MONODROMY IN THE SPACE OF SYMMETRIC CUBIC SURFACES WITH
A LINE

THOMAS BRAZELTON AND SIDHANTH RAMAN

ABSTRACT. We study the symmetric enumerative problem of finding a line on a symmetric cubic
surface. We show that this problem has Galois group isomorphic to the Klein 4-group. Additionally,
we prove that the moduli space of symmetric cubic surfaces is an arithmetic quotient of the complex
hyperbolic line. Our proofs use techniques from equivariant line geometry, Hodge theory, and

homotopy continuation.

1. INTRODUCTION

The Galois group of an enumerative problem is a classical object of study in enumerative algebraic
geometry. It was first introduced by Jordan as one of the main subjects of interest at the genesis of
Galois theory [Jor70]. This idea enjoyed a revival a century later when Harris proved that the Galois
group of an enumerative problem agrees with the monodromy group of its associated cover [Har79].
In modern mathematics Galois groups can be approached from a wide number of perspectives, from
Hodge theory and hyperbolic geometry [ACT02], to Lie theory [Man06], to numerical analysis and
homotopy continuation [L.S09], to name a few.!

Contemporary geometers such as Klein were interested in exploring how symmetries of objects
manifest in enumerating various quantities attached to them. Recent work of the first-named
author introduces tools from equivariant homotopy theory to explore how Poncelet’s principle of
conservation of number interacts with symmetry, an example being that a smooth cubic surface
defined by a symmetric polynomial always has the same Sj-symmetries on its lines [Bra24]. Such
cubic surfaces are called symmetric cubic surfaces.

In this paper we initiate an exploration of Galois groups of symmetric enumerative problems.
This flavor of question is well-studied in geometric group theory; for example, many have studied
rigidity phenomena for finite index subgroups of lattices in Lie groups (e.g. [Mar91] and [FWO08])
and equivariant problems for their non-linear analogues like mapping class groups and Out(F},) (e.g.
[BH73|, [MHT75], [FHO7], and [LLS24]). However the setting we pursue is of a completely different
shape — since the Galois group of lines on a cubic surface (and many related problems) is finite,
we cannot leverage such tools, e.g. Teichmiiller theory, to approach this question, and alternative
techniques are needed.

Our main result is a computation of the Galois group of lines on symmetric cubic surfaces,
which we show is equal to the Klein 4-group. This is carried out via a combination of moduli-

theoretic techniques, classical analysis of the Weyl group of the Ejg lattice, as well as group-theoretic

For a lovely introduction to the history and appearance of Galois groups in enumerative geometry, we refer the reader
to [SY21].
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computations in GAP and contemporary certified tracking homotopy continuation algorithms. Along
the way we prove that the moduli of stable symmetric cubic surfaces is an arithmetic quotient of the
complex hyperbolic line. The latter result mirrors the landmark work of Allcock, Carlson, and Toledo
at the turn of the century [ACT02], where they show the moduli space of stable cubic surfaces is an
arithmetic quotient of complex hyperbolic 4-space. We explore the appearance of our Klein 4-group
K, in both the Weyl group of Fg and in the projective orthogonal group PO(4,1,F3).

1.1. Main results. Before we state our main theorems more formally, we fix some notation. Let
M (resp. M?) denote the moduli space of smooth (resp. stable) cubic surfaces. Similarly, let S
(resp. §*) denote the moduli space of smooth (resp. stable) symmetric cubic surfaces. Finally, let

H% ¢ CH' denote the symmetric discriminant locus of the period map.

Theorem 1.1. There are analytic isomorphisms of orbifolds S = PT'\(CH' — H%*) and &% =
PT'\CH!, where T' < U(1, 1) is an arithmetic lattice. Moreover the inclusion of moduli spaces S — M
is compatible with the embedding of locally symmetric orbifolds PT'\CH! — Pf\(C]HI4 = M.

For the precise statement of Theorem 1.1, its semistable extension, and its proof, see Theorem 4.11.
Roughly, the idea behind the proof is to record the Sj-action in the period data and use the Sy-
invariant subspace to define the period domain associated to symmetric cubic surfaces. We also
determine the arithmetic group I' explicitly in Proposition 4.9.

Let M (resp. 5’) denote the space of (resp. symmetric) cubic surfaces equipped with a line.
Recall that Jordan showed that the connected 27 lines cover M — M has Galois group W (Es), the
Weyl group of Fg. Allcock—Carlson—Toledo recovered this fact Hodge-theoretically by considering an
appropriate congruence cover of their uniformized moduli space Pf‘\CH4 and using the exceptional
isomorphism W (Es) = PO(4,1,F3). The following monodromy group result is an equivariant analog

of Jordan’s theorem for the symmetric 27 lines cover S S:

Theorem 1.2. The (disconnected) symmetric 27 lines cover S — S has monodromy group
isomorphic to the Klein 4-group Ky < W (Eg).

The action of K4 on 27 labeled lines is explicitly worked out as permutations in Data A.4. This
allows us to completely characterize the covering space S — it has 12 connected components, with
each one corresponding to an explicit Ky4-set; see Corollary 5.16 for details.

There are a few reasons why Theorem 1.2 is surprising. First off, the symmetric group S4 and
symmetric monodromy group K4, thought of as subgroups of W (Eg), intersect trivially — this
means that if we want to witness the Sj-action on a symmetric cubic surface through monodromy,
we must leave the symmetric locus in the total moduli space. Second, a number of restrictions
coming from Hodge theory constrain the monodromy group to a group of order 96. However, these
restrictions provably do not suffice, as we can name explicit elements of this restricted subgroup
that cannot arise via symmetric monodromy. This stands in direct contrast with reasoning used
when studying similar problems, such as in [ACT10, Section 8§].

1.2. Paper structure. In Section 2, we review the construction of the (marked) moduli space

of cubic surfaces, and explicitly realize the moduli space of symmetric cubic surfaces as a GIT
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quotient. In Section 3 we give an overview of the work of Allcock—Carlson—Toledo, including
fundamental facts about framed cubic surfaces and their associated period maps, which yields their
main theorem, a uniformization of the moduli of cubic surfaces by complex hyperbolic 4-space. In
Section 4, we analogously define a period map for symmetric cubic surfaces via symmetric framings
of cubic surfaces, and uniformize the moduli space of symmetric cubic surfaces by the complex
hyperbolic line. This section finishes with a Hodge theoretic restriction of symmetric monodromy
to a group of order 96, which it turns out will properly contain the symmetric monodromy group.
In Section 5 we determine that the symmetric monodromy group is the Klein 4-group Ky, and
we describe how it acts on the 27 lines. Moreover, we show that the 27 lines cover over the
symmetric locus S8 splits into 12 connected components, and explicitly determine the K4-set
structure associated to each connected component. Finally, Section 6 describes how to alternatively
witness the symmetric monodromy group Ky in W(Eg) and PO(4, 1,F3) via representation theoretic
constructions. Appendix A contains explicit data regarding how the symmetric group Sy and the
generators of the symmetric monodromy group Ky act on the 27 lines on the Fermat cubic surface.

1.3. Acknowledgements. We thank Benson Farb, Frank Sottile, and Jesse Wolfson for their
interest and all independently asking us what the monodromy group is for the problem of finding
lines on symmetric cubic surfaces. We thank Taylor Brysiewicz and Kisun Lee for their help with
homotopy continuation and certified tracking software. Lastly, we thank Daniel Allcock for his
interest and elucidating answers regarding various group theoretic aspects of his work with James

A. Carlson and Domingo Toledo.

1.4. Notation. We use \mathcal letters to indicate parameter spaces, being both vector spaces

parametrizing polynomials and moduli spaces of their vanishing loci.

notation meaning

4% Clzo, - . ., 3] 3)

vV C[xg,...,xg]%)

S moduli of symmetric cubic surfaces
M moduli of cubic surfaces
decoration meaning

(=)™ or no decoration | moduli of smooth objects

(—)* moduli of stable objects

(—)®s moduli of semistable objects

(f;/) moduli of cubic surfaces equipped with a line
(/—\) moduli of marked cubic surfaces

2. MODULI CONSTRUCTIONS

The content of this section is standard and well-known — see [Zhe21] for example. We will review
how to construct the moduli space of (marked) smooth cubic surfaces as a GIT quotient, and then
analogously construct the moduli space of (marked) symmetric cubic surfaces. We end this section

with a quick discussion of stability and semistability of cubic surfaces, concluding with the facts
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that the Cayley nodal cubic is the only non-smooth symmetric stable cubic surface, and that the

tricuspidal cubic is the only non-stable symmetric semistable cubic surface.

2.1. Parameter space of cubic surfaces. Let W = Clzo, 21, 22, 23](3) denote the 20-dimensional
vector space of degree 3 homogeneous polynomials in 4 variables. Every f € W\{0} defines a cubic
surface Z(f) in P3, and two elements f; and fo determine the same surface Z(f1) = Z(f2) if and
only if fi = Afs for some A\ € C*. Thus P(W) = P! can be naturally thought of as the parameter
space of cubic surfaces in P3.

There is a linear action of SL(4,C) on W™ given by g - f := f o g~!. This induces a left action
of PGL(4,C) on the projectivization P(W).
Definition 2.1. Consider the left SL(4, C)-action on W induced by permuting coordinates on P3.
For f € W, we say that f is

(1) smooth if its associated cubic surface is smooth,

(2) stable if the orbit SL(4,C) - f is closed, and the stabilizer subgroup is finite,
(3) semistable if 0 is not in the closure of the orbit SL(4,C) - f.

We denote by W (respectively W?*, and W?*®) the subsets of W corresponding to smooth cubic

surfaces (respectively stable, and semistable). It is classically known that we have containments
WSI‘H C WS C WSS.

The action of SL(4,C) on each of these loci extends to an action of PGL(4,C) on their projec-
tivizations. We can take the respective GIT quotients to construct various moduli spaces of cubic

surfaces.

Definition 2.2. We denote by
M= PGL(4, C)\POWV™™),
M? .= PGL(4, C)\P(W?),
M?®® .= PGL(4, C)\P(W?**),
the moduli space of smooth/stable/semistable cubic surfaces.

Convention 2.3. When we write a moduli space without a subscript, e.g. M, we implicitly mean
the moduli of smooth objects.

The following classical result characterizes stable and semistable cubic surfaces by their singulari-
ties.

Theorem 2.4 (Hilbert, [Hil93]). A cubic surface is stable if and only if it its singularities are
ordinary nodes. A cubic surface is semi-stable if and only if its singularities are ordinary nodes or
A, singularities.

Lemma 2.5 ([ACT02, 4.6]). The cubic form z§ — 212223 is the unique closed SL(4,C)-orbit of
semistable non-stable cubic surfaces.



Since points in the GIT quotient M?** correspond to closed orbits, this indicates that there is a
unique point in the moduli space of semistable cubic surfaces corresponding to a point which is not
stable. This is given by the unique tricuspidal cubic surface, defined by the equation mentioned,
and pictured in Figure 1.

Let Wsm denote the parameter space of smooth cubic forms equipped with an incident line.

Concretely, this is the incidence variety
W = {(f,0) € W™ x Gr(2,4) : £ C Z(f)}.

The GIT quotient M = PGL(4, C)\\IP)V/V\S?1 is the moduli space of smooth cubic surfaces equipped
with a line. Since the natural projection Wsm — W™ is PGL(4, C)-equivariant, it descends to a
map of moduli spaces M — M.

2.2. Marked parameter space of cubic surfaces. Recall that a free finitely generated Z-module
L equipped with an integral symmetric (resp. symplectic) non-degenerate bilinear form ¢ defines a
symmetric (resp. symplectic) lattice structure (L, q). The lattice structure on the intersection form
of a smooth cubic surface is classically obtained by viewing the surface as a blowup of the projective

plane at six points.

Proposition 2.6. Let X = V(f) C P? denote a smooth cubic surface determined by some cubic
form f € W, Then H = H?*(X,Z) is a free Z-module of rank 7, and the cup product (-,-)
determines a signature (1,6) symmetric unimodular lattice structure (H, (,-)).

Let nx € H denote the canonical class on X and (L,q) = (1) ® (—1)®5 be an abstract lattice
isomorphic to (H, (-,-)). Fix some n € L so that (L,q,n) = (H,{-,-),nx).

Definition 2.7. A marking of a smooth cubic surface X is an isomorphism of lattices

¢ (Ha <'7'>a77X) - (Lvan)'

We say a cubic form with marking (f1, ¢1) is equivalent to the pair (fa, ¢2) if there exists some
g € PGL(4,C) so that g(f1) = f2 and ¢ = ¢1 0 g*. We will let W™ denote the parameter space of
marked smooth cubic forms, which is naturally a complex manifold [ACT02, 3.2].

Let M denote the GIT quotient PGL(4, C)\\Pm. We refer to this as the moduli space of
smooth marked cubic surfaces. As cubic surfaces vary, their markings will vary as well. Since any
two markings differ by an automorphism of the abstract lattice (L, q,n), we obtain a representation
of the fundamental group of the moduli space of smooth marked cubic surfaces. The following
is a relevant consequence of work of Beauville on monodromy in the universal family of degree d

hypersurfaces which was classically known for cubic surfaces [Bea06]:

Proposition 2.8. The space M is a connected, Hausdorff complex manifold which is a covering

space of M. Moreover, the monodromy representation
7"-1(-/\/17 X) - Aut(HQ(Xa Z)a 77X)

is surjective and has image isomorphic to the Weyl group of the root lattice Eg, denoted W (FEs).
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It is also classically known that the moduli space of marked cubic surfaces M is isomorphic to
the moduli space of cubic surfaces equipped with a line M [Bea09, pg. 19]. We shall freely identify
these spaces.

2.3. Parameter space of symmetric cubic surfaces. Recall that a degree d homogeneous

polynomial f(z1,...,2,) is symmetric if it is invariant under natural S,-action on z1,..., z,, i.e.
(21, 20) = f(2601)s - - 5 Zo(n)) for all 0 € S, When n > d, the vector space C[z1, .. .,zn]‘(il’s of

symmetric homogeneous degree d polynomials in n variables is p(d)-dimensional, where p(d) denotes
the number of partitions of d. A basis will be denoted by {m,}, where m, is a homogeneous
symmetric polynomial indexed by the partitions « - d.

In the case of symmetric cubic forms in 4 variables, the vector space V := W5+ admits a basis of
the form

3
ms3(20, 21, 22, 23) = E 27,
_ Z 2
m21(20,21,22,23) - 2 Zj’
mi11 (20, 21, 22, 23) = § 222k,
so any symmetric cubic form f in 4 variables can be uniquely written as a linear combination
f=a-m3+b-mo1+c-mi.

We see that the the parameter space of symmetric cubic forms P(V) = P? embeds linearly into the
parameter space of cubic forms P(W). Define A%t to be the symmetric discriminant curve, which
corresponds to the locus of Sy-invariant singular cubic forms in the parameter space PV.

In order to form a GIT quotient parametrizing a moduli space of symmetric cubic surfaces, we
need to understand how the action of PGL(4, C) preserves or fails to preserve the symmetry of the
associated cubic surface. The following is a basic algebra fact that will be relevant to much of what
follows:

Proposition 2.9. Let Sy be a subgroup of any group G. Then the normalizer Ng(Sy4) is generated
by S4 and its centralizer C(Sy).>

Proof. Given any g € Ng(Sy), we have gog~! € Sy for all o € S;. Thus conjugation by g defines an
automorphism of Sy. Recall that S, is a complete group for n # 2,6, and so every automorphism of
Sy is an inner automorphism. This implies that for each g € Ng(S4), there exists some n € Sy such

that
gog t=non ' e o=n"tgog 'n=n""go(n"tg)"

for all o € Sy. Thus n71g € C(S4), and so g € Cg(Sy) - Sy This proves the claim. O

2The general fact we are using is that every automorphism of a complete group is inner. Thus a complete subgroup
of any group has normalizer generated by the subgroup and its centralizer. The argument we give works mutatis
mutandis.
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Proposition 2.10. The normalizer of the permutation subgroup S4 in PGL(4,C) is

Npgr,c)(Ss) = -P:)¢{1,-3}, Pec S, <PGL(4,C)

o >

1
A
1
1

e e
P

Proof. By Proposition 2.9, it suffices to determine the centralizer of Sy in PGL(4,C). One can then
calculate that the subgroup of permutation matrices in GL(4, C) is centralized by matrices of the
form

C(a,b) =

e ot o

b b
a b
b b
b a

(SRS S s

where b # a,a # —3b.

Let ¢ : GL(4,C) — PGL(4,C) be the projectivization homomorphism. Since the permutation
matrices intersect the center of GL(4,C) trivially, we have ¢(S4) = Ss. To determine the rest
of the image of NPGL(47C)(5’4), we break into two cases, when b = 0 or b # 0. If b = 0 then the
matrices C'(a,0) are scalar and form the kernel of ¢. If b # 0, then ¢(C(a,b)) = ¢(C(a/b,1)). For
all @ € C\{1, -3}, the matrix C(a/b, 1) induces a nontrivial automorphism of P* and thus does not
lie in the kernel of ¢. Thus by letting A = a/b, we obtain that the normalizer of Sy < PGL(4,C) is
the subgroup stated in the proposition. O

This allows us to define the moduli of smooth symmetric cubic surfaces.

Proposition 2.11. The GIT quotient S = Npgp,4,c)(S1) \PV*™ is the moduli space of smooth

symmetric cubic surfaces.

Proof. Suppose that two symmetric cubic forms fi, fo € PV determine isomorphic symmetric cubic
surfaces X = Z(f1) and Y = Z(fo). Since such an isomorphism ¢ : X = Y of varieties preserves
their respective canonical classes Kx and Ky, the map extends to respect their anticanonical
embeddings into P3. Thus such an isomorphism ¢ must be the restriction of a linear automorphism
coming from the ambient projective space P3. Moreover, the automorphism groups of X and Y must
be preserved under such an isomorphism, and so the Sy-action on X must be sent to the Sj-action
on Y. Thus two symmetric cubic surfaces are projectively equivalent when their symmetric cubic
forms differ by an element of the normalizer of Sy < PGL(4,C), which was explicitly calculated in
Proposition 2.10. ]

2.4. Symmetry and stability. Having defined the moduli space of smooth symmetric cubic
surfaces S in Proposition 2.11, we would like to define the analogous moduli spaces of stable and
semistable symmetric cubic surfaces. In order to do this, we first must explore how (semi)stability
interacts with symmetry.

Proposition 2.12. Let f € V be a nonzero symmetric homogeneous form defining a semistable
cubic surface. Then the singularities of V(f) are either 44; or 3As.

Proof. We first see that if X = V/(f), then the geometric Sy action it inherits by symmetry is

actually a subgroup of the automorphism group. This is clear if X is smooth, since the cubic surface
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is anticanonically embedded, but a small argument is needed if X isn’t smooth. Suppose towards a
contradiction that any non-trivial element g € Sy acted trivially on X. Then X would lie in the
g-fixed subspace of P2, which is a hyperplane or intersection of hyperplanes, a contradiction.
Since a semistable cubic surface is normal by Serre’s criterion [Gro65, 5.10], we can refer to the
classification of automorphism groups of normal cubic surfaces due to Sakamaki [Sak10, Table 3]. It
is clear that S4 cannot be a subgroup of any of the automorphism groups except 441 where it is
equality, and 3As, where we make use of the semidirect product Ky x S3 = .Sy. O

We now look to see if any such symmetric singular cubic surfaces do exist. One of the most

famous singular cubic surfaces is symmetric:

Definition 2.13. The Cayley nodal cubic surface, defined by the elementary symmetric homogeneous
form mj1; is a singular cubic surface with four nodes. Its automorphism group is Sy, which permutes
these four nodes [Sak10]. It is pictured in Figure 1.

Conveniently, the normalizer of S; in PGL(4,C) appears in the following proposition, which

characterizes the Cayley cubic surface as the unique cubic surface with four nodes (c.f. [BW79)]).

Proposition 2.14. Let f € W be a nonzero form defining a cubic surface with four nodes. Then

there exists a unique change of coordinates g € Npgr(a,c)(Ss) so that g- f is the Cayley nodal cubic.

Proof. Given any other cubic surface with four nodes, there is a projective change of coordinates
turning it into the Cayley nodal cubic by sending the four nodes to the four nodes of the Cayley
cubic. This change of coordinates is unique up to permutation of the nodes since PGL(4, C) is simply
4-transitive. However there is a unique automorphism of the Cayley nodal cubic corresponding to

any permutation of the nodes, since its automorphism group is the symmetric group Sjy. ]

This has an immediate corollary to our study of stable symmetric cubic surfaces, which allows us
to understand the moduli space.

Corollary 2.15. Any symmetric stable cubic surface which is not smooth lies in the NPGL(47@)(S4)
orbit of the Cayley nodal cubic surface.

Corollary 2.16. The moduli space of stable symmetric cubic surfaces

S® = Nparu,c) (SONP(V?)
has the property that S C 8%, and §° \ S = {C} is one point, which is the Cayley nodal cubic.

What about semistability? By Proposition 2.12 any semistable symmetric cubic which isn’t
stable must have three cusps, and we know there is a unique semistable non-stable cubic surface in
the moduli space M?®® by Lemma 2.5. So it suffices to check if there is any projective change of

coordinates exhibiting the tricuspidal cubic surface as a symmetric homogeneous form.



Computation 2.17. The tricuspidal cubic surface zS’ — 212223 is projectively equivalent to the
homogeneous form 4ms; + 4mq11 via the change of basis matrix

1 1 1
1 -1 -1
-1 1 -1
-1 -1 1.

—_ = =

Why this works. Since Sy acts faithfully on the cubic surface, it must map singularities to singular-
ities, hence if a symmetric cubic surface has three cusps, they form an Sy-set. Viewing P as an
S,-space, we see there is a unique point in P? with full isotropy S4, and no points with isotropy
Ay. Hence the three cusps must form a transitive Sy-set, isomorphic to Sy/Dg. We check that
there is a unique such collection of three points in P3, namely [1:1: —1:—1], [ : —1:1: —1],
and [1: —1:—1:1]. Since PGL(4,C) is 3-transitive, if we can the tricuspidal cubic above into
a symmetric form, we must map its cusps [0:1:0:0],[0:0:1:0], and [0:0:0 : 1] to the
points forming the Sy/Dg orbit above, hence the three rightmost columns in the matrix we found.

A computation then forces the first column to consist of all 1’s. O

Corollary 2.18. The moduli space of semistable symmetric cubic surfaces

8% := Npar,c)(SHO\P(V*)

has exactly one point not in the stable moduli space, corresponding to the tricuspidal curve

ol 4

F1GURE 1. Left: the Cayley nodal cubic surface. Right: the tricuspidal cubic surface

mo1 + M111-

The inclusion ¥V — W of parameter spaces descends to a inclusion ¢ : § — M of the moduli of
symmetric cubic surfaces into the whole moduli space. The pullback 1* M is then the moduli space
of smooth marked symmetric cubic surfaces. Then just as before, the pullback construction let’s us
conclude that ¢* M is isomorphic to the moduli space of symmetric cubic surfaces equipped with a
line S.



3. REVIEWING ALLCOCK—CARLSON—TOLEDO

In this section, we outline the construction of the Allcock—Carlson—Toledo period map [ACT02].
Let S = Z(f) denote a cubic surface in P3. Since H2(S,Z) admits a type (1,1) Hodge structure,
the natural period map is constant. In their seminal paper, Allcock—Carlson—Toledo showed that
there is an weight 3 Hodge structure associated to S whose periods entirely capture its geometry.
This is the Hodge structure of the cyclic cubic threefold T, realized as a degree 3 cover of P? with
branch locus S. In coordinates,

T = {t3 = f(20, 21,22, 23)} C P4,

and the deck group (7) of the cover acts on T by multiplying the ¢-coordinate by the 3rd root of
unity w. The pair (H3(T,Z), 7) forms a so-called Eisenstein Hodge structure. The period domain
for such Hodge structures is complex hyperbolic 4-space CH*. There is a natural period map from
the moduli of smooth cubic surfaces M to an arithmetic quotient of CH* by PI’ = PU(4,1,Z[w)):

P: M — PT\CH*.

By the Riemann extension theorem, the map P extends uniquely to the stable cubic surfaces M?.
The main theorem of [ACT02] is that P is a biholomorphism of analytic spaces M?* = Pf‘\(CH4, and
moreover it is an isomorphism of orbifolds. After reviewing their work, we will build an analogous

uniformization of the moduli space of symmetric cubic surfaces.

3.1. Basic cohomology knowledge. Given a smooth cubic surface S defined by the cubic form f,
we associate to it the cyclic cubic 3-fold T := {t> = f} which defines a degree 3 branched covered
P3 over S. The Lefschetz hyperplane theorem and Poincaré duality tells us that 7" and P3 have the
same cohomology away from the middle degree 3, with Hodge numbers equal to h**(T) = 1 for
i=0,1,2,3. An Euler characteristic calculation tells us that H?(T,Z) is rank 10, and since there
are no holomorphic 3-forms on T, i.e. h3%(T) = h%3(T) = 0, the middle Hodge numbers of T are
h2’1 — h1,2 =5,

3.2. The module structure on cohomology. The deck group () of the triple branched cover
T — P3 acts on T by multiplying the t-coordinate by a 3rd root of unity w. Since fixed vectors of
the induced action on cohomology H3(T,7Z) must come from H3(P3,7Z) = 0 via transfer, 7 acts on
the (real) cohomology of T" without fixed points. Thus the minimal polynomial of the 7-action on
H3(T) is 22 + 2z + 1, and H3(T,Z) inherits the structure of a free Z[w]-module of dimension five.

The Hodge decomposition on H3(T, C) forms a direct sum decomposition
H3(T,C) = H>Y(T) @ H“*(T),

where the two summands are isomorphic dimension five vector spaces and are exchanged by complex
conjugation. Since T acts holomorphically on T, w acts on H3(T,Z) as a real operator, and so it
preserves the Hodge decomposition. Thus the eigenspace decomposition H3(T) = H3(T) @& H2(T)
is compatible with the Hodge decomposition. Selecting the w-summand, we get a Hodge-eigenspace
direct sum decomposition
H3(T) = HZN(T) @ H*(T).
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There is a naturally associated Hermitian Z[w]-valued form h on H3(T,Z) coming from the cup

product (-, -): S e
A (U B CEP )

With respect to this form h, the Hermitian pair (H2(T),h) is a signature (4,1) complex inner

product space. A key point in [ACT02] is that this direct sum decomposition is orthogonal with
respect to h, H2"(T) is 1-dimensional and negative-definite with respect to h, and that HX?(T) is
4-dimensional and positive-definite with respect to h.

3.3. Moduli of framed cubic surfaces. We have already defined markings and constructed the
moduli space of marked cubic surfaces. A related but slightly different idea must be studied, which
is the notion of a framing; this is a marking of the cohomology of the cyclic cubic threefold T
associated to a cubic surface S.

Definition 3.1. A framing of the cubic surface S is an isometry 9 from the Z[w]-lattice (H3(T,Z), h)
to the abstract indefinite Z[w]-lattice A = Z[w]*! (recall that A is unique up to isometry [A1100]).
Two framings (S1,%1) and (S2,v2) are equivalent if there exists some g € PGL(4,C) such that
1 = §*19. The space of equivalence classes of framed cubic surfaces (.5,1)) is denoted by F.

Allcock—Carlson—Toledo showed that F is a complex manifold. There is a natural action of the
arithmetic group I' = U(4, 1, Z[w]) on the space of framed cubic surfaces by v - (S, 1) = (S, o y~1).

3.4. The period mapping. The space of negative lines in the space C*! = A ®zw) C is the
complex hyperbolic 4-space CH*. We can now define the period mapping of framed cubic surfaces
P : F — CH* to be

P (S,0) — P(y(HZ'(T))) € CH* c CP*.
The main theorem of [ACT02] is that this map is an open embedding, and descends through the
I’-quotient to an isomorphism P of moduli spaces M 2 PIA“\((C]HI4 —H), where H is the locally finite
hyperplane arrangement determined by reflections over short roots § € A:

H= |J Fix(Refy).
h(8,6)=1
This isomorphism extends to the moduli space of stable cubic surfaces M?% = Pf\CH4. They

remark that this map extends to an analytic isomorphism of Deligne—-Mumford stacks; for more
details on this stacky structure, see the papers of Kudla-Rapoport [KR12] and Zheng [Zhe21].

Remark 3.2. Note that originally Allcock—Carlson—Toledo used the negative-definite line HL},’Q(T )
to define the period data of cubic surfaces, but this makes the period mapping anti-holomorphic, as

pointed out by Beauville [Bea09]. This is why we adopted the @ convention instead.
Finally, consider the group homomorphism Z[w] — F3 which sends w to 1. Then Z[w]*? Rz F3 &=

Fg’l, which induces a homomorphism

¢ : T — PO(4,1,F3).
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Allcock—Carlson—Toledo showed that this homomorphism is surjective, with kernel denoted by I
The following is well-known which we include for the sake of completeness (see [ACT02, Section
2.12] and [CCNT85, pg. 26]):

Proposition 3.3. There is an exceptional isomorphism of finite groups W (FEg) = PO(4, 1, F3).

Proof sketch. The Weyl group W (Eg) acts on the 6-dimensional root lattice Eg. This has index 3
in the weight lattice. The root lattice modulo 3 times the weight lattice is 5-dimensional vector
space over [F5. This space inherits an inner product ¢ from the root lattice by reducing mod 3 the
inner product of lattice vectors. Thus every element of W (Eg) descends to an automorphism of
I3 which preserves this non-degenerate symmetric bilinear form g. This yields the homomorphism
W(Eg¢) — O(q,F3). Post-composing with the projectivization, we obtain the group homomorphism

W(Es) — PO(q, F3).

Any two non-degenerate symmetric bilinear forms ¢ and ¢ are equivalent over Fg [MH73], and so the
group PO(gq,F3) and PO(4, 1,F3) isomorphic. One can then calculate that | (Eg)| = |[PO(q,F3)| =
51840. By almost simplicity of W (FEg) and non-triviality of this homomorphism, this map is an
isomorphism. O

By Proposition 3.3, we have that I'/I” = W (Eg), and so the cover of M that I < T’ corresponds
to is the space of cubic surfaces equipped with a line M. Once we have analogously uniformized
moduli space the symmetric cubic surfaces, a special symmetric subgroup of PO(4, 1,F3) will be

determined that will contain the monodromy group of the cover S—8S.

4. UNIFORMIZATION OF THE SYMMETRIC MODULI SPACE

As was reviewed in the previous section, Allcock—Carlson—Toledo showed that the moduli space
of stable cubic surfaces M?* admits the structure of a complex ball quotient. Specializing to the
stable symmetric locus &%, we will study this space through Hodge theory and analogously realize it
as a ball quotient. Although their stated goals and some of the technology used are different, we
take inspiration from and owe an intellectual debt to the work of Yu-Zheng [YZ20].

To understand the moduli space of symmetric cubic surfaces, we need to understand how Sy
acts on the period data. More specifically, we want to understand the w-eigenspace in cohomology
H32(T) as an Sy-representation. Any Sy-equivariant automorphism of the cubic surface S will lift to
give a nontrivial Sj-equivariant action on 7', thus the cohomology group H32(T') while preserving the
Hodge decomposition. To understand this action, we will express the periods of a given symmetric
cubic surface in terms of differential forms.

4.1. Residue calculus and symmetric cubic 3-folds. Griffiths’ theory of residues [Gri69] will
help us make explicit the action of S; on the invariant cohomology of a cyclic cubic 3-fold. His
foundational work on rational integrals allows us to assert the following:

12



Proposition 4.1. Let S = Z(f) be a cubic surface, fs = t3— f the cubic form defining its associated
cyclic cubic 3-fold T' = Z(fs), and Q the standard volume form on P*. The map

(C[Zo, 21,22, 23, t](l) — H2’1(T)

PQ
P —— Rest <2>
fs

is an isomorphism of vector spaces, under which the line C(t) maps to H="(T).

If we additionally assume that f defined an symmetric cubic surface, the cyclic cubic 3-fold T also
admits an Sy symmetry. Thus the cohomology of T" inherits the structure of an Sy-representation,
which we seek to determine.

Lemma 4.2. For any symmetric cyclic cubic 3-fold T', the cohomology group H>!(T) is isomorphic
as an Sy-representation to C @ V, where V is the standard S;-permutation representation on C2.

Proof. The meromorphic differential forms

2082 2100 290 230 tQ)
give us a basis for H*!(T). From this we can explicitly compute the induced structure on H?!(T)
as an Sy-representation. Recall that Sy acts by linear permutation automorphisms on zg, ..., 23 and
acts trivially t. Moreover, 0¥ = Q and o* fg = fg for all o € S; since the symmetric group leaves

invariant the cubic form fg and the volume form 2. The claim follows. 0

4.2. Equivariant framings and the local period map. For every cyclic cubic threefold T', we
have that
HE(T) N HY(T) = H*(T)

is a positive hyperplane in the signature (4, 1)-space H2(T). Since S; acts on T by holomorphic
automorphisms and commutes with the deck group (7), the induced action on H32(T) must act
trivially on the line Hg’l(T) defining the period data. After complex conjugating, Lemma 4.2 tells
us that H}J’2(T) is isomorphic, as an Sy-representation, to the standard permutation representation.
The hyperplane H}J’z (T') is then uniquely determined as an Sj-representation by the 1-dimensional
trivial Sy-representation C C H2*(T).

The ambient signature (4, 1)-space C*! = H3(T') is where periods of cubic surfaces S live in. To
refine our period data equivariantly, we will use the fixed locus H3(T'); of the Sy-action on H2(T)
to define the period domain of symmetric cubic surfaces. By the above discussion, H2(T); is a
signature (1,1) complex inner product space.

Let T be a Sy-invariant cyclic cubic threefold associated to the symmetric cubic surface S, and
let or : Sy x H3(T,7Z) — H3(T,Z) be the Ss-action induced on the Z[w]-module H3(T,Z). Set A
equal to the unique Z[w]-lattice of signature (4,1) abstractly isomorphic to H*(T,Z), and o an
Sy-action on A abstractly isomorphic to the action o on H3(T,Z).

13



Definition 4.3. An equivariant framing is a pair (S, A) of a symmetric cubic surface S and a
framing

A (H¥T,Z),07) = (A, 0)
which sends the action o7 on H3(T,Z) to the action o on A. Two equivariant framings (S, A1) and
(82, A2) are equivalent if there exists some g € Npgr,4,c)(S4) such that Ay = §*Aa. Let G denote the
space of equivalence classes of equivariantly framed symmetric cubic surfaces (S, \).

Proposition 4.4 ([YZ20, Proposition 4.2]). The space G is a complex manifold.
Let Ac,1 C Ac = A ®z), C denote the fixed locus of the Ss-action o on Ac.

Definition 4.5. The symmetric period domain 1D associated to the moduli of equivariantly marked

symmetric cubic surfaces G is the Hermitian symmetric domain
D =P{x € Acy = C" : h(z,7) < 0}.
Clearly D = CH', the complex hyperbolic line. Equivalently, I is the real hyperbolic plane.

The following diagram contains most of the spaces of interest. The main content of this section
will be showing injectivity of top left horizontal map G — F. The right column of horizontal period
maps are injective by [ACTO02]. The remaining horizontal maps in the left column are injective by
definition and the pullback construction.

framed moduli g F » CH*
marked moduli S M IV\CH*
moduli S M > I'\CH*

Proposition 4.6. Let %% = DN H denote the symmetric discriminant locus in the period domain.
The natural map G — F is injective. Thus the local symmetric framed period mapping P:G—D
injective, and moreover is an open embedding onto its image D — H54. Moreover, its extension to
the stable locus G?® is surjective.

Proof. Suppose we are given two equivariantly framed symmetric cubic surfaces (S1, A1), (S2, A2) € G
that map to the same point in F. Then there exists an linear isomorphism of varieties ¢ : S; — So

along with a unique up to deck transformations lift §: 73 = T satisfying
§=X\N"1ol: H}Ty,Z) - H¥T1, Z),

which is an isometry of Z[w]-lattices. Since A\; and Ay are compatible with the Sy-action, so is §*.
By [Zhe21, Theorem 1.1], the equivariantly framed cubic surfaces (S1, A1) and (S2, A\2) represent
the same point in G. This proves injectivity of the map G — F. Commutativity of the diagram

G F

|

D—— CH*
14



then implies that the local symmetric framed period map G — D is injective. Moreover, since
the derivative of the period map P F — CH* is injective everywhere, so is the derivative of
P : G — D. Thus the local symmetric framed period map induces a diffeomorphism onto its image
D— (DNH) =D —H5. Since the local period map on the stable framed moduli space F* has image
CH* [ACT02, Theorem 3.17], the image of the local symmetric period map G* — D is surjective,
thereby proving the claim. O

4.3. The global period map. Since 54 acts on any symmetric cubic surface and its associated
cyclic cubic 3-fold T, it embeds into the arithmetic group U(4, 1, Z[w]) via its action on H?(T,Z)
(note that this map is injective, since Sy embeds into the mod 3 reduction PO(4, 1,F3) via its action
on the 27 lines). To study how the local period map descends to yield a uniformization of the
symmetric moduli space by the global period map, we must determine the normalizer of Sy in a few

groups of interest.
Proposition 4.7. There is an isomorphism of groups Ny4,1)(S4) = U(1,1) x (U(1) x Sy).

Proof. Recall that Sy acts on C*! by the standard permutation representation on the positive
4-space and the negative 1-space. This splits the space into a direct sum of irreducible representations
W @ C @ C, where W denotes the irreducible S;-representation of dimension 3, and the sum of the
two trivial representations form a signature (1, 1)-space. By Proposition 2.9, it suffices to determine
what the centralizer of Sy is within U(4,1). By centrality, we can deal with the 3-dimensional factor
and (1, 1)-factor individually.

Schur’s lemma tells us that the Sy-centralizer acts by scalars on W, and thus is isomorphic to a
copy of U(1) acting on W. On the signature (1, 1)-factor, the Sy-action is trivial, and thus every
element of U(1,1) arises at an automorphism of the representation C @ C. Thus the normalizer is
the product of the normalizers on each factor, proving that Ny4,1)(S4) = U(1,1) x (U(1) x Sy). O

Proposition 4.8. There is an isomorphism of groups Ny4)(S4) = U(1) x S4, where U(1) acts on

the permutation representation V' by scalars.

Proof. Using Proposition 2.9, we need only determine the centralizer of S4 to generate the normalizer.

Yet again, these are the unitary scalar matrices. O

Proposition 4.9. The group I' = Ny4,1 7)) (S4) is naturally an arithmetic subgroup of Ny4,1)(S4)-
Moreover, we have an isomorphism I' 2 Aut(diag(4, —1), Z[w]) x ({(—w) X Sy)

Proof. For arithmeticity, see [YZ20, Appendix A]. As before, Proposition 2.9 tells us that it suffices to
determine the centralizer in U(4, 1, Z[w]), which we shall do on each factor of the Sy-representation.
The Eisenstein lattice Z[w]® € C*! intersects the Sj-representations W and C @ C in rank 2
and 3 Eisenstein lattices, respectively. The centralizer is then a subgroup of the product of the
automorphism group of these lattices. These symmetries must be automorphisms of C*! which
preserve the whole Eisenstein lattice.

By Proposition 4.7, the Ss-centralizer of the rank 3 sublattice must be scalars 6 € U(1) which

preserves Z[w]; this subgroup is (—w). A standard calculation tells us that generators for this rank
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2 sublattice are given by (1,1,1,1,0) and (0,0,0,0, 1), thus the signature (4,1) form restricts to the
bilinear form diag(4,—1). Since Sy acts trivially on this rank 2 sublattice, the full automorphism
group Aut(diag(4, —1),Z[w]) which preserves the Eisenstein lattice constitutes the centralizer on
this factor. This proves the claim. O

From these calculations, we can conclude the following which is an application of a well-known

fact about locally symmetric varieties [YZ20, Proposition A.1]:

Proposition 4.10. Let G = U4,1), K = U(4), and T' = U(4,1,Z[w]). Set G = Ng(Sa),
K = Ny (Sy4), and I' = Np(S4). The holomorphic embedding G/K — (/K descends to a generically
injective finite normalization

NG/K - I\G/K.

Following [YZ20, Proposition 4.10], we can prove this more precise version of Theorem 1.1:

Theorem 4.11. The local period map P : G — D descends to isomorphisms S PI\(D — H54)

and §° = PI'\D. Moreover, this is an isomorphism of analytic orbifolds compatible with the
uniformization of the moduli of cubic surfaces, so the totally geodesic embedding

PT\D — PI'\CH*

is a modular embedding of locally symmetric orbifolds. This map compatibly extends to an
isomorphism of the semistable symmetric moduli space §** = PT'\ID, where the latter space denotes

the Satake compactification of the arithmetic quotient.

Proof. We will first show that the map P descends to a well-defined map P([S]) = [P(HZ(T))].
Let fi1, fo € V¥ be two smooth symmetric cubic forms with equivariant framings Aj, Ay of their
associated cubic 3-folds 71, Ty. Suppose there is some g € Npgr,4,c)(Ss) such that g(f1) = f2. This
induces the Z[w]-isometry

G H3(Ty,Z) — H3(T\,Z).

1

We will show that vy = A0 g* o )\2_1 € T. Since g € Npgr,c)(S1), gog~—' = o’ € Sy, thus we have a

commutative diagram

At g*
A2 BTy, 2) 2 H3(Th,Z) s

Z
l o |-
7

A - H3(Ty,7) — (T, Z) ——
2 1

A
A

Lo, proving that v € I'. This proves the map P is a

Thus, as automorphisms of A, ¢/ = ~~

well-defined and yields a commutative diagram

¢g—L2 5D

o

§ —— PI\D
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The Riemann extension theorem tells us that P extends uniquely to the stable locus §*. By
commutativity of this diagram and Proposition 4.6, the global period map P : S — PT\ (D — H"54)
and its stable extension §° — PI'\D are surjective. We shall now show that P is injective.

Let (S1, A1), (S2,A2) € G be two equivariantly framed symmetric cubic surfaces with associated
cubic forms fi, fo, and suppose their periods represent the same point in PT'\D. Then there exists
some 7y € I such that - A (H2'(T})) = A\o(HZ"' (T3)). Thus the map Ayt oo\ : H3(T1,Z) —
H3(Ty,Z) preserved preserves the Eisenstein Hodge structures. By [Zhe21, Theorem 1.1], there
exists some g € PGL(4, C) such that g(f2) = f1 and §* = )\2_1 oo A. To prove injectivity of P, we
want to show that g € Npqr,4,c)(S4)-

For any o € Sy acting on S; = Z(f1), we have that g~'og acts on Sy = Z(f5), which induces the

following on the cohomology of the associated cyclic cubic 3-folds:
(§7109)" =g o* (371" = A AT T M) AT T ) = ATy e,

Since v € T, we have that yo*y~! € S4 as an automorphism of cohomology. Again by [Zhe21,
Theorem 1.1], we have that gog~! € Sy, proving that g € Npgr,a,c)(Sa). Modular compatibility of
the totally geodesic embedding is a consequence of Proposition 4.10. This proves the global period
map satisfies the claimed properties.

By [ACT02, Theorem 8.2], the period map extends to the semistable locus for the total moduli
space M — Pf‘\(CH4 and sends the unique semistable non-stable point to the unique boundary
point of the Satake compactification. Since the embedding of locally symmetric orbifolds PT'\D —
Pf‘\CH4 is modular, the extension to their Satake compactifications is modular, and thus the
tricuspidal point on §°° maps to the unique boundary point of PT\]D, as claimed. ]

Now that we have successfully uniformized the moduli space of symmetric cubic surfaces, we will
begin our study of the monodromy group associated to the cover S — S, where S is the moduli of

symmetric cubic surfaces equipped with a line.

Proposition 4.12. Consider the group homomorphism U(4,1,Z[w]) — PO(4,1,F3) induced by the
map w — 1. The subgroup corresponding to I' = Ny(4,1,7/.])(S4) has image Ky x Sy in PO(4, 1, F3).

Proof. We appeal to the isomorphism explicitly traced out in the proof of Proposition 4.9, and
determine the mod 3 reduction on each factor. As previously discussed, the Sy factor survives the
quotient by its action on the 27 lines. Since w — 1, the (—w) factor which acted on the rank 3
lattice by scaling is sent to (—1) = C5. Finally, since the quadratic form diag(4, 1) reduces mod 3 to
the quadratic form diag(1, —1), one can calculate that the group Aut(diag(4, —1),Z[w]) has image
isomorphic to PO(1, 1,F3) = Cy. Thus we’ve shown the image of I is isomorphic to Ky x Sy. O

One may be tempted to conclude that the monodromy group of the cover S — Sis Ky x S Indeed,
[ACT10, Section 8] outlines why the monodromy groups associated to connected components of
moduli of real cubic surfaces are the image of their fundamental groups in PO(4, 1,F3). However, all
that Proposition 4.12 guarantees is that the monodromy group is contained in K4 x S4. Remarkably,

the philosophy of “big monodromy” fails to pin down our desired Galois group from purely Hodge
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theoretic considerations — it will be a proper subgroup of K4 x.S4! Further analysis using equivariant

line geometry on cubic surfaces is required, which we carry out in the next section.

5. CALCULATING THE MONODROMY GROUP

In this section, we will determine the monodromy group of the cover S8 by a combination of

classical, moduli-theoretic, and computational techniques. We begin with the following basic fact:
Proposition 5.1. The automorphism group of a cubic surface acts faithfully on its lines.

Proof. Any automorphism ¢ of a cubic surface S preserves the canonical class Kg, and thus extends
to the anticanonical embedding of S into P3, so ¢ € PGL(4,C). Thus ¢ sends lines to lines on S,
and any such ¢ which fixes all 27 lines must be the identity. g

Example 5.2. For symmetric cubic surfaces, this implies that Sy C W (Eg). A priori for different
symmetric cubic surfaces we might obtain different conjugacy classes of Sy in W (Es), however the
connectivity of the moduli space of symmetric cubic surfaces guarantees this cannot occur. Thus
when we discuss Sy as a subgroup of W (Eg) we are implicitly referring to this specific conjugacy

class of subgroups.
Proposition 5.3. The symmetric monodromy group is a subgroup of Nyy(gg)(S1) = K4 X Sy.

Proof. This is immediate by translating Proposition 4.12 along the exceptional isomorphism W (Eg) =
PO(4,1,F3). It can also be proved by leveraging Luna’s étale slice theorem (c.f. [Lun73, PV94]) to
argue there exists a universal deformation space for Sy-symmetric cubic surfaces, and therefore via
descent, monodromy in the symmetric locus preserves the fiberwise Sj-action on a universal family
of symmetric cubic surfaces, thereby normalizing Sy in the full monodromy group W (Ejs).

The splitting of the short exact sequence
(4) 0— 54— NW(E(;)(SZL) — K4 — 0.
claimed in the proposition is a computer verifiable computation. ]

5.1. Stability of the Dg tritangent. We can further restrict the symmetric monodromy via an
understanding of how Sy acts on the 27 lines on a symmetric cubic surface. The following result
of the first named author proves that it is independent of the choice of smooth symmetric cubic
surface.

Theorem 5.5. [Bra24, Theorem 1.2] On any smooth symmetric cubic surface, the 27 lines have
orbits

[S4/C3] + [S4/C5] + [Sa/Ds]

where C§ = (1 2) is an odd copy of the cyclic group of order two, and C§ = (1 2)(3 4) is an even

copy of the cyclic group of order two.

Example 5.6. The Fermat cubic surface is defined by the symmetric homogeneous form ms. Its

27 lines, with explicit labels and parametric equations, are given in the appendix of this paper
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(Data A.1). The lines 41, ..., 12 lie in the Sy/C9 orbit, the lines £13, ..., 24 lie in the S4/C§ orbit,
and the lines fo5, l26, fo7 form a tritangent which is the S;/Dg orbit. We refer to these three lines
as the Dg-tritangent.

Remark 5.7. Once labels are fixed on the 27 lines, we can construct W (Es) as a permutation
group, given as the adjacency-preserving permutations of the 27 lines. As a subgroup of So7 with
the labeling of the lines coming from the Fermat cubic surface, the generators for W are listed in
Data A.2.

Proposition 5.8. The three lines {/35, f96, {27} lie on every symmetric cubic surface, forming a

Dg-tritangent. Moreover they are fixed under symmetric monodromy.

Proof. Since each symmetric cubic surface is a linear combination of elementary homogeneous
symmetric polynomials, it suffices to verify each of these vanishes on the lines in the Dg-tritangent,
which is a routine computation.

Since symmetric monodromy is Sy-equivariant, the tritangent plane spanned by the lines
los, log, Lo7 must be stabilized. Moreover, there is no fourth distinct line incident to any sym-
metric cubic surface which lies in the Dg-tritangent, as this would violate Bézout’s theorem. Any
nontrivial deformation of fo5, fo¢g, £27 arising from monodromy would yield such a line, and so the

lines fo5, 26, £o7 must be fixed by monodromy within the symmetric locus. O

Observe what this means — given any loop in the symmetric locus, viewed as an element of
W (Eg) < Sa7, it fixes each of the points 25, 26, and 27. Since W (Eg) acts transitively on ordered
tritangents, we can ask what the pointwise stabilizer of a tritangent is in W (Eg), and this will

contain our monodromy group.

Proposition 5.9. The symmetric monodromy group is contained in the pointwise stabilizer of a
tritangent in W (Eg). This is a group of order 192.

5.2. Cycle decompositions in W (Eg). By combining our constraints for the symmetric mon-
odromy group arising from uniformization (Proposition 5.3) and from equivariant enumerative

geometry (Proposition 5.9), we obtain the following reduction.

Proposition 5.10. The monodromy group is contained in the group of order 16:

27
ﬂ Stabyy (gq) (£:) N Ny () (S4) = Ky x Ky.
i=25
We give names to these generators. The former is Ky = (01, 02), and it is a subgroup of Sy. The
latter is K4 = (11, T2) and it is not contained in Sy. As explicit elements in W (Es) < Sa7 they are
listed in Data A.4

Proposition 5.11. Let g € Ny (g,)(S1) \ Sy, let £ be a line on a symmetric cubic surface X, and
let 0 € Sy4. Then

g(ol) = a(gt).
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Proof. By Proposition 2.9, any such element g centralizes Sy within W (Es), so og and go act
identically on any line ¢ C X. O

Corollary 5.12. Let g be any element in the monodromy group, and let £ be a line on a symmetric

cubic surface X. Then

(1) If g fixes ¢, then g fixes of for all o € Sy.
(2) If g¢ # ¢ then g(of) # g(ol) for all o € Sy.

In particular the monodromy group acts on entire orbits simultaneously.
Proof. If g € Sy this is clear. If g ¢ Sy this follows from Proposition 5.11. d

Proposition 5.13. The symmetric monodromy action does not change the isotropy group of any
line. Phrased differently, it acts on each S4-orbit of lines independently.

Proof. For Dg this is clear since symmetric monodromy stabilizes each line, so they remain in a Dg
orbit. To see that the Si/C§ and Sy/C§ orbits cannot be interchanged by the monodromy action,
it suffices to observe that C and C§ are not conjugate in W (Eg). O

Lemma 5.14. If the monodromy group contains two distinct non-trivial elements (i.e. if it is not

trivial or cyclic of order two), then it is the Klein 4-group
Ky = {0112, 7).

Proof. We can look through the 16 elements of (o1, 09, 71, 72) and ask whether each element satisfies
the necessary constraints to lie in the symmetric monodromy group.

Since each element in the larger group is an involution, it is a product of disjoint transpositions,
the number of which is well-defined in this monodromy problem (since any other choice of basepoint
for monodromy conjugates the permutation representation of the monodromy class by an element in
W (Es), but the transposition length of an involution is clearly independent under such a conjugation).

We can eliminate the following elements directly for having transposition length 10:
02T1,T2, 0102, 01, 0102T|1T2, TiT2, O2.

The remaining non-identity elements have transposition length 6 or 12, so we can ask whether they
fix or permute each element of the two orbits. We can eliminate the following three elements, all of

transposition length six, since they violate Corollary 5.12:
T2, 0272, 0102T2.

Therefore our desired monodromy group M is contained in what is left over, meaning we have a

subset inclusion
M C {id, 71, o271, o172, O1T1, O1T1T2, O1027T1}.

If the monodromy group is non-trivial, then it might be cyclic of order two generated by any one
non-identity element in this set. The other case is that it contains two non-identity elements, in

which case it must also include their product. In this case, we can exclude those elements in the set
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whose product with any non-identity element lands outside the set. These elements are o971, 0171,
and o1097. We are left with the Klein 4-group

Ky ={id, 71, o172, 017172} .
These elements are explicitly given as permutations in Data A.5. ([l

5.3. Certified tracking. Via Lemma 5.14, our computation of the monodromy group reduces to
demonstrating the existence of two loops in the moduli space of smooth symmetric cubic surfaces
which induce different permutations on the 27 lines. In conversations with T. Brysiewicz, working
with his Pandora software [Bry24|, we were able to generate strong evidence that this is true, and
determine candidate loops.

Algorithms used in this and related software fall under the umbrella of homotopy continuation.
This is a key technique in numerical algebraic geometry which deforms a system of polynomial
equations along a one-parameter path. One of the primary applications of this technology is
conducting explicit monodromy computations.

While homotopy continuation software can generate strong evidence towards a computation,
more refined algorithms are needed to turn these computations into proof. At each stage of tracking
solutions along a one-parameter path, a guarantee is needed that paths don’t collide, and therefore
that the computed permutation is indeed correct. These more sophisticated (and time-costly)
methods are called certified tracking algorithms. Recent work of T. Duff and K. Lee provides
algorithms which, among other things, are applicable for certifying computations in monodromy,
bridging the gap between computation and proof [DL24, Theorem 1]. In conversations with Lee,

their software is able to mathematically certify the following result.

Lemma 5.15 (Numerical certification). There are two loops in the symmetric locus which induce
distinct non-identity permutations on the set of 27 lines.

We can now prove Theorem 1.2:

Proof of Theorem 1.2. Lemma 5.14 tells us that the monodromy group M is contained in a specific
K, < W(Eg). By Lemma 5.15, there are two loops in the symmetric locus which generate distinct
non-trivial elements in the monodromy group. Thus these two loops are a generating set for K. [

5.4. The incidence variety of 27 lines over the symmetric locus. Now that we have
determined the monodromy group of the cover & — S is Ky, we can actually say more about the

topology of the space of symmetric cubic surfaces with a line:

Corollary 5.16. The incidence variety of 27 lines restricted to the symmetric locus has 12 connected

components. Explicitly as a K4-set, the fiber over any symmetric cubic surface is of the form
6 [K4/Co] +3[Ky/e] + 3 [Ks/Ky].

Proof. Having restricted the symmetric monodromy group and concluding that it is Ky < W (FEs),
we can then see explicitly how Ky acts on and stablizes the 27 lines on the Fermat cubic surface.
This splits them into the 12 families claimed (see Data A.4 for the relevant generators and how they

act on the 27 lines). O
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To conclude, we have an equivariant analog of Proposition 2.8:

Theorem 5.17. The space Sisa naturally a (disconnected) complex manifold. Moreover, the

equivariant monodromy representation
m1(S, X) = Autg, (H*(X,Z),nx) = Sy x Ky
is mot surjective and has image isomorphic the Klein 4-group Kj.

6. SYMMETRY AND MONODROMY VIA REPRESENTATION THEORY

In the previous section, we determined the monodromy group K4 within the Weyl group W (FEs)
in terms of how it acts on the lines of the Fermat cubic surface; the Sy-orbits of the 27 lines are given
in Data A.1. The goal of this section is to understand these copies of Sy and K4 in W (Eg) from
more traditional representation theoretic viewpoint, via reflection group theory and the projective
orthogonal perspective. Informally, we will show that the symmetry group and monodromy group

are not visible from purely Coxeter-theoretic considerations.

6.1. The Weyl group as a reflection group. To present the Weyl group W (Eg) as a reflection

group, we first label the nodes of Fg Dynkin diagram with the generating reflections s, ..., ss:

S0

S1 S92 53 S4 S5

This gives rise to a presentation of the Weyl group of Eg as a Coxeter group:
1 i=j
W (Es) = (so, . - ‘785|(5i8j)mij =1), m;; = §3 s;, s; share an edge
2 otherwise

Proposition 6.1. Any choice of six skew lines gives rise to a presentation of W (FEjg) in the form
above.

Proof. The choice of six skew lines determine a marking of the homology of a cubic surface .S, where
each line corresponds to the homology classes of orthogonal (—1)-exceptional curves ej,...,eg on S.
These in turn give us a basis of long roots for the Eg lattice vg = h —e1 — e2 —e3,v; = e; — ej41 for
j=1,...,5. The intersection form @ on the homology H(S,7Z) satisfies

Q(h,h) =1
Q(ei, e5) = —0y;
Q(h, ei) =0.

From this it is clear that Q(v;,v;) = —2 for any 0 < i < 5. Then the reflections s; that generate the
Weyl group W (FEjs) are realized homologically by

() = g 20 )
si(®) Q(vi, v;)
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this is the geometric representation of W (Es). O

Example 6.2. If we pick the lines [¢1, 03,010,011, {16, ¢22], a direct computation gives the six
generators of W (Eg) as the following permutations in So7:

50 (1,8)(3,6)(9,26) (10,25) (13,21) (20,23)

51 (1,3)(2,4)(5,7)(6,8) (14,15) (18,19)

2 (2,12)(38,10) (5,27) (6,25) (14,17) (19,24)

s3 (5,8)(6,7)(9,12) (10,11) (17,20) (21,24)

54 (5,14) (7,15)(9,13) (11,16) (17,27) (21,26)
ss | (13,23) (14,19) (15,18) (16,22) (17,24) (20,21).

It is a classical computation that there are exactly 72 ways to pick six pairwise skew lines on a

cubic surface.

6.2. Double sixes from the Weyl group. Given six ordered pairwise skew lines, we obtain an
associated subgroup W (As) < W (Ejs) by suppressing the node s, and all of these subgroups are
conjugate. We note though, that we can permute the ordering of our six lines — a natural question
to ask is whether such a permutation extends to element of the Weyl group, and if such an extension

exists, whether it is unique. The answer to both these questions is yes.

Proposition 6.3. Given six ordered skew lines, any automorphism o of them extends uniquely to

an adjacency-preserving automorphism of all 27 lines, i.e. an element of W (Eg).

Proof. Any permutation of the lines permutes the homology classes eq, ..., eg accordingly, and in
particular will fix the canonical class Kg = 3h — e; — - - - — eg. Therefore by definition it extends to
an element of W (Ejg). Since its action on the e;’s defines its action on h and therefore on a basis of

the homology, such an extension is unique. O

Moreover, we understand this subgroup of W (E).

Proposition 6.4. Fixing six ordered skew lines, the subgroup of W (Eg) obtained by permuting
them is exactly equal to the Weyl group W (As) obtained from the presentation coming from the
choice of lines.

Proof. It suffices to show that each of the generators s1, ..., s5 is contained in this symmetric group.

This is immediate, since s; permutes e; and e; 41 and fixes the other e;. O

There is a unique conjugacy class of subgroup W(As) < W (Eg), and W (Es)/W (As5) is a transitive

set of order 36. There are, however, 72 unordered choices of six skew lines. This gives us a surjection
{six skew lines} — W (Eg)/W (As),

which is 2-to-1. In particular, six skew lines come in pairs, which give rise to the same copy of
W(As) in W(Es). These pairs of six skew lines are what are known as double sizes.

In particular a computation shows that, as a W (As)-set, the set of lines {1,...,27} decompose
into two transitive W (As)-sets of order six, and a single transitive set of order 15. These are the

double six, and the remaining lines, respectively.
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Remark 6.5. While W (A5) is isomorphic to Sg as we have seen, it is abuse of terminology to
equate them. There are two non-conjugate subgroups of W (Eg) which are isomorphic to Sg, the
first being our W (Aj5) group, and the latter just being another subgroup of W (Eg) which we denote
by Sg. The latter group can be distinguished via its action on 27 lines — it acts transitively on 12

lines and transitively on the other 15.

6.3. Our groups are not reflection groups. We can now argue that both the Sy acting on
symmetric cubic surfaces and the symmetric monodromy group are not reflection subgroups of
W (Eg). This is perhaps obvious to those familiar with e.g. [Man06], but we can give an elementary

argument now with the machinery we have built.

Proposition 6.6. The subgroup Sy < W(Eg) is not a reflection subgroup — that is, it is not
isomorphic to W (Ags) for a presentation of W (Fjg) arising from any choice of six skew lines.

Proof. We prove something stronger, namely that Sy is not subconjugate to W (As). Indeed suppose
towards a contradiction that it was. As we have seen by [Bra24], the action of Sy on the 27 lines
decomposes into three Sy-sets, of order 12, 12, and 3. If Sy < W(A5), then this action would be
restricted from the action of W(As) on the set of 27 lines. However the partition of {1,...,27}
into orbits will only ever refine under a restricted group action. In particular since W(As) has two

orbits of size six it cannot restrict to the prescribed Sj-action. O

Remark 6.7. The action of the other Sg from Remark 6.5 does not have this same restriction, and

a computation shows that Sy is indeed subconjugate to Sg in W (Eg).

Remark 6.8.

(1) Another interesting note is that while Sy is not subconjugate to W (As), we have that W (As)
is nested in a maximal subgroup isomorphic to W(As) x Co < W(Es). It is true that Sy is
subconjugate to this maximal subgroup, and moreover the centralizer of Sy in W (Aj5) x Co
is identical to the symmetric monodromy group!

(2) There is actually a unique copy of W(As5) in W(Eg) for which Sy is a subgroup of its
maximal supergroup W (A4s) x Cy. This unique copy corresponds to a preferred double six
for symmetric cubic surfaces. A direct computation shows that this is the unique double six

where six skew lines lie in the same Sy-orbit.
Proposition 6.9. The symmetric monodromy group K, < W(Es) is not a reflection subgroup.

Proof. Suppose for the sake of contradiction that K4 was a reflection subgroup; it would then take
on the form of W (A1) x W(A;). Since each of the generators s; act on the 27 lines as a product
of six disjoint transpositions, there are two nontrivial elements of W (A1) x W(A;) that are the
product of six disjoint transpositions. However, Data A.5 tells us that the symmetric monodromy

group only has one element that is the product of six disjoint transpositions, a contradiction. [
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6.4. Symmetric monodromy in the projective orthogonal groups. Since we know how the
symmetric monodromy group Ky < W(Eg) acts on the 27 lines of the Fermat cubic surface S, we
can explicitly connect this K4 back to the projective orthogonal group by a lengthy homological
calculation. We sketch this correspondence now.

Recall that the set of six skew lines {1, £3, (10, {11, 16, {22} determine a marking of the homology
of S, where each line corresponds to the homology classes of orthogonal (—1)-exceptional curves
e1, e, €3, €4, 65,6 on S. Using Data A.5, we can calculate how K4 = (71, 0172) acts on the exceptional
(—1)-curves, which in turns explicitly determines how K4 acts on the Fg lattice. Then by passing to
the root lattice quotient used in the proof of the exceptional isomorphism outlined in Proposition 3.3,
this K4 projects to the symmetric monodromy group K4 inside of PO(4, 1, F3).

It would be interesting to understand how the symmetric monodromy group arises purely by an
analyzing its action on the associated symmetric cyclic cubic 3-folds. This leads us to the following
problem:

Problem 6.10. Determine the symmetric monodromy group Ky as a subgroup PO(4,1,F3) directly,

that is, without reference to the action on the lines or the exceptional isomorphism with W (Eg).

As Beauville remarks [Bea09, pg. 19], what makes this difficult is that it is unknown how to
produce a marking of a cubic surface from a framing of the corresponding cyclic cubic 3-fold. A
resolution to this problem would shed further light on symmetric monodromy can be witnessed by
Hodge theory, and therefore be applied to similar equivariant enrichments of classical enumerative
problems.

APPENDIX A. DATA TABLES
We record some of the line geometry data associated to the Fermat cubic surface.

A.1. All about the Fermat.

Data A.1. The 27 lines ¢; on the Fermat can be labeled and grouped according to their Sy-orbits

as follows:
) & ? €Z»
1 | [w,—w,z,(- 2] 13| [w,¢ - w,z,( - 2]
2 | [w,—w, 2, 2] 14 | [w,¢-w,z,¢5 - 2]
3 | [w, ¢ w,z, —2] 15 | [w, (- w, 2, - 2]
4 | [w,¢® w,z,—2] 16 | [w, ¢ w,z,¢° - 2] Tz
b | w2 ¢ w, 2] 17 | fw,2,¢-w, ¢ - 2] 25 [;u —w,z,—2]
o |y | 18 s G | T
R S I B A TS I
8 | [w,z,—w C5 H 20 | [w, 2, ¢ - w, (5 - 2] SEEE
9 |[w,z,—2,(-w] 21 | [w,z,( -2, w]
10 | [w, 2, —2,¢5 - w) 22 | [w, 2, 2, ¢ - w]
11 [w z, C 2z, —w] 23 | [w, 2, 2,¢° - w]
12 | [w, 2,¢5 - 2, —w)] 24 | [w, 2,¢% - 2,¢5 - w]
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Data A.2. Given the labeling of the lines on the Fermat as in Data A.1, the Galois group W (FEjs)

is given by

G := SymmetricGroup(27);

W:= Subgroup(G, [

(13,23)(14,19) (15,18) (16,22) (17,24) (20,21) ,

(5,14) (7,15) (9,13) (11,16) (17,27) (21,26) ,

(2,6)(4,8)(5,19)(7,18)(9,23) (11,20) (12,25) (16,21) (22,26) (24,27),
(5,8)(6,7)(9,12) (10,11) (17,20) (21,24),

(3,4)(5,10)(6,9)(7,12)(8,11) (13,15) (14,16) (17,24) (18,23) (19,22) (20,21) (26,27),
(1,2)(5,9)(6,10) (7,11) (8,12) (13,14) (15,16) (17,21) (18,22) (19,23) (20,24) (26,27)
1;

Data A.3. The Ss-action on the 27 lines of the Fermat cubic surface, given by permuting coordinates

on CP3, are generated by the following transposition and 4-cycle:

elt ‘ permutation

transp. | (3,4)(5,11)(6,12)(7,9)(8,10) (13,15) (14,16) (17,21) (18,23) (19,22) (20,24) (26,27)
4-cycle | (1,11,3,10)(2,12,4,9)(5,8,6,7) (13,23) (14,24, 15,21)(16,22)(17,18,20,19) (25,27)

Data A.4. The generators o1, 09,71, 70 € W(Eg) from Proposition 5.10 are given by the following

permutations:

elt | permutation

oy | (1,3)(2,4)(5,6)(7,8)(9,12)(10,11) (14,15) (17,20) (18,19) (21,24)
oy | (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,16) (17,20) (21,24) (22,23)
7 | (13,23)(14,19) (15,18) (16,22) (17,24) (20,21)

T2 (1,4)(2,3)(9,11)(10,12) (13,16) (22,23)

Data A.5. The (non-identity) elements in the Klein 4-group corresponding to symmetric monodromy

are given by

elt ‘ permutation

inl (13,23)(14,19) (15,18) (16,22) (17,24) (20,21)

0172 (1,3)(2,4) (5,6) (7,8) (9,12)(10,11) (13,23) (14,18) (15,19) (16,22) (17,21) (20,24)
oinm | (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,22) (14,18) (15,19) (16,23) (17,21) (20,24)
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