will let Ŵsm denote the parameter space of

marked smooth cubic forms, which is naturally a complex manifold [ACT02, 3.2].

Let M̂ denote the GIT quotient PGL(4,C)\\PŴsm. We refer to this as the moduli space of

smooth marked cubic surfaces. As cubic surfaces vary, their markings will vary as well. Since any

two markings differ by an automorphism of the abstract lattice (L, q, η), we obtain a representation

of the fundamental group of the moduli space of smooth marked cubic surfaces. The following

is a relevant consequence of work of Beauville on monodromy in the universal family of degree d

hypersurfaces which was classically known for cubic surfaces [Bea06]:

Proposition 2.8. The space M̂ is a connected, Hausdorff complex manifold which is a covering

space of M. Moreover, the monodromy representation

π1(M, X) → Aut(H2(X,Z), ηX)

is surjective and has image isomorphic to the Weyl group of the root lattice E6, denoted W (E6).
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It is also classically known that the moduli space of marked cubic surfaces M̂ is isomorphic to

the moduli space of cubic surfaces equipped with a line M̃ [Bea09, pg. 19]. We shall freely identify

these spaces.

2.3. Parameter space of symmetric cubic surfaces. Recall that a degree d homogeneous

polynomial f(z1, . . . , zn) is symmetric if it is invariant under natural Sn-action on z1, . . . , zn, i.e.

f(z1, . . . , zn) = f(zσ(1), . . . , zσ(n)) for all σ ∈ Sn. When n > d, the vector space C[z1, . . . , zn]Sn

(d) of

symmetric homogeneous degree d polynomials in n variables is p(d)-dimensional, where p(d) denotes

the number of partitions of d. A basis will be denoted by {mα}, where mα is a homogeneous

symmetric polynomial indexed by the partitions α ⊢ d.
In the case of symmetric cubic forms in 4 variables, the vector space V := WS4 admits a basis of

the form

m3(z0, z1, z2, z3) =
∑

z3i ,

m21(z0, z1, z2, z3) =
∑

z2i zj ,

m111(z0, z1, z2, z3) =
∑

zizjzk,

so any symmetric cubic form f in 4 variables can be uniquely written as a linear combination

f = a ·m3 + b ·m21 + c ·m111.

We see that the the parameter space of symmetric cubic forms P(V) = P2 embeds linearly into the

parameter space of cubic forms P(W). Define ∆S4 to be the symmetric discriminant curve, which

corresponds to the locus of S4-invariant singular cubic forms in the parameter space PV.
In order to form a GIT quotient parametrizing a moduli space of symmetric cubic surfaces, we

need to understand how the action of PGL(4,C) preserves or fails to preserve the symmetry of the

associated cubic surface. The following is a basic algebra fact that will be relevant to much of what

follows:

Proposition 2.9. Let S4 be a subgroup of any group G. Then the normalizer NG(S4) is generated

by S4 and its centralizer CG(S4).
2

Proof. Given any g ∈ NG(S4), we have gσg−1 ∈ S4 for all σ ∈ S4. Thus conjugation by g defines an

automorphism of S4. Recall that Sn is a complete group for n ̸= 2, 6, and so every automorphism of

S4 is an inner automorphism. This implies that for each g ∈ NG(S4), there exists some η ∈ S4 such

that

gσg−1 = ηση−1 ⇔ σ = η−1gσg−1η = η−1gσ(η−1g)−1

for all σ ∈ S4. Thus η
−1g ∈ CG(S4), and so g ∈ CG(S4) · S4. This proves the claim. □

2The general fact we are using is that every automorphism of a complete group is inner. Thus a complete subgroup
of any group has normalizer generated by the subgroup and its centralizer. The argument we give works mutatis
mutandis.
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Proposition 2.10. The normalizer of the permutation subgroup S4 in PGL(4,C) is

NPGL(4,C)(S4) ∼=



λ 1 1 1

1 λ 1 1

1 1 λ 1

1 1 1 λ

 · P : λ /∈ {1,−3}, P ∈ S4 ≤ PGL(4,C)


Proof. By Proposition 2.9, it suffices to determine the centralizer of S4 in PGL(4,C). One can then

calculate that the subgroup of permutation matrices in GL(4,C) is centralized by matrices of the

form

C(a, b) =


a b b b

b a b b

b b a b

b b b a


where b ̸= a, a ̸= −3b.

Let φ : GL(4,C) → PGL(4,C) be the projectivization homomorphism. Since the permutation

matrices intersect the center of GL(4,C) trivially, we have φ(S4) ∼= S4. To determine the rest

of the image of NPGL(4,C)(S4), we break into two cases, when b = 0 or b ̸= 0. If b = 0 then the

matrices C(a, 0) are scalar and form the kernel of φ. If b ̸= 0, then φ(C(a, b)) = φ(C(a/b, 1)). For

all a ∈ C\{1,−3}, the matrix C(a/b, 1) induces a nontrivial automorphism of P3 and thus does not

lie in the kernel of φ. Thus by letting λ = a/b, we obtain that the normalizer of S4 < PGL(4,C) is
the subgroup stated in the proposition. □

This allows us to define the moduli of smooth symmetric cubic surfaces.

Proposition 2.11. The GIT quotient S = NPGL(4,C)(S4)\\PVsm is the moduli space of smooth

symmetric cubic surfaces.

Proof. Suppose that two symmetric cubic forms f1, f2 ∈ PVsm determine isomorphic symmetric cubic

surfaces X = Z(f1) and Y = Z(f2). Since such an isomorphism φ : X
∼−→ Y of varieties preserves

their respective canonical classes KX and KY , the map extends to respect their anticanonical

embeddings into P3. Thus such an isomorphism φ must be the restriction of a linear automorphism

coming from the ambient projective space P3. Moreover, the automorphism groups of X and Y must

be preserved under such an isomorphism, and so the S4-action on X must be sent to the S4-action

on Y . Thus two symmetric cubic surfaces are projectively equivalent when their symmetric cubic

forms differ by an element of the normalizer of S4 < PGL(4,C), which was explicitly calculated in

Proposition 2.10. □

2.4. Symmetry and stability. Having defined the moduli space of smooth symmetric cubic

surfaces S in Proposition 2.11, we would like to define the analogous moduli spaces of stable and

semistable symmetric cubic surfaces. In order to do this, we first must explore how (semi)stability

interacts with symmetry.

Proposition 2.12. Let f ∈ V be a nonzero symmetric homogeneous form defining a semistable

cubic surface. Then the singularities of V (f) are either 4A1 or 3A2.

Proof. We first see that if X = V (f), then the geometric S4 action it inherits by symmetry is

actually a subgroup of the automorphism group. This is clear if X is smooth, since the cubic surface
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is anticanonically embedded, but a small argument is needed if X isn’t smooth. Suppose towards a

contradiction that any non-trivial element g ∈ S4 acted trivially on X. Then X would lie in the

g-fixed subspace of P3, which is a hyperplane or intersection of hyperplanes, a contradiction.

Since a semistable cubic surface is normal by Serre’s criterion [Gro65, 5.10], we can refer to the

classification of automorphism groups of normal cubic surfaces due to Sakamaki [Sak10, Table 3]. It

is clear that S4 cannot be a subgroup of any of the automorphism groups except 4A1 where it is

equality, and 3A2, where we make use of the semidirect product K4 ⋊ S3 ∼= S4. □

We now look to see if any such symmetric singular cubic surfaces do exist. One of the most

famous singular cubic surfaces is symmetric:

Definition 2.13. The Cayley nodal cubic surface, defined by the elementary symmetric homogeneous

form m111 is a singular cubic surface with four nodes. Its automorphism group is S4, which permutes

these four nodes [Sak10]. It is pictured in Figure 1.

Conveniently, the normalizer of S4 in PGL(4,C) appears in the following proposition, which

characterizes the Cayley cubic surface as the unique cubic surface with four nodes (c.f. [BW79]).

Proposition 2.14. Let f ∈ W be a nonzero form defining a cubic surface with four nodes. Then

there exists a unique change of coordinates g ∈ NPGL(4,C)(S4) so that g · f is the Cayley nodal cubic.

Proof. Given any other cubic surface with four nodes, there is a projective change of coordinates

turning it into the Cayley nodal cubic by sending the four nodes to the four nodes of the Cayley

cubic. This change of coordinates is unique up to permutation of the nodes since PGL(4,C) is simply

4-transitive. However there is a unique automorphism of the Cayley nodal cubic corresponding to

any permutation of the nodes, since its automorphism group is the symmetric group S4. □

This has an immediate corollary to our study of stable symmetric cubic surfaces, which allows us

to understand the moduli space.

Corollary 2.15. Any symmetric stable cubic surface which is not smooth lies in the NPGL(4,C)(S4)

orbit of the Cayley nodal cubic surface.

Corollary 2.16. The moduli space of stable symmetric cubic surfaces

Ss = NPGL(4,C)(S4)\\P(Vs)

has the property that S ⊆ Ss, and Ss ∖ S = {C} is one point, which is the Cayley nodal cubic.

What about semistability? By Proposition 2.12 any semistable symmetric cubic which isn’t

stable must have three cusps, and we know there is a unique semistable non-stable cubic surface in

the moduli space Mss by Lemma 2.5. So it suffices to check if there is any projective change of

coordinates exhibiting the tricuspidal cubic surface as a symmetric homogeneous form.
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Computation 2.17. The tricuspidal cubic surface z30 − z1z2z3 is projectively equivalent to the

homogeneous form 4m21 + 4m111 via the change of basis matrix
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1.


Why this works. Since S4 acts faithfully on the cubic surface, it must map singularities to singular-

ities, hence if a symmetric cubic surface has three cusps, they form an S4-set. Viewing P3 as an

S4-space, we see there is a unique point in P3 with full isotropy S4, and no points with isotropy

A4. Hence the three cusps must form a transitive S4-set, isomorphic to S4/D8. We check that

there is a unique such collection of three points in P3, namely [1 : 1 : −1 : −1], [1 : −1 : 1 : −1],

and [1 : −1 : −1 : 1]. Since PGL(4,C) is 3-transitive, if we can the tricuspidal cubic above into

a symmetric form, we must map its cusps [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], and [0 : 0 : 0 : 1] to the

points forming the S4/D8 orbit above, hence the three rightmost columns in the matrix we found.

A computation then forces the first column to consist of all 1’s. □

Corollary 2.18. The moduli space of semistable symmetric cubic surfaces

Sss := NPGL(4,C)(S4)\\P(Vss)

has exactly one point not in the stable moduli space, corresponding to the tricuspidal curve

m21 +m111.

Figure 1. Left: the Cayley nodal cubic surface. Right: the tricuspidal cubic surface

The inclusion V → W of parameter spaces descends to a inclusion ι : S → M of the moduli of

symmetric cubic surfaces into the whole moduli space. The pullback ι∗M̂ is then the moduli space

of smooth marked symmetric cubic surfaces. Then just as before, the pullback construction let’s us

conclude that ι∗M̂ is isomorphic to the moduli space of symmetric cubic surfaces equipped with a

line S̃.
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3. Reviewing Allcock–Carlson–Toledo

In this section, we outline the construction of the Allcock–Carlson–Toledo period map [ACT02].

Let S = Z(f) denote a cubic surface in P3. Since H2(S,Z) admits a type (1, 1) Hodge structure,

the natural period map is constant. In their seminal paper, Allcock–Carlson–Toledo showed that

there is an weight 3 Hodge structure associated to S whose periods entirely capture its geometry.

This is the Hodge structure of the cyclic cubic threefold T , realized as a degree 3 cover of P3 with

branch locus S. In coordinates,

T = {t3 = f(z0, z1, z2, z3)} ⊂ P4,

and the deck group ⟨τ⟩ of the cover acts on T by multiplying the t-coordinate by the 3rd root of

unity ω. The pair (H3(T,Z), τ) forms a so-called Eisenstein Hodge structure. The period domain

for such Hodge structures is complex hyperbolic 4-space CH4. There is a natural period map from

the moduli of smooth cubic surfaces M to an arithmetic quotient of CH4 by P Γ̂ = PU(4, 1,Z[ω]):

P : M → P Γ̂\CH4.

By the Riemann extension theorem, the map P extends uniquely to the stable cubic surfaces Ms.

The main theorem of [ACT02] is that P is a biholomorphism of analytic spaces Ms ∼= P Γ̂\CH4, and

moreover it is an isomorphism of orbifolds. After reviewing their work, we will build an analogous

uniformization of the moduli space of symmetric cubic surfaces.

3.1. Basic cohomology knowledge. Given a smooth cubic surface S defined by the cubic form f ,

we associate to it the cyclic cubic 3-fold T := {t3 = f} which defines a degree 3 branched covered

P3 over S. The Lefschetz hyperplane theorem and Poincaré duality tells us that T and P3 have the

same cohomology away from the middle degree 3, with Hodge numbers equal to hi,i(T ) = 1 for

i = 0, 1, 2, 3. An Euler characteristic calculation tells us that H3(T,Z) is rank 10, and since there

are no holomorphic 3-forms on T , i.e. h3,0(T ) = h0,3(T ) = 0, the middle Hodge numbers of T are

h2,1 = h1,2 = 5.

3.2. The module structure on cohomology. The deck group ⟨τ⟩ of the triple branched cover

T → P3 acts on T by multiplying the t-coordinate by a 3rd root of unity ω. Since fixed vectors of

the induced action on cohomology H3(T,Z) must come from H3(P3,Z) = 0 via transfer, τ acts on

the (real) cohomology of T without fixed points. Thus the minimal polynomial of the τ -action on

H3(T ) is z2 + z + 1, and H3(T,Z) inherits the structure of a free Z[ω]-module of dimension five.

The Hodge decomposition on H3(T,C) forms a direct sum decomposition

H3(T,C) = H2,1(T )⊕H1,2(T ),

where the two summands are isomorphic dimension five vector spaces and are exchanged by complex

conjugation. Since τ acts holomorphically on T , ω acts on H3(T,Z) as a real operator, and so it

preserves the Hodge decomposition. Thus the eigenspace decomposition H3(T ) = H3
ω(T )⊕H3

ω̄(T )

is compatible with the Hodge decomposition. Selecting the ω̄-summand, we get a Hodge-eigenspace

direct sum decomposition

H3
ω̄(T ) = H2,1

ω̄ (T )⊕H1,2
ω̄ (T ).
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There is a naturally associated Hermitian Z[ω]-valued form h on H3(T,Z) coming from the cup

product ⟨·, ·⟩:

h(a, b) :=
⟨(τ − τ−1)a, b⟩ − (ω − ω−1)⟨a, b⟩

2
.

With respect to this form h, the Hermitian pair (H3
ω̄(T ), h) is a signature (4, 1) complex inner

product space. A key point in [ACT02] is that this direct sum decomposition is orthogonal with

respect to h, H2,1
ω̄ (T ) is 1-dimensional and negative-definite with respect to h, and that H1,2

ω̄ (T ) is

4-dimensional and positive-definite with respect to h.

3.3. Moduli of framed cubic surfaces. We have already defined markings and constructed the

moduli space of marked cubic surfaces. A related but slightly different idea must be studied, which

is the notion of a framing ; this is a marking of the cohomology of the cyclic cubic threefold T

associated to a cubic surface S.

Definition 3.1. A framing of the cubic surface S is an isometry ψ from the Z[ω]-lattice (H3(T,Z), h)
to the abstract indefinite Z[ω]-lattice Λ = Z[ω]4,1 (recall that Λ is unique up to isometry [All00]).

Two framings (S1, ψ1) and (S2, ψ2) are equivalent if there exists some g ∈ PGL(4,C) such that

ψ1 = g̃∗ψ2. The space of equivalence classes of framed cubic surfaces (S, ψ) is denoted by F .

Allcock–Carlson–Toledo showed that F is a complex manifold. There is a natural action of the

arithmetic group Γ̂ = U(4, 1,Z[ω]) on the space of framed cubic surfaces by γ · (S, ψ) = (S, ψ ◦ γ−1).

3.4. The period mapping. The space of negative lines in the space C4,1 = Λ ⊗Z[ω] C is the

complex hyperbolic 4-space CH4. We can now define the period mapping of framed cubic surfaces

P̃ : F → CH4 to be

P̃ : (S, ψ) 7−→ P(ψ(H2,1
ω̄ (T ))) ∈ CH4 ⊂ CP4.

The main theorem of [ACT02] is that this map is an open embedding, and descends through the

Γ̂-quotient to an isomorphism P of moduli spaces M ∼= P Γ̂\(CH4−H), where H is the locally finite

hyperplane arrangement determined by reflections over short roots δ ∈ Λ:

H =
⋃

h(δ,δ)=1

Fix(Refδ).

This isomorphism extends to the moduli space of stable cubic surfaces Ms ∼= P Γ̂\CH4. They

remark that this map extends to an analytic isomorphism of Deligne–Mumford stacks; for more

details on this stacky structure, see the papers of Kudla–Rapoport [KR12] and Zheng [Zhe21].

Remark 3.2. Note that originally Allcock–Carlson–Toledo used the negative-definite line H1,2
ω (T )

to define the period data of cubic surfaces, but this makes the period mapping anti-holomorphic, as

pointed out by Beauville [Bea09]. This is why we adopted the ω̄ convention instead.

Finally, consider the group homomorphism Z[ω] → F3 which sends ω to 1. Then Z[ω]4,1⊗Z[ω]F3
∼=

F4,1
3 , which induces a homomorphism

φ : Γ̂ → PO(4, 1,F3).
11



Allcock–Carlson–Toledo showed that this homomorphism is surjective, with kernel denoted by Γ̂′.

The following is well-known which we include for the sake of completeness (see [ACT02, Section

2.12] and [CCN+85, pg. 26]):

Proposition 3.3. There is an exceptional isomorphism of finite groups W (E6) ∼= PO(4, 1,F3).

Proof sketch. The Weyl group W (E6) acts on the 6-dimensional root lattice E6. This has index 3

in the weight lattice. The root lattice modulo 3 times the weight lattice is 5-dimensional vector

space over F3. This space inherits an inner product q from the root lattice by reducing mod 3 the

inner product of lattice vectors. Thus every element of W (E6) descends to an automorphism of

F5
3 which preserves this non-degenerate symmetric bilinear form q. This yields the homomorphism

W (E6) → O(q,F3). Post-composing with the projectivization, we obtain the group homomorphism

W (E6) → PO(q,F3).

Any two non-degenerate symmetric bilinear forms q and q′ are equivalent over F3 [MH73], and so the

group PO(q,F3) and PO(4, 1,F3) isomorphic. One can then calculate that |W (E6)| = |PO(q,F3)| =
51840. By almost simplicity of W (E6) and non-triviality of this homomorphism, this map is an

isomorphism. □

By Proposition 3.3, we have that Γ̂/Γ̂′ ∼=W (E6), and so the cover of M that Γ̂′ < Γ̂ corresponds

to is the space of cubic surfaces equipped with a line M̃. Once we have analogously uniformized

moduli space the symmetric cubic surfaces, a special symmetric subgroup of PO(4, 1,F3) will be

determined that will contain the monodromy group of the cover S̃ → S.

4. Uniformization of the symmetric moduli space

As was reviewed in the previous section, Allcock–Carlson–Toledo showed that the moduli space

of stable cubic surfaces Ms admits the structure of a complex ball quotient. Specializing to the

stable symmetric locus Ss, we will study this space through Hodge theory and analogously realize it

as a ball quotient. Although their stated goals and some of the technology used are different, we

take inspiration from and owe an intellectual debt to the work of Yu–Zheng [YZ20].

To understand the moduli space of symmetric cubic surfaces, we need to understand how S4

acts on the period data. More specifically, we want to understand the ω̄-eigenspace in cohomology

H3
ω̄(T ) as an S4-representation. Any S4-equivariant automorphism of the cubic surface S will lift to

give a nontrivial S4-equivariant action on T , thus the cohomology group H3
ω̄(T ) while preserving the

Hodge decomposition. To understand this action, we will express the periods of a given symmetric

cubic surface in terms of differential forms.

4.1. Residue calculus and symmetric cubic 3-folds. Griffiths’ theory of residues [Gri69] will

help us make explicit the action of S4 on the invariant cohomology of a cyclic cubic 3-fold. His

foundational work on rational integrals allows us to assert the following:

12



Proposition 4.1. Let S = Z(f) be a cubic surface, fS = t3−f the cubic form defining its associated

cyclic cubic 3-fold T = Z(fS), and Ω the standard volume form on P4. The map

C[z0, z1, z2, z3, t](1) −→ H2,1(T )

P 7−→ ResT

(
PΩ

f2S

)
is an isomorphism of vector spaces, under which the line C⟨t⟩ maps to H2,1

ω̄ (T ).

If we additionally assume that f defined an symmetric cubic surface, the cyclic cubic 3-fold T also

admits an S4 symmetry. Thus the cohomology of T inherits the structure of an S4-representation,

which we seek to determine.

Lemma 4.2. For any symmetric cyclic cubic 3-fold T , the cohomology group H2,1(T ) is isomorphic

as an S4-representation to C⊕ V , where V is the standard S4-permutation representation on C4.

Proof. The meromorphic differential forms〈
z0Ω

f2S
,
z1Ω

f2S
,
z2Ω

f2S
,
z3Ω

f2S
,
tΩ

f2S

〉
give us a basis for H2,1(T ). From this we can explicitly compute the induced structure on H2,1(T )

as an S4-representation. Recall that S4 acts by linear permutation automorphisms on z0, . . . , z3 and

acts trivially t. Moreover, σ∗Ω = Ω and σ∗fS = fS for all σ ∈ S4 since the symmetric group leaves

invariant the cubic form fS and the volume form Ω. The claim follows. □

4.2. Equivariant framings and the local period map. For every cyclic cubic threefold T , we

have that

H3
ω̄(T ) ∩H1,2(T ) = H1,2

ω̄ (T )

is a positive hyperplane in the signature (4, 1)-space H3
ω̄(T ). Since S4 acts on T by holomorphic

automorphisms and commutes with the deck group ⟨τ⟩, the induced action on H3
ω̄(T ) must act

trivially on the line H2,1
ω̄ (T ) defining the period data. After complex conjugating, Lemma 4.2 tells

us that H1,2
ω̄ (T ) is isomorphic, as an S4-representation, to the standard permutation representation.

The hyperplane H1,2
ω̄ (T ) is then uniquely determined as an S4-representation by the 1-dimensional

trivial S4-representation C ⊂ H1,2
ω̄ (T ).

The ambient signature (4, 1)-space C4,1 ∼= H3
ω̄(T ) is where periods of cubic surfaces S live in. To

refine our period data equivariantly, we will use the fixed locus H3
ω(T )1 of the S4-action on H3

ω(T )

to define the period domain of symmetric cubic surfaces. By the above discussion, H3
ω(T )1 is a

signature (1, 1) complex inner product space.

Let T be a S4-invariant cyclic cubic threefold associated to the symmetric cubic surface S, and

let σT : S4 ×H3(T,Z) → H3(T,Z) be the S4-action induced on the Z[ω]-module H3(T,Z). Set Λ
equal to the unique Z[ω]-lattice of signature (4, 1) abstractly isomorphic to H3(T,Z), and σ an

S4-action on Λ abstractly isomorphic to the action σT on H3(T,Z).

13



Definition 4.3. An equivariant framing is a pair (S, λ) of a symmetric cubic surface S and a

framing

λ : (H3(T,Z), σT )
∼−→ (Λ, σ)

which sends the action σT on H3(T,Z) to the action σ on Λ. Two equivariant framings (S1, λ1) and

(S2, λ2) are equivalent if there exists some g ∈ NPGL(4,C)(S4) such that λ1 = g̃∗λ2. Let G denote the

space of equivalence classes of equivariantly framed symmetric cubic surfaces (S, λ).

Proposition 4.4 ([YZ20, Proposition 4.2]). The space G is a complex manifold.

Let ΛC,1 ⊂ ΛC = Λ⊗Z[ω] C denote the fixed locus of the S4-action σ on ΛC.

Definition 4.5. The symmetric period domain D associated to the moduli of equivariantly marked

symmetric cubic surfaces G is the Hermitian symmetric domain

D = P{x ∈ ΛC,1 ∼= C1,1 : h(x, x) < 0}.

Clearly D ∼= CH1, the complex hyperbolic line. Equivalently, D is the real hyperbolic plane.

The following diagram contains most of the spaces of interest. The main content of this section

will be showing injectivity of top left horizontal map G → F . The right column of horizontal period

maps are injective by [ACT02]. The remaining horizontal maps in the left column are injective by

definition and the pullback construction.

framed moduli G F CH4

marked moduli S̃ M̃ Γ̂′\CH4

moduli S M Γ̂\CH4

Proposition 4.6. Let HS4 = D∩H denote the symmetric discriminant locus in the period domain.

The natural map G → F is injective. Thus the local symmetric framed period mapping P̃ : G → D
injective, and moreover is an open embedding onto its image D−HS4 . Moreover, its extension to

the stable locus Gs is surjective.

Proof. Suppose we are given two equivariantly framed symmetric cubic surfaces (S1, λ1), (S2, λ2) ∈ G
that map to the same point in F . Then there exists an linear isomorphism of varieties g : S1

∼−→ S2

along with a unique up to deck transformations lift g̃ : T1
∼−→ T2 satisfying

g̃∗ = λ−1
1 ◦ λ2 : H3(T2,Z) → H3(T1,Z),

which is an isometry of Z[ω]-lattices. Since λ1 and λ2 are compatible with the S4-action, so is g̃∗.

By [Zhe21, Theorem 1.1], the equivariantly framed cubic surfaces (S1, λ1) and (S2, λ2) represent

the same point in G. This proves injectivity of the map G → F . Commutativity of the diagram

G F

D CH4
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then implies that the local symmetric framed period map G → D is injective. Moreover, since

the derivative of the period map P̃ : F → CH4 is injective everywhere, so is the derivative of

P̃ : G → D. Thus the local symmetric framed period map induces a diffeomorphism onto its image

D− (D∩H) = D−HS4 . Since the local period map on the stable framed moduli space Fs has image

CH4 [ACT02, Theorem 3.17], the image of the local symmetric period map Gs → D is surjective,

thereby proving the claim. □

4.3. The global period map. Since S4 acts on any symmetric cubic surface and its associated

cyclic cubic 3-fold T , it embeds into the arithmetic group U(4, 1,Z[ω]) via its action on H3(T,Z)
(note that this map is injective, since S4 embeds into the mod 3 reduction PO(4, 1,F3) via its action

on the 27 lines). To study how the local period map descends to yield a uniformization of the

symmetric moduli space by the global period map, we must determine the normalizer of S4 in a few

groups of interest.

Proposition 4.7. There is an isomorphism of groups NU(4,1)(S4) ∼= U(1, 1)× (U(1)× S4).

Proof. Recall that S4 acts on C4,1 by the standard permutation representation on the positive

4-space and the negative 1-space. This splits the space into a direct sum of irreducible representations

W ⊕ C⊕ C, where W denotes the irreducible S4-representation of dimension 3, and the sum of the

two trivial representations form a signature (1, 1)-space. By Proposition 2.9, it suffices to determine

what the centralizer of S4 is within U(4, 1). By centrality, we can deal with the 3-dimensional factor

and (1, 1)-factor individually.

Schur’s lemma tells us that the S4-centralizer acts by scalars on W , and thus is isomorphic to a

copy of U(1) acting on W . On the signature (1, 1)-factor, the S4-action is trivial, and thus every

element of U(1, 1) arises at an automorphism of the representation C⊕ C. Thus the normalizer is

the product of the normalizers on each factor, proving that NU(4,1)(S4) ∼= U(1, 1)× (U(1)× S4). □

Proposition 4.8. There is an isomorphism of groups NU(4)(S4) ∼= U(1)× S4, where U(1) acts on

the permutation representation V by scalars.

Proof. Using Proposition 2.9, we need only determine the centralizer of S4 to generate the normalizer.

Yet again, these are the unitary scalar matrices. □

Proposition 4.9. The group Γ = NU(4,1,Z[ω])(S4) is naturally an arithmetic subgroup of NU(4,1)(S4).

Moreover, we have an isomorphism Γ ∼= Aut(diag(4,−1),Z[ω])× (⟨−ω⟩ × S4)

Proof. For arithmeticity, see [YZ20, Appendix A]. As before, Proposition 2.9 tells us that it suffices to

determine the centralizer in U(4, 1,Z[ω]), which we shall do on each factor of the S4-representation.

The Eisenstein lattice Z[ω]5 ⊂ C4,1 intersects the S4-representations W and C ⊕ C in rank 2

and 3 Eisenstein lattices, respectively. The centralizer is then a subgroup of the product of the

automorphism group of these lattices. These symmetries must be automorphisms of C4,1 which

preserve the whole Eisenstein lattice.

By Proposition 4.7, the S4-centralizer of the rank 3 sublattice must be scalars θ ∈ U(1) which

preserves Z[ω]; this subgroup is ⟨−ω⟩. A standard calculation tells us that generators for this rank
15



2 sublattice are given by (1, 1, 1, 1, 0) and (0, 0, 0, 0, 1), thus the signature (4, 1) form restricts to the

bilinear form diag(4,−1). Since S4 acts trivially on this rank 2 sublattice, the full automorphism

group Aut(diag(4,−1),Z[ω]) which preserves the Eisenstein lattice constitutes the centralizer on

this factor. This proves the claim. □

From these calculations, we can conclude the following which is an application of a well-known

fact about locally symmetric varieties [YZ20, Proposition A.1]:

Proposition 4.10. Let Ĝ = U(4, 1), K̂ = U(4), and Γ̂ = U(4, 1,Z[ω]). Set G = NĜ(S4),

K = NK̂(S4), and Γ = NΓ̂(S4). The holomorphic embedding G/K → Ĝ/K̂ descends to a generically

injective finite normalization

Γ\G/K → Γ̂\Ĝ/K̂.

Following [YZ20, Proposition 4.10], we can prove this more precise version of Theorem 1.1:

Theorem 4.11. The local period map P̃ : G → D descends to isomorphisms S ∼= PΓ\(D−HS4)

and Ss ∼= PΓ\D. Moreover, this is an isomorphism of analytic orbifolds compatible with the

uniformization of the moduli of cubic surfaces, so the totally geodesic embedding

PΓ\D → P Γ̂\CH4

is a modular embedding of locally symmetric orbifolds. This map compatibly extends to an

isomorphism of the semistable symmetric moduli space Sss ∼= PΓ\D, where the latter space denotes

the Satake compactification of the arithmetic quotient.

Proof. We will first show that the map P̃ descends to a well-defined map P([S]) = [P(H2,1
ω̄ (T ))].

Let f1, f2 ∈ Vsm be two smooth symmetric cubic forms with equivariant framings λ1, λ2 of their

associated cubic 3-folds T1, T2. Suppose there is some g ∈ NPGL(4,C)(S4) such that g(f1) = f2. This

induces the Z[ω]-isometry

g̃∗ : H3(T2,Z) → H3(T1,Z).

We will show that γ = λ1 ◦ g̃∗ ◦ λ−1
2 ∈ Γ. Since g ∈ NPGL(4,C)(S4), gσg

−1 = σ′ ∈ S4, thus we have a

commutative diagram

Λ H3(T2,Z) H3(T1,Z) Λ

Λ H3(T2,Z) H3(T1,Z) Λ

σ′

λ−1
2

σ′∗

g̃∗

σ∗

λ1

σ

λ−1
2

g̃∗ λ1

Thus, as automorphisms of Λ, σ′ = γ−1σγ, proving that γ ∈ Γ. This proves the map P is a

well-defined and yields a commutative diagram

G D

S PΓ\D

P̃

P
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The Riemann extension theorem tells us that P extends uniquely to the stable locus Ss. By

commutativity of this diagram and Proposition 4.6, the global period map P : S → PΓ\(D−HS4)

and its stable extension Ss → PΓ\D are surjective. We shall now show that P is injective.

Let (S1, λ1), (S2, λ2) ∈ G be two equivariantly framed symmetric cubic surfaces with associated

cubic forms f1, f2, and suppose their periods represent the same point in PΓ\D. Then there exists

some γ ∈ Γ such that γ · λ1(H2,1
ω̄ (T1)) = λ2(H

2,1
ω̄ (T2)). Thus the map λ−1

2 ◦ γ ◦ λ1 : H3(T1,Z) →
H3(T2,Z) preserved preserves the Eisenstein Hodge structures. By [Zhe21, Theorem 1.1], there

exists some g ∈ PGL(4,C) such that g(f2) = f1 and g̃∗ = λ−1
2 ◦ γ ◦ λ1. To prove injectivity of P , we

want to show that g ∈ NPGL(4,C)(S4).

For any σ ∈ S4 acting on S1 = Z(f1), we have that g−1σg acts on S2 = Z(f2), which induces the

following on the cohomology of the associated cyclic cubic 3-folds:

(g̃−1σg̃)∗ = g̃∗σ∗(g̃−1)∗ = (λ−1
2 γλ1)(λ

−1
1 σ∗λ1)(λ

−1
1 γ−1λ2) = λ−1

2 γσ∗γ−1λ2.

Since γ ∈ Γ, we have that γσ∗γ−1 ∈ S4 as an automorphism of cohomology. Again by [Zhe21,

Theorem 1.1], we have that gσg−1 ∈ S4, proving that g ∈ NPGL(4,C)(S4). Modular compatibility of

the totally geodesic embedding is a consequence of Proposition 4.10. This proves the global period

map satisfies the claimed properties.

By [ACT02, Theorem 8.2], the period map extends to the semistable locus for the total moduli

space Mss → P Γ̂\CH4 and sends the unique semistable non-stable point to the unique boundary

point of the Satake compactification. Since the embedding of locally symmetric orbifolds PΓ\D →
P Γ̂\CH4 is modular, the extension to their Satake compactifications is modular, and thus the

tricuspidal point on Sss maps to the unique boundary point of PΓ\D, as claimed. □

Now that we have successfully uniformized the moduli space of symmetric cubic surfaces, we will

begin our study of the monodromy group associated to the cover S̃ → S, where S̃ is the moduli of

symmetric cubic surfaces equipped with a line.

Proposition 4.12. Consider the group homomorphism U(4, 1,Z[ω]) → PO(4, 1,F3) induced by the

map ω 7→ 1. The subgroup corresponding to Γ = NU(4,1,Z[ω])(S4) has image K4 × S4 in PO(4, 1,F3).

Proof. We appeal to the isomorphism explicitly traced out in the proof of Proposition 4.9, and

determine the mod 3 reduction on each factor. As previously discussed, the S4 factor survives the

quotient by its action on the 27 lines. Since ω 7→ 1, the ⟨−ω⟩ factor which acted on the rank 3

lattice by scaling is sent to ⟨−1⟩ ∼= C2. Finally, since the quadratic form diag(4, 1) reduces mod 3 to

the quadratic form diag(1,−1), one can calculate that the group Aut(diag(4,−1),Z[ω]) has image

isomorphic to PO(1, 1,F3) ∼= C2. Thus we’ve shown the image of Γ is isomorphic to K4 × S4. □

One may be tempted to conclude that the monodromy group of the cover S̃ → S isK4×S4. Indeed,
[ACT10, Section 8] outlines why the monodromy groups associated to connected components of

moduli of real cubic surfaces are the image of their fundamental groups in PO(4, 1,F3). However, all

that Proposition 4.12 guarantees is that the monodromy group is contained in K4×S4. Remarkably,

the philosophy of “big monodromy” fails to pin down our desired Galois group from purely Hodge
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theoretic considerations — it will be a proper subgroup of K4×S4! Further analysis using equivariant

line geometry on cubic surfaces is required, which we carry out in the next section.

5. Calculating the monodromy group

In this section, we will determine the monodromy group of the cover S̃ → S by a combination of

classical, moduli-theoretic, and computational techniques. We begin with the following basic fact:

Proposition 5.1. The automorphism group of a cubic surface acts faithfully on its lines.

Proof. Any automorphism φ of a cubic surface S preserves the canonical class KS , and thus extends

to the anticanonical embedding of S into P3, so φ ∈ PGL(4,C). Thus φ sends lines to lines on S,

and any such φ which fixes all 27 lines must be the identity. □

Example 5.2. For symmetric cubic surfaces, this implies that S4 ⊆W (E6). A priori for different

symmetric cubic surfaces we might obtain different conjugacy classes of S4 in W (E6), however the

connectivity of the moduli space of symmetric cubic surfaces guarantees this cannot occur. Thus

when we discuss S4 as a subgroup of W (E6) we are implicitly referring to this specific conjugacy

class of subgroups.

Proposition 5.3. The symmetric monodromy group is a subgroup of NW (E6)(S4)
∼= K4 × S4.

Proof. This is immediate by translating Proposition 4.12 along the exceptional isomorphismW (E6) ∼=
PO(4, 1,F3). It can also be proved by leveraging Luna’s étale slice theorem (c.f. [Lun73, PV94]) to

argue there exists a universal deformation space for S4-symmetric cubic surfaces, and therefore via

descent, monodromy in the symmetric locus preserves the fiberwise S4-action on a universal family

of symmetric cubic surfaces, thereby normalizing S4 in the full monodromy group W (E6).

The splitting of the short exact sequence

(4) 0 → S4 → NW (E6)(S4) → K4 → 0.

claimed in the proposition is a computer verifiable computation. □

5.1. Stability of the D8 tritangent. We can further restrict the symmetric monodromy via an

understanding of how S4 acts on the 27 lines on a symmetric cubic surface. The following result

of the first named author proves that it is independent of the choice of smooth symmetric cubic

surface.

Theorem 5.5. [Bra24, Theorem 1.2] On any smooth symmetric cubic surface, the 27 lines have

orbits

[S4/C
o
2 ] + [S4/C

e
2 ] + [S4/D8] ,

where Co
2 = (1 2) is an odd copy of the cyclic group of order two, and Ce

2 = (1 2)(3 4) is an even

copy of the cyclic group of order two.

Example 5.6. The Fermat cubic surface is defined by the symmetric homogeneous form m3. Its

27 lines, with explicit labels and parametric equations, are given in the appendix of this paper
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(Data A.1). The lines ℓ1, . . . , ℓ12 lie in the S4/C
o
2 orbit, the lines ℓ13, . . . , ℓ24 lie in the S4/C

e
2 orbit,

and the lines ℓ25, ℓ26, ℓ27 form a tritangent which is the S4/D8 orbit. We refer to these three lines

as the D8-tritangent.

Remark 5.7. Once labels are fixed on the 27 lines, we can construct W (E6) as a permutation

group, given as the adjacency-preserving permutations of the 27 lines. As a subgroup of S27 with

the labeling of the lines coming from the Fermat cubic surface, the generators for W are listed in

Data A.2.

Proposition 5.8. The three lines {ℓ25, ℓ26, ℓ27} lie on every symmetric cubic surface, forming a

D8-tritangent. Moreover they are fixed under symmetric monodromy.

Proof. Since each symmetric cubic surface is a linear combination of elementary homogeneous

symmetric polynomials, it suffices to verify each of these vanishes on the lines in the D8-tritangent,

which is a routine computation.

Since symmetric monodromy is S4-equivariant, the tritangent plane spanned by the lines

ℓ25, ℓ26, ℓ27 must be stabilized. Moreover, there is no fourth distinct line incident to any sym-

metric cubic surface which lies in the D8-tritangent, as this would violate Bézout’s theorem. Any

nontrivial deformation of ℓ25, ℓ26, ℓ27 arising from monodromy would yield such a line, and so the

lines ℓ25, ℓ26, ℓ27 must be fixed by monodromy within the symmetric locus. □

Observe what this means — given any loop in the symmetric locus, viewed as an element of

W (E6) ≤ S27, it fixes each of the points 25, 26, and 27. Since W (E6) acts transitively on ordered

tritangents, we can ask what the pointwise stabilizer of a tritangent is in W (E6), and this will

contain our monodromy group.

Proposition 5.9. The symmetric monodromy group is contained in the pointwise stabilizer of a

tritangent in W (E6). This is a group of order 192.

5.2. Cycle decompositions in W (E6). By combining our constraints for the symmetric mon-

odromy group arising from uniformization (Proposition 5.3) and from equivariant enumerative

geometry (Proposition 5.9), we obtain the following reduction.

Proposition 5.10. The monodromy group is contained in the group of order 16:

27⋂
i=25

StabW (E6)(ℓi) ∩NW (E6)(S4)
∼= K4 ×K4.

We give names to these generators. The former is K4 = ⟨σ1, σ2⟩, and it is a subgroup of S4. The

latter is K4 = ⟨τ1, τ2⟩ and it is not contained in S4. As explicit elements in W (E6) ≤ S27 they are

listed in Data A.4

Proposition 5.11. Let g ∈ NW (E6)(S4)∖ S4, let ℓ be a line on a symmetric cubic surface X, and

let σ ∈ S4. Then

g(σℓ) = σ(gℓ).
19



Proof. By Proposition 2.9, any such element g centralizes S4 within W (E6), so σg and gσ act

identically on any line ℓ ⊂ X. □

Corollary 5.12. Let g be any element in the monodromy group, and let ℓ be a line on a symmetric

cubic surface X. Then

(1) If g fixes ℓ, then g fixes σℓ for all σ ∈ S4.

(2) If gℓ ̸= ℓ then g(σℓ) ̸= g(σℓ) for all σ ∈ S4.

In particular the monodromy group acts on entire orbits simultaneously.

Proof. If g ∈ S4 this is clear. If g /∈ S4 this follows from Proposition 5.11. □

Proposition 5.13. The symmetric monodromy action does not change the isotropy group of any

line. Phrased differently, it acts on each S4-orbit of lines independently.

Proof. For D8 this is clear since symmetric monodromy stabilizes each line, so they remain in a D8

orbit. To see that the S4/C
o
2 and S4/C

e
2 orbits cannot be interchanged by the monodromy action,

it suffices to observe that Co
2 and Ce

2 are not conjugate in W (E6). □

Lemma 5.14. If the monodromy group contains two distinct non-trivial elements (i.e. if it is not

trivial or cyclic of order two), then it is the Klein 4-group

K4
∼= ⟨σ1τ2, τ1⟩ .

Proof. We can look through the 16 elements of ⟨σ1, σ2, τ1, τ2⟩ and ask whether each element satisfies

the necessary constraints to lie in the symmetric monodromy group.

Since each element in the larger group is an involution, it is a product of disjoint transpositions,

the number of which is well-defined in this monodromy problem (since any other choice of basepoint

for monodromy conjugates the permutation representation of the monodromy class by an element in

W (E6), but the transposition length of an involution is clearly independent under such a conjugation).

We can eliminate the following elements directly for having transposition length 10:

σ2τ1, τ2, σ1σ2, σ1, σ1σ2τ1τ2, τ1τ2, σ2.

The remaining non-identity elements have transposition length 6 or 12, so we can ask whether they

fix or permute each element of the two orbits. We can eliminate the following three elements, all of

transposition length six, since they violate Corollary 5.12:

τ2, σ2τ2, σ1σ2τ2.

Therefore our desired monodromy group M is contained in what is left over, meaning we have a

subset inclusion

M ⊆ {id, τ1, σ2τ1, σ1τ2, σ1τ1, σ1τ1τ2, σ1σ2τ1} .

If the monodromy group is non-trivial, then it might be cyclic of order two generated by any one

non-identity element in this set. The other case is that it contains two non-identity elements, in

which case it must also include their product. In this case, we can exclude those elements in the set
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whose product with any non-identity element lands outside the set. These elements are σ2τ1, σ1τ1,

and σ1σ2τ1. We are left with the Klein 4-group

K4 = {id, τ1, σ1τ2, σ1τ1τ2} .

These elements are explicitly given as permutations in Data A.5. □

5.3. Certified tracking. Via Lemma 5.14, our computation of the monodromy group reduces to

demonstrating the existence of two loops in the moduli space of smooth symmetric cubic surfaces

which induce different permutations on the 27 lines. In conversations with T. Brysiewicz, working

with his Pandora software [Bry24], we were able to generate strong evidence that this is true, and

determine candidate loops.

Algorithms used in this and related software fall under the umbrella of homotopy continuation.

This is a key technique in numerical algebraic geometry which deforms a system of polynomial

equations along a one-parameter path. One of the primary applications of this technology is

conducting explicit monodromy computations.

While homotopy continuation software can generate strong evidence towards a computation,

more refined algorithms are needed to turn these computations into proof. At each stage of tracking

solutions along a one-parameter path, a guarantee is needed that paths don’t collide, and therefore

that the computed permutation is indeed correct. These more sophisticated (and time-costly)

methods are called certified tracking algorithms. Recent work of T. Duff and K. Lee provides

algorithms which, among other things, are applicable for certifying computations in monodromy,

bridging the gap between computation and proof [DL24, Theorem 1]. In conversations with Lee,

their software is able to mathematically certify the following result.

Lemma 5.15 (Numerical certification). There are two loops in the symmetric locus which induce

distinct non-identity permutations on the set of 27 lines.

We can now prove Theorem 1.2:

Proof of Theorem 1.2. Lemma 5.14 tells us that the monodromy group M is contained in a specific

K4 < W (E6). By Lemma 5.15, there are two loops in the symmetric locus which generate distinct

non-trivial elements in the monodromy group. Thus these two loops are a generating set for K4. □

5.4. The incidence variety of 27 lines over the symmetric locus. Now that we have

determined the monodromy group of the cover S̃ → S is K4, we can actually say more about the

topology of the space of symmetric cubic surfaces with a line:

Corollary 5.16. The incidence variety of 27 lines restricted to the symmetric locus has 12 connected

components. Explicitly as a K4-set, the fiber over any symmetric cubic surface is of the form

6 [K4/C2] + 3 [K4/e] + 3 [K4/K4] .

Proof. Having restricted the symmetric monodromy group and concluding that it is K4 < W (E6),

we can then see explicitly how K4 acts on and stablizes the 27 lines on the Fermat cubic surface.

This splits them into the 12 families claimed (see Data A.4 for the relevant generators and how they

act on the 27 lines). □
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To conclude, we have an equivariant analog of Proposition 2.8:

Theorem 5.17. The space S̃ is a naturally a (disconnected) complex manifold. Moreover, the

equivariant monodromy representation

π1(S, X) → AutS4(H
2(X,Z), ηX) ∼= S4 ×K4

is not surjective and has image isomorphic the Klein 4-group K4.

6. Symmetry and monodromy via representation theory

In the previous section, we determined the monodromy group K4 within the Weyl group W (E6)

in terms of how it acts on the lines of the Fermat cubic surface; the S4-orbits of the 27 lines are given

in Data A.1. The goal of this section is to understand these copies of S4 and K4 in W (E6) from

more traditional representation theoretic viewpoint, via reflection group theory and the projective

orthogonal perspective. Informally, we will show that the symmetry group and monodromy group

are not visible from purely Coxeter-theoretic considerations.

6.1. The Weyl group as a reflection group. To present the Weyl group W (E6) as a reflection

group, we first label the nodes of E6 Dynkin diagram with the generating reflections s0, . . . , s5:

s1

s0

s2 s3 s4 s5

This gives rise to a presentation of the Weyl group of E6 as a Coxeter group:

W (E6) = ⟨s0, . . . , s5|(sisj)mij = 1⟩ , mij =


1 i = j

3 si, sj share an edge

2 otherwise

Proposition 6.1. Any choice of six skew lines gives rise to a presentation of W (E6) in the form

above.

Proof. The choice of six skew lines determine a marking of the homology of a cubic surface S, where

each line corresponds to the homology classes of orthogonal (−1)-exceptional curves e1, . . . , e6 on S.

These in turn give us a basis of long roots for the E6 lattice v0 = h− e1 − e2 − e3, vj = ej − ej+1 for

j = 1, . . . , 5. The intersection form Q on the homology H2(S,Z) satisfies

Q(h, h) = 1

Q(ei, ej) = −δij
Q(h, ei) = 0.

From this it is clear that Q(vi, vi) = −2 for any 0 ≤ i ≤ 5. Then the reflections si that generate the

Weyl group W (E6) are realized homologically by

si(x) = x− 2Q(x, vi)

Q(vi, vi)
vi = x+Q(x, vi)vi;
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this is the geometric representation of W (E6). □

Example 6.2. If we pick the lines [ℓ1, ℓ3, ℓ10, ℓ11, ℓ16, ℓ22], a direct computation gives the six

generators of W (E6) as the following permutations in S27:

s0 (1,8)(3,6)(9,26)(10,25)(13,21)(20,23)

s1 (1,3)(2,4)(5,7)(6,8)(14,15)(18,19)

s2 (2,12)(3,10)(5,27)(6,25)(14,17)(19,24)

s3 (5,8)(6,7)(9,12)(10,11)(17,20)(21,24)

s4 (5,14)(7,15)(9,13)(11,16)(17,27)(21,26)

s5 (13,23)(14,19)(15,18)(16,22)(17,24)(20,21).

It is a classical computation that there are exactly 72 ways to pick six pairwise skew lines on a

cubic surface.

6.2. Double sixes from the Weyl group. Given six ordered pairwise skew lines, we obtain an

associated subgroup W (A5) ≤W (E6) by suppressing the node s0, and all of these subgroups are

conjugate. We note though, that we can permute the ordering of our six lines – a natural question

to ask is whether such a permutation extends to element of the Weyl group, and if such an extension

exists, whether it is unique. The answer to both these questions is yes.

Proposition 6.3. Given six ordered skew lines, any automorphism σ of them extends uniquely to

an adjacency-preserving automorphism of all 27 lines, i.e. an element of W (E6).

Proof. Any permutation of the lines permutes the homology classes e1, . . . , e6 accordingly, and in

particular will fix the canonical class KS = 3h− e1 − · · · − e6. Therefore by definition it extends to

an element of W (E6). Since its action on the ei’s defines its action on h and therefore on a basis of

the homology, such an extension is unique. □

Moreover, we understand this subgroup of W (E6).

Proposition 6.4. Fixing six ordered skew lines, the subgroup of W (E6) obtained by permuting

them is exactly equal to the Weyl group W (A5) obtained from the presentation coming from the

choice of lines.

Proof. It suffices to show that each of the generators s1, . . . , s5 is contained in this symmetric group.

This is immediate, since si permutes ei and ei+1 and fixes the other ej . □

There is a unique conjugacy class of subgroupW (A5) ≤W (E6), andW (E6)/W (A5) is a transitive

set of order 36. There are, however, 72 unordered choices of six skew lines. This gives us a surjection

{six skew lines} →W (E6)/W (A5),

which is 2-to-1. In particular, six skew lines come in pairs, which give rise to the same copy of

W (A5) in W (E6). These pairs of six skew lines are what are known as double sixes.

In particular a computation shows that, as a W (A5)-set, the set of lines {1, . . . , 27} decompose

into two transitive W (A5)-sets of order six, and a single transitive set of order 15. These are the

double six, and the remaining lines, respectively.
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Remark 6.5. While W (A5) is isomorphic to S6 as we have seen, it is abuse of terminology to

equate them. There are two non-conjugate subgroups of W (E6) which are isomorphic to S6, the

first being our W (A5) group, and the latter just being another subgroup of W (E6) which we denote

by S6. The latter group can be distinguished via its action on 27 lines — it acts transitively on 12

lines and transitively on the other 15.

6.3. Our groups are not reflection groups. We can now argue that both the S4 acting on

symmetric cubic surfaces and the symmetric monodromy group are not reflection subgroups of

W (E6). This is perhaps obvious to those familiar with e.g. [Man06], but we can give an elementary

argument now with the machinery we have built.

Proposition 6.6. The subgroup S4 ≤ W (E6) is not a reflection subgroup — that is, it is not

isomorphic to W (A3) for a presentation of W (E6) arising from any choice of six skew lines.

Proof. We prove something stronger, namely that S4 is not subconjugate to W (A5). Indeed suppose

towards a contradiction that it was. As we have seen by [Bra24], the action of S4 on the 27 lines

decomposes into three S4-sets, of order 12, 12, and 3. If S4 ≤ W (A5), then this action would be

restricted from the action of W (A5) on the set of 27 lines. However the partition of {1, . . . , 27}
into orbits will only ever refine under a restricted group action. In particular since W (A5) has two

orbits of size six it cannot restrict to the prescribed S4-action. □

Remark 6.7. The action of the other S6 from Remark 6.5 does not have this same restriction, and

a computation shows that S4 is indeed subconjugate to S6 in W (E6).

Remark 6.8.

(1) Another interesting note is that while S4 is not subconjugate to W (A5), we have that W (A5)

is nested in a maximal subgroup isomorphic to W (A5)× C2 ≤W (E6). It is true that S4 is

subconjugate to this maximal subgroup, and moreover the centralizer of S4 in W (A5)× C2

is identical to the symmetric monodromy group!

(2) There is actually a unique copy of W (A5) in W (E6) for which S4 is a subgroup of its

maximal supergroup W (A5)× C2. This unique copy corresponds to a preferred double six

for symmetric cubic surfaces. A direct computation shows that this is the unique double six

where six skew lines lie in the same S4-orbit.

Proposition 6.9. The symmetric monodromy group K4 ≤W (E6) is not a reflection subgroup.

Proof. Suppose for the sake of contradiction that K4 was a reflection subgroup; it would then take

on the form of W (A1)×W (A1). Since each of the generators si act on the 27 lines as a product

of six disjoint transpositions, there are two nontrivial elements of W (A1) ×W (A1) that are the

product of six disjoint transpositions. However, Data A.5 tells us that the symmetric monodromy

group only has one element that is the product of six disjoint transpositions, a contradiction. □
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6.4. Symmetric monodromy in the projective orthogonal groups. Since we know how the

symmetric monodromy group K4 < W (E6) acts on the 27 lines of the Fermat cubic surface S, we

can explicitly connect this K4 back to the projective orthogonal group by a lengthy homological

calculation. We sketch this correspondence now.

Recall that the set of six skew lines {ℓ1, ℓ3, ℓ10, ℓ11, ℓ16, ℓ22} determine a marking of the homology

of S, where each line corresponds to the homology classes of orthogonal (−1)-exceptional curves

e1, e2, e3, e4, e5, e6 on S. Using Data A.5, we can calculate howK4 = ⟨τ1, σ1τ2⟩ acts on the exceptional

(−1)-curves, which in turns explicitly determines how K4 acts on the E6 lattice. Then by passing to

the root lattice quotient used in the proof of the exceptional isomorphism outlined in Proposition 3.3,

this K4 projects to the symmetric monodromy group K4 inside of PO(4, 1,F3).

It would be interesting to understand how the symmetric monodromy group arises purely by an

analyzing its action on the associated symmetric cyclic cubic 3-folds. This leads us to the following

problem:

Problem 6.10. Determine the symmetric monodromy group K4 as a subgroup PO(4, 1,F3) directly,

that is, without reference to the action on the lines or the exceptional isomorphism with W (E6).

As Beauville remarks [Bea09, pg. 19], what makes this difficult is that it is unknown how to

produce a marking of a cubic surface from a framing of the corresponding cyclic cubic 3-fold. A

resolution to this problem would shed further light on symmetric monodromy can be witnessed by

Hodge theory, and therefore be applied to similar equivariant enrichments of classical enumerative

problems.

Appendix A. Data tables

We record some of the line geometry data associated to the Fermat cubic surface.

A.1. All about the Fermat.

Data A.1. The 27 lines ℓi on the Fermat can be labeled and grouped according to their S4-orbits

as follows:

i ℓi

1 [w,−w, z, ζ · z]
2 [w,−w, z, ζ5 · z]
3 [w, ζ · w, z,−z]
4 [w, ζ5 · w, z,−z]
5 [w, z, ζ · w,−z]
6 [w, z, ζ5 · w,−z]
7 [w, z,−w, ζ · z]
8 [w, z,−w, ζ5 · z]
9 [w, z,−z, ζ · w]
10 [w, z,−z, ζ5 · w]
11 [w, z, ζ · z,−w]
12 [w, z, ζ5 · z,−w]

i ℓi

13 [w, ζ · w, z, ζ · z]
14 [w, ζ · w, z, ζ5 · z]
15 [w, ζ5 · w, z, ζ · z]
16 [w, ζ5 · w, z, ζ5 · z]
17 [w, z, ζ · w, ζ · z]
18 [w, z, ζ · w, ζ5 · z]
19 [w, z, ζ5 · w, ζ · z]
20 [w, z, ζ5 · w, ζ5 · z]
21 [w, z, ζ · z, ζ · w]
22 [w, z, ζ5 · z, ζ · w]
23 [w, z, ζ · z, ζ5 · w]
24 [w, z, ζ5 · z, ζ5 · w]

i ℓi

25 [w,−w, z,−z]
26 [w, z,−w,−z]
27 [w, z,−z,−w]
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Data A.2. Given the labeling of the lines on the Fermat as in Data A.1, the Galois group W (E6)

is given by

G := SymmetricGroup(27);

W:= Subgroup(G,[

(13,23)(14,19)(15,18)(16,22)(17,24)(20,21),

(5,14)(7,15)(9,13)(11,16)(17,27)(21,26),

(2,6)(4,8)(5,19)(7,18)(9,23)(11,20)(12,25)(16,21)(22,26)(24,27),

(5,8)(6,7)(9,12)(10,11)(17,20)(21,24),

(3,4)(5,10)(6,9)(7,12)(8,11)(13,15)(14,16)(17,24)(18,23)(19,22)(20,21)(26,27),

(1,2)(5,9)(6,10)(7,11)(8,12)(13,14)(15,16)(17,21)(18,22)(19,23)(20,24)(26,27)

]);

Data A.3. The S4-action on the 27 lines of the Fermat cubic surface, given by permuting coordinates

on CP3, are generated by the following transposition and 4-cycle:

elt permutation

transp. (3,4)(5,11)(6,12)(7,9)(8,10)(13,15)(14,16)(17,21)(18,23)(19,22)(20,24)(26,27)

4-cycle (1,11,3,10)(2,12,4,9)(5,8,6,7)(13,23)(14,24, 15,21)(16,22)(17,18,20,19)(25,27)

Data A.4. The generators σ1, σ2, τ1, τ2 ∈W (E6) from Proposition 5.10 are given by the following

permutations:

elt permutation

σ1 (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,15)(17,20)(18,19)(21,24)

σ2 (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,16)(17,20)(21,24)(22,23)

τ1 (13,23)(14,19)(15,18)(16,22)(17,24)(20,21)

τ2 (1,4)(2,3)(9,11)(10,12)(13,16)(22,23)

Data A.5. The (non-identity) elements in the Klein 4-group corresponding to symmetric monodromy

are given by

elt permutation

τ1 (13,23)(14,19)(15,18)(16,22)(17,24)(20,21)

σ1τ2 (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,23)(14,18)(15,19)(16,22)(17,21)(20,24)

σ1τ1τ2 (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,22)(14,18)(15,19)(16,23)(17,21)(20,24)
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105 (2007), 1–48.

[FW08] Benson Farb and Shmuel Weinberger, Isometries, rigidity and universal covers, Annals of Mathematics

(2008), 915–940.

[Gri69] Phillip A Griffiths, On the periods of certain rational integrals: I, II, Annals of Mathematics 90 (1969),

no. 2,3, 460–541.
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