
EQUIVARIANT ENUMERATIVE GEOMETRY

THOMAS BRAZELTON

Abstract. We formulate an equivariant conservation of number, which proves that a
generalized Euler number of a complex equivariant vector bundle can be computed
as a sum of local indices of an arbitrary section. This involves an expansion of the
Pontryagin–Thom transfer in the equivariant setting. We leverage this result to
commence a study of enumerative geometry in the presence of a group action. As an
illustration of the power of this machinery, we prove that any smooth complex cubic
surface defined by a symmetric polynomial has 27 lines whose orbit types under the
S4-action on CP3 are given by [S4/C2] + [S4/C

′
2] + [S4/D8], where C2 and C ′

2 denote
two non-conjugate cyclic subgroups of order two. As a consequence we demonstrate
that a real symmetric cubic surface can only contain 3 or 27 real lines.
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1. Introduction

Enumerative geometry poses geometric questions of the form “how many?” and expects
integral answers. Over two millennia ago Apollonius asked how many circles are tangent
to any three generic circles drawn on the plane. In the mid-1800’s Salmon and Cayley
famously proved that there are 27 lines on a smooth cubic surface over the complex
numbers, and it is a classical result that there are 2,875 lines on a general quintic
threefold. The power of enumerative geometry lies in the principle of conservation of
number — that enumerative answers are conserved under changes in initial parameters:
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there are eight circles tangent to any three generic circles, 27 lines on any smooth cubic
surface, and 2,875 lines on any general quintic threefold.

In this work we propose solving enumerative problems in the presence of a group action.
Related works include [Dam91; Bet20; CHT22], but these differ in perspective. We
formulate and prove a version of conservation of number in this context which allows us
to compute answers to equivariant enumerative problems valued in the Burnside ring of
a group.

Theorem 1.1. (Equivariant conservation of number) Let G be any finite group, and
let p : E → M be an equivariant complex vector bundle of rank n over a smooth proper
G-equivariant n-manifold, and let A be a complex oriented RO(G)-graded cohomology
theory. Let σ : M → E be any equivariant section with isolated simple zeros. Then we
have a well-defined Euler number valued in πG

0 A, computed by:

n(E) =
∑

G·x⊆Z(σ)

TrGGx
(1).

Working in homotopical complex bordism MUG, as a corollary we may see that given two
such sections σ, σ′, there is an isomorphism of G-sets between their zero loci Z(σ) ∼= Z(σ′)
(Theorem 5.24). In other words, the G-action on the solutions to such an enumerative
problem is conserved.

Our result is more general, admitting local indices for more general zero loci than
isolated simple points (see Lemma 5.4), however the context stated above is sufficient
to carry out some computations.

To illustrate the power of this machinery, consider the case of a smooth cubic surface
X = V (F ) ⊆ CP3. We will say that X is S4-symmetric (or just symmetric for
short) if it is fixed under the S4-action on CP3 by permuting coordinates (equivalently,
F (x0, x1, x2, x3) is a symmetric homogeneous polynomial). We know classically that
there are 27 lines on X, however under the S4-action lines on X are mapped to other
lines on X. It is natural then to inquire whether the S4-orbits of the lines on X are
conserved as the symmetric cubic surface varies. It turns out that this question admits
an answer that doesn’t depend upon the choice of S4-symmetric cubic surface.

Theorem 1.2. On any smooth symmetric cubic surface over the complex numbers, the
27 lines come in the following orbits:

[S4/C2] + [S4/C
′
2] + [S4/D8],

where C2 and C ′
2 are two non-conjugate subgroups of S4 of order two. Explicitly, there

are 12 lines in an orbit with isotropy group C2 = ⟨(1 2)⟩, 12 lines in an orbit with
isotropy group C ′

2 = ⟨(1 3)(2 4)⟩, and three lines in an orbit with isotropy group D8.

On the famous Clebsch cubic surface, which is symmetric, all 27 lines are defined over
the reals, and we can visualize their orbits in Figure 1.

Given a real cubic surface, as it admits 27 lines after base changing to the complex
numbers it is natural to ask how many of these are defined over the reals. Schläfli’s
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Figure 1. The 27 lines on the Clebsch surface, grouped into S4-orbits
according to color, pictured from a few different angles. An animated
version is available on the author’s webpage.

Theorem tells us that a smooth real cubic surface can contain 3, 7, 15, or 27 lines, and
all of these possibilities do occur [Sch58]. Under the presence of symmetry we can refine
this result.

Theorem 1.3. A smooth real symmetric cubic surface can contain either 3 or 27 lines,
and both of these possibilities do occur.

1.1. Outline. In Section 2 we discuss the theory of equivariant retractive spaces and
parametrized spectra. We extend the theory of duality as laid out in [Hu03], and discuss
dualizing objects in terms of cotangent complexes. This allows us to define Thom
transformations analogous to those found in the motivic setting, and to flesh out the six
functors formalism for genuine orthogonal parametrized G-spectra.

In Section 3, we explore the Pontryagin–Thom transfer from [Hu03; MS06; ABG18].
These will induce Gysin maps that allow us to push forward cohomology classes and
carry out computations in the equivariant parametrized setting.

In Section 4 we provide a broad definition of compactly supported equivariant cohomology,
twisted by a perfect complex, valued in any genuine ring spectrum. This culminates in
the important result that, under certain orientation assumptions, cohomology classes
twisted by a vector bundle can be pushed forward and expressed as sums of local
contributions coming from the components of the zero locus of a section of a bundle.

In Section 5 we discuss refined Euler classes in the parametrized equivariant setting. We
recap the theory of equivariant complex orientations, and state and prove equivariant
conservation of number (Theorem 1.1, as Theorem 5.24). We use this to commence a
study of enumerative geometry in the equivariant setting.

In Section 6, we provide an application of equivariant conservation of number by
investigating the orbits of the 27 lines on a smooth symmetric cubic surface and proving
that they are independent of the choice of symmetric cubic surface (Theorem 1.2, as
Theorem 6.2). We argue that both the field of definition and the topological type
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(Definition 6.9) of a line are preserved under the group action. This allows us to
eliminate the possibilities of seven or 15 real lines on a real symmetric cubic, refining
Schläfli’s Theorem in the symmetric setting (Theorem 1.3, as Theorem 6.12).

1.2. Acknowledgements. Thank you to Mona Merling and Kirsten Wickelgren for
inspiring and supporting this work, to Cary Malkiewich for countless conversations
about details big and small, to Markus Hausmann for helpful correspondence about
equivariant orientations, and to William Balderrama for communicating equivariant
nilpotence to us. Thank you also to Candace Bethea, Taylor Brysiewicz, Benson Farb,
Joe Harris, Mike Hopkins, Sidhanth Raman, Frank Sottile, and Zhong Zhang for fruitful
conversation about this work and related topics. Finally thank you to the anonymous
referee whose comments greatly improved this paper. The author is supported by an
NSF Postdoctoral Research Fellowship (DMS-2303242).

2. Retractive spaces and parametrized spectra, equivariantly

In this section we will establish technical machinery with the ultimate goal of obtaining
well-defined Euler numbers for equivariant sections of complex bundles over smooth
proper G-manifolds. In direct analogy to the theory of Euler classes in motivic homotopy
theory, we will want to work over a base space, i.e. in a parametrized way. This yields
many advantages, including a more streamlined characterization of dualizing objects,
access to a natural six functors formalism, and a clear discussion of how RO(G)-graded
cohomology extends to KOG(X)-graded cohomology.

An advantage of working in this setting is the presence of Thom transformations, which
we will define as certain auto-equivalences in the stable setting. Explicitly, when working
over a G-manifold M , we can take an equivariant vector bundle E → M , and smash
over M with the fiberwise Thom space ThM (E). We use these transformations to define
twisted cohomology classes valued in any genuine ring spectrum, and develop the theory
of their pushforwards. In particular we will see that we have a well-defined Euler class,
which pushes forward to an Euler number in complex oriented cohomology theories.
This number can be interpreted, and will serve as our main tool for solving equivariant
enumerative problems.

Notation 2.1. (Categorical notation) Throughout, when working with categories, a
subscript will denote a group G, following a convention in equivariant homotopy theory
for working with genuine G-equivariance, while a superscript will denote that we are
working parametrized over a space X. For example SpX

G will denote the category of
genuine orthogonal G-equivariant parametrized X-spectra (Notation 2.21). When a
superscript is omitted we working non-equivariantly, i.e. with the trivial group, and
when a subscript is omitted we are working parametrized over a point.

Remark 2.2. (On machinery): We work here with the model category SpX
G of genuine

orthogonal G-spectra parametrized over a G-space or spectrum X. The reader should
be warned that, should they venture deeper into this category, they may encounter
some point-set issues obstructing a true 1-categorical six functors formalism, e.g. the
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pushforward f∗ is homotopically poorly behaved [Mal23, 2.2.15], and even may fail to
preserve weakly Hausdorff spaces [MS06, §2.2], [Lew85]. Thankfully none of these issues
will rear their heads in this particular work.

Assumption 2.3. All spaces and all maps will be assumed to be equivariant with
respect to the action of a compact Lie group G unless otherwise explicitly stated. If not
otherwise clarified, any statements made about vector bundles are equally true for both
real and complex bundles.

2.1. Basic definitions. Given a G-space X, we denote by (SpcG)/X the slice category
of G-spaces equipped with an equivariant map to X. This category isn’t pointed, so we
cannot make sense of phenomena like suspension and thus stabilization. To rectify this,
we slice it under X in order to obtain the category RetXG := (SpcG)X//X of retractive
G-spaces over X. More explicitly:

Definition 2.4. The category RetXG of retractive G-spaces over X has as objects
commutative diagrams of the form

X Y

X.
id

That is, the category of spaces which equivariantly retract onto X. The morphisms are
equivariant maps Y → Y ′ which commute with the inclusion and projection maps.

Example 2.5.

• The category of retractive G-spaces over a point RetG is the category of based
G-spaces.

• For any subgroup H ≤ G, there is an equivalence of categories Ret
G/H
G ≃ RetH .

Proposition 2.6. The category RetXG has finite products and coproducts — given
A,B ∈ RetXG the product is given by the pullback A×X B along the projection maps,
while the coproduct is the pushout A∪XB along the inclusions. We denote the coproduct
by A ∨X B := A ∪X B to stress the comparison with the wedge product in pointed
spaces.

Example 2.7. Let Y be any G-space equipped with a map f : Y → X. Denote by
Y+X ∈ RetXG the retractive space Y ⨿X, with inclusion given by mapping X to itself,
and projection given by f and the identity:

X Y ⨿X

X.
id

f⨿id
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Definition 2.8. Given A,B ∈ RetXG , we define their fiberwise smash product A ∧X B
to be the fiberwise cofiber of the map between the coproduct and product:

A ∨X B A×X B

X A ∧X B.

This turns RetXG into a symmetric monoidal category, with unit given by S0
X := X+X .

Example 2.9. More generally, any G-representation V has an associated representation
sphere SV , which is the one-point compactification, based at the point at infinity. Denote
by SV

X = X × SV the fiberwise representation sphere. This has a natural projection to
X, and by convention the fiber over x is based at the point at infinity in SV .

Example 2.10. If p : E → X is a G-equivariant vector bundle, then the zero section
endows it with the structure of an X-retractive space.

Example 2.11. Given an equivariant vector bundle p : E → X, denote by ThX(E) the
fiberwise Thom space, where the fibers Ex have each been compactified to a different
point at infinity (one obtains the ordinary Thom space Th(E) by gluing these points at
infinity together):

SEx ThX(E)

{x} X.

⌟

The action of G on X induces an action on the points at infinity, and the inclusion of X
into these points at infinity endows ThX(E) with the structure of a retractive G-space.

Definition 2.12. Let f : X → Y be a G-map. There is a forgetful functor

f♯ : Ret
X
G → RetYG,

given by sending a retractive space S over X to the pushout S ∪f Y with inclusion and
projection maps induced by the pushout:

X Y

S f♯S

X Y.

f

id⌜

f

Warning 2.13. There is competing notation for the six functors appearing in parametrized
homotopy theory, so we should clarify our notational choices before proceeding. May
and Sigurdsson [MS06] refer to the functor described in Definition 2.12 as f!. We use f♯
for this functor, as does [Hu03], and we reserve the shriek notation for the exceptional
adjunction, which we will define in Definition 2.47.
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Notation 2.14. For any G-space X, denote by πX : X → ∗ the unique map to a point.

Example 2.15. Given a G-equivariant vector bundle E → X, applying (πX)♯ to
the fiberwise Thom space of a vector bundle ThX(E) has the effect of collapsing the
basepoint copy of X, meaning that it glues all the points at infinity together to one.
This recovers the ordinary (non-fiberwise) Thom space Th(E). As a particular case, the
trivial bundle X × V → V has fiberwise Thom space the fiberwise representation sphere
SV
X . The pushforward (πX)♯S

V
X is the half-smash product X+ ∧ SV .

Definition 2.16. Any G-map f : X → Y induces a pullback functor

f ∗ : RetYG → RetXG ,

given by sending a retractive space T over Y to the pullback f ∗T with inclusion and
projection maps induced by the pullback:

X

Y f ∗T X

T Y.

id

f

⌟
f

Proposition 2.17. The pullback functor is symmetric monoidal. In particular we
observe that π∗

XS
V = SV

X .

Proposition 2.18. It is straightforward to check that there is an adjunction f♯ ⊣ f ∗.

2.2. Model structures on parametrized G-spectra. We endow the category of re-
tractive G-spaces with the q-model structure, which first appeared in the non-equivariant
setting in an unpublished preprint of May [May00], was fleshed out in the equivariant
setting by Hu [Hu03], and was recently made explicit by Malkiewich [Mal23].

Let f : S → T be a map in RetXG . We say it is a weak equivalence if it is a weak
equivalence when viewed as a morphism in SpcG; explicitly, if f

H : SH → TH is a weak
homotopy equivalence for every subgroup H ≤ G. Similarly we define f to be a fibration
if fH is a Serre fibration for every H ≤ G. Cofibrations in this model structure are
given by retracts of relative G-cell complexes.

Notation 2.19. Given any G-space X, and any complex G-representation V , denote
by εVX the G-vector space X × V → X. We call this the trivial bundle associated to the
representation V .

Definition 2.20. A genuine orthogonal G-spectrum over X is a sequence of X-retractive
spaces AV for each real orthogonal representation V , together with the data of structure
maps

εW−V
X ∧X AV → AW

for every linear G-equivariant isometric inclusion V ↪−→ W .
7



Notation 2.21. We denote by SpX
G the category of genuine orthogonal G-spectra

parametrized over X (denoted GOS(X) in [Mal23]). The fiberwise smash product on
retractive spaces induces a fiberwise smash product on SpX

G , and this category is also
symmetric monoidal with unit given by the sphere spectrum SX ∈ SpX

G . When we write
S without a subscript, it is understood we are working fiberwise over a point, so we
obtain the equivariant sphere spectrum in SpG, but with the group notation suppressed.

Example 2.22. For S ∈ RetXG , we denote by Σ∞
XS the suspension spectrum, with

component spaces SV = εVX ∧X S. This is a functorial procedure, giving an adjunction

Σ∞
X : RetXG ⇆ SpX

G :Ω∞
X .

Given f : X → Y the definitions of f ∗ and f♯ extend to genuine orthogonal spectra by
applying them levelwise (c.f. [Mal23, §4.3]), yielding an adjunction

(1) f♯ : Sp
X
G ⇆ SpY

G :f ∗.

Just as in the unstable setting, the pullback f ∗ is symmetric monoidal.

The q-model structure we outlined for RetXG can be extended to a model structure on
SpX

G by defining weak equivalences and fibrations componentwise [Hu03, Definition 3.3].
This forms a closed model structure [Hu03, Proposition 3.4], [Mal23, Theorem 1.0.1].
We denote by [−,−]X homotopy classes of maps in SpX

G .

Proposition 2.23. [Hu03, §3] The adjunction f♯ ⊣ f ∗ in Equation 1 is a Quillen
adjunction.

2.3. Projection and exchange. Two key techniques frequently used in settings where
a six functors formalism appears are a projection formula and exchange transformations.
Projection describes the interaction of the forgetful functor with smash products, while
exchange describes how functors channel data from commutative diagrams of base
objects (in this case retractive G-spaces).

Theorem 2.24. (Projection) [Hu03, 4.7] Let f : X → Y be a G-map of spaces, and
take S ∈ SpX

G and T ∈ SpY
G. Then there is an isomorphism in SpY

G, which is natural in
both S and T :

T ∧Y f♯(S)
∼−→ f♯ (f

∗T ∧X S) .

Example 2.25. In the case where S = S0
X is the zero-sphere over X, projection takes

the form

T ∧Y f♯(S
0
X)

∼−→ f♯f
∗(T ).

That is, applying f♯f
∗(−) has the effect of smashing fiberwise with f♯(S

0
X).

Theorem 2.26. (Exchange) [MS06, 2.2.11], [Mal23, 2.2.11] For any commutative square
of G-spaces

(2)

A B

C D,

f

g q

p
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there is an associated exchange transformation Ex∗♯ : g♯f
∗ → p∗q♯. This is a weak

equivalence if the square is homotopy cartesian.

2.4. Thom transformations. If A ∈ Sp, then its nth cohomology groups are defined by
An(X) = [X,ΣnA], which we may write less concisely as [−,Th(Rn) ∧ A] by considering
Sn to be the Thom space of a rank n bundle over a point. Passing to the parametrized
setting over a base space X, it might make sense then, for any vector bundle E → X,
to define the Eth cohomology group AE(−) by [−,ThX(E) ∧X A]X . We will make such
a definition in Section 4, but first we explore the process of smashing fiberwise with a
Thom space of a vector bundle. This will let us define an invertible endofunctor on SpX

G

which we call a Thom transformation.

Definition 2.27. Let E → X be a G-equivariant vector bundle. We define the
associated Thom transformation, denoted by ΣE

X , to be the endofunctor defined by
smashing fiberwise with the fiberwise Thom space of E.

ΣE
X : SpX

G → SpX
G

S 7→ S ∧X ThX(E).

Example 2.28. The simplest example is when E = εVX is the trivial bundle associated
to any G-representation V . Applying the associated Thom transformation yields

Σ
εVX
X (−) = ThX(ε

V
X) ∧X (−) = (X × SV ) ∧X (−) = SV

X ∧X (−).

That is, it is the same as suspending by the parametrized V -sphere over X, which is
invertible in the world of parametrized G-spectra over X. We will use ΣV

X instead of

the more cumbersome notation Σ
εVX
X .

Proposition 2.29. The Thom transformations are additive, in the sense that for any
short exact sequence of equivariant bundles over X:

0 → A → B → C → 0,

there is an isomorphism ΣA
XΣ

C
X
∼= ΣB

X , which is unique in the homotopy category.

Proof. Since every short exact sequence of equivariant bundles is split, we have an
isomorphism B ∼= A⊕ C, inducing a homeomorphism ThX(B) ∼= ThX(A) ∧X ThX(C)
(c.f. [Mal23, 6.2.2]). As the choice of such splittings forms a contractible space, it is
clear that this isomorphism is well-defined up to homotopy. □

Thom transformations are invertible on SpX
G for trivial bundles, which relies on the fact

that equivariant vector bundles admit stable inverses.

Proposition 2.30. [Seg68, 2.4] Let E → X be an equivariant vector bundle. Then
there is a representation V and a G-bundle E⊥ → X so that E ⊕ E⊥ ∼= εVX .

1

1In [Seg68] this result is stated only for complex vector bundles, but the same argument found there
works for real vector bundles by picking a G-equivariant Riemannian metric for E in εVX and defining
E⊥ to be its complement.
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Proposition 2.31. Let E → X be a G-bundle. Then the Thom transformation ΣE
X

admits an inverse at the level of the homotopy category Σ−E
X , which is defined by

Σ−V
X ◦ ΣE⊥

X , for any trivial bundle εVX and complementary bundle E ⊕ E⊥ ∼= εVX .

Proof. This follows by combining Proposition 2.29 and Proposition 2.30. □

With this notion of Thom transformations associated to virtual bundles, we can extend
the definition of Thom transformations to hold for perfect complexes over our domain
space.

Notation 2.32. We denote by KOG(X) the abelian group of isomorphism classes of
virtual real G-vector bundles over X. Observe there is a natural inclusion RO(G) →
KOG(X) given by sending a representation to its associated trivial bundle.

Corollary 2.33. The Thom transformations induce a group homomorphism from the
group of isomorphism classes of virtual complex vector bundles over X:

KOG(X) → Aut(Ho(SpX
G ))

[E] 7→ ΣE
X .

Following Segal [Seg68, §3], we define a complex of G-vector bundles on X to be a
sequence of G-vector bundles Ei and equivariant vector bundle maps over X:

· · · d−→ En
d−→ En−1

d−→ · · ·
so that d2 = 0. We say that a complex E• is bounded if En = 0 for |n| sufficiently large.
Let Perf(KOG(X)) denote the category of perfect complexes, meaning those which are
quasi-isomorphic to bounded ones. The following definition is inspired by the motivic
J-homomorphism of [BH21].

Proposition 2.34. The Thom transformations extend to perfect complexes of vector
bundles on X:

Σ
(−)
X : Perf(KOG(X)) → Aut(Ho(SpX

G ))

(· · · → En → En−1 → · · · → E0) 7→ Σ
(−1)nEn

X ◦ · · · ◦ ΣE0
X .

Proof. It will suffice to show that the definition above is well-defined on quasi-isomorphism
classes of bounded complexes. Suppose f• : A• → B• is a quasi-isomorphism of complexes.
Considering the differential dAn : An → An−1, we have a short exact sequence

0 → ker(dAn ) → An → im(dAn ) → 0,

which by Proposition 2.29 induces an isomorphism

Σ
(−1)nAn

X
∼= Σ

(−1)n+1 ker(dAn )
X Σ

(−1)n+1(im(dAn ))
X .

Since Σ
ker(dAn )−im(dAn+1)

X
∼= Σ

Hn(A)
X , we observe that

ΣA•
X

∼=
∑
n

Σ
(−1)n+1Hn(A)
X .
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As A and B are quasi-isomorphic, we conclude that ΣA•
X

∼= ΣB•
X . □

Corollary 2.35. Perf(KOG(X)) is a stable ∞-category, hence we can construct its con-
nective algebraic K-theory K(Perf(KOG(X))). Any path (zig-zag of quasi-isomorphisms)
in this space between two points E•, F• ∈ Perf(KOG(X)) induces a canonical natural
equivalence ΣE•

X
∼= ΣF•

X . Hence Proposition 2.34 can be thought of as an ∞-categorical
group homomorphism.

Finally, we discuss how Thom transformations behave along base change.

Proposition 2.36. Given f : X → Y and ξ ∈ Perf(KOG(Y )), we have weak equivalences
which are natural in ξ:

Σξ
Y f♯

∼−→ f♯Σ
f∗ξ
X

f ∗Σξ
Y

∼−→ Σf∗ξ
X f ∗.

Proof. We may assume without loss of generality that ξ is a vector bundle over Y , since
this equivalence will directly extend to perfect complexes. In that case, the first map
is an example of the purity theorem Theorem 2.24. The second map is defined to be
the mate of the first (after swapping the sign on ξ), and we observe it is a natural
equivalence. □

2.5. Cotangent complexes and duality. One of the key constructions in [Hu03]
is that of a dualizing object Cf associated to a class of morphisms in SpcG called
smooth proper families of G-manifolds. We discuss cotangent complexes for both closed
immersions and smooth proper families in the language of the Thom transformation of
a cotangent complex Lf ∈ Perf(KOG(X)).

Definition 2.37. A G-map f : X → Y is said to be a smooth proper family of G-
manifolds if the fiber over every point is a smooth proper G-manifold, varying continu-
ously over Y . Here “proper” means that the homotopy fibers are compact [ABG18].

Remark 2.38. Duality for parametrized spectra can be checked fiberwise, in the sense
that a parametrized X-spectrum is dualizable if and only if its fiber over every point in
the base is a dualizable spectrum (e.g. a finite spectrum) [ABG18, Lemma 4.2]. The
conditions in Definition 2.37 imply that f♯SY will be an invertible spectrum over Y , and
the analogous statement is true equivariantly [Hu03].

Definition 2.39. We define a map of smooth compact G-manifolds f : X → Y to be
smoothable proper if it admits a factorization

(3)

X W

Y,

i

f
π

where i is a closed G-embedding and π is a smooth proper family of G-manifolds.
11



Given such a factorization, consider the following two short exact sequences, the first of
bundles over X and the second of bundles over W :

(4)
0 → TX → i∗TW

(1)−→ Ni → 0

0 → Tπ → TW → π∗TY → 0.

Since i∗ is exact, we can apply i∗ to the second sequence to obtain

(5) 0 → i∗Tπ
(2)−→ i∗TW → f ∗TY → 0.

This yields a composite

i∗Tπ
(1)◦(2)−−−−→ Ni.

Definition 2.40. Let f : X → Y be smoothable proper with factorization f = π ◦ i.
Define the cotangent complex of f to be the two term complex

Lf := (· · · → 0 → i∗Tπ → Ni) ,

where i∗Tπ is in degree zero and Ni in degree negative one.

Proposition 2.41. The cotangent complex yields a Thom transformation Σ
Lf

X associated
to any smoothable proper morphism f , which gives a well-defined functor on the
homotopy category.

Proof. Given any factorization as in Equation 3, we may use the short exact sequences
in Equation 4 and Equation 5 to derive equations in KOG(X):

[i∗Tπ] = [i∗TW ]− [f ∗TY ]

[Ni] = [i∗TW ]− [TX].

From this we may observe that the class of the cotangent complex can be described of
the difference [TX]− [f ∗TY ]. In other words, there is an isomorphism

Σi∗Tπ
X Σ−Ni

X
∼= ΣTX

X Σf∗TY
X .

This provides a model of the Thom transformation of the cotangent complex which is
independent of the choice of factorization. □

Example 2.42. The Thom transformation associated to the projection map πM : M → ∗,
where M is any smooth compact manifold, is Σ

LπM
M

∼= ΣTM
M .

Remark 2.43. For a smoothable proper morphism f : X → Y , the invertible spectrum

Σ
Lf

X SX is its associated dualizing object. In the setting where f : X → Y is a smooth

proper family of G-manifolds, Σ
Lf

X SX agrees with Hu’s dualizing object Cf as hinted

at in the discussion [Hu03, pp.42—43], where Cf = ΣTf
X SX is the Thom space of the

relative tangent bundle Tf = TX/Y . An illuminating discussion illustrating this example
was laid out in [ABG18, §4.3].

Example 2.44. Let f : X → Y be a closed G-embedding. Then its dualizing object is
the fiberwise Thom space of its inverse normal bundle ThX (−Nf).
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Example 2.45. Let s : X → E denote the zero section of a vector bundle. By
Example 2.44 its cotangent complex is Ns[−1], and we see that its normal bundle is
precisely E, so its dualizing object is Σ−E

X SX .

Proposition 2.46. Let f : X → Y and g : Y → Z be two composable smoothable
proper morphisms. Then there is a natural isomorphism of functors from Ho(SpX

G ) to
Ho(SpZ

G):

Σ
Lg◦f
X

∼= Σ
Lf

X ◦ Σf∗Lg

X .

Here f ∗Lg is defined by pulling back the two-term chain complex Lg along f .

Proof. We observe that there is a distinguished triangle

Lf → Lg◦f → f ∗Lg.

This yields a path in K-theory, which induces a canonical weak equivalence by Corol-
lary 2.35. □

2.6. The exceptional adjunction. Using cotangent complexes and their associated
Thom transformations, we can build the exceptional adjunction.

Definition 2.47. Let f : X → Y be smoothable proper. Define the exceptional functors
by

f! := f♯Σ
−Lf

X : SpX
G ⇆ SpY

G :Σ
Lf

X f ∗ =: f !

It is direct from the definition that these define adjoint functors.

Proposition 2.48. If f : X → Y is an open embedding of smooth G-manifolds, then
the cotangent complex is trivial, hence f ∗ ≃ f ! and f♯ ≃ f!

Proof. We note that an open embedding is a smooth proper family of G-manifolds.
Since the embedding is open, its differential is an isomorphism, and therefore its relative
tangent bundle vanishes. □

Proposition 2.49. Let f : X → Y and g : Y → Z be smoothable proper. Then there
is a natural isomorphism (g ◦ f)! ∼= f !g!, and hence also (g ◦ f)! ∼= g!f!.

Proof. Using Proposition 2.41, we may expand (g ◦ f)! as

(g ◦ f)! = Σ
Lg◦f
X f ∗g∗ ∼= Σ

Lf

X Σ
f∗Lg

X f ∗g∗.

Commuting f ∗ past the Thom transformation of the cotangent complex for g via
Proposition 2.36, we obtain

Σ
Lf

X f ∗Σ
Lg

X f ∗g∗ = f !g!.

The desired equivalence for the exceptional pushforward follows then from the calculus
of mates. □

We end this discussion by recalling the main duality theorem of [Hu03].
13



Theorem 2.50. ([Hu03, 4.9]) When f : X → Y is a smooth proper family of compact
G-manifolds, we obtain a Quillen adjunction:

f ∗ : SpY
G ⇆ SpX

G :f!

3. Equivariant Pontryagin–Thom transfers

Given a map f : X → Y , cohomology classes on Y can be pulled back to classes on X.
A foundational question in mathematics is when cohomological data can be transmitted
the other way.

Example 3.1. (Atiyah duality) Clasically, given a smooth compact manifold M , push-
ing forward cohomological data along the map πM : M → ∗ amounts to integrating
cohomology classes in order to produce a scalar. By embedding M in Euclidean space
Rn and then taking a one-point compactification, we obtain an embedding i : M ↪−→ Sn.
By collapsing Sn onto a tubular neighborhood of the embedding, we obtain, up to
diffeomorphism, the Thom space of the normal bundle of the embedding Sn → Th(Ni).
Desuspending by n gives us a map of spectra S → (πM)!SM , which we think of as the
dual of the map M → ∗. Under the presence of a Thom isomorphism, the cohomology of
Th(−TM) agrees with the cohomology of M up to a shift, hence cohomology classes on
M can be pulled back along this dual map to cohomology classes of the sphere spectrum.
We call the map S → (πM)! SM a transfer (also called an Umkehr map), and the induced
map on cohomology a Gysin map.

In this section we explore transfers in the parametrized equivariant setting — first along
closed immersions, second along smooth proper families of G-manifolds, and finally
developing a key result about composites of transfers working over a point, which will
help us develop our theory of pushforwards of equivariant Euler classes.

We begin with a brief recollection about the meaning of duality for parametrized
equivariant spectra.

3.1. Duality for parametrized spectra. Parametrized spectra come equipped with
two natural notions of duality: being fiberwise duality and Costenoble–Waner duality.
Viewing a space X as an ∞-category (e.g. by taking its associated fundamental ∞-
groupoid), we can consider a parametrized spectrum as an ∞-functor F : X → Sp, which
is equivalently a parametrized spectrum by straightening and unstraightening. Such
a functor defines a fiberwise dualizable spectrum if F (x) is dualizable for each x ∈ X.
It is Costenoble–Waner dualizable if the entire assembled spectrum hocolimx∈XF (x) is
dualizable.

We may alternatively view parametrized spectra as a bicategory, where the hom-
category between spaces A and B is SpA×B. From that perspective, the category of
X-parametrized spectra can be considered as the hom-category SpX×∗ ∼= SpX from
X to a point. The right dual recovers fiberwise duality, while the left dual recovers
Costenoble–Waner duality. For further discussion from this perspective, see [MS06,
Chapter 17].
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Example 3.2. Let M be a smooth compact manifold, and consider the sphere spectrum
SM ∈ SpM×∗. Its left (Costenoble–Waner) dual is ThM(−TM) ∈ Sp∗×M and its right
(fiberwise) dual is SM .

Example 3.3. If f : E → M is a smooth proper family over a smooth compact
manifold, and f♯SE is considered as living in SpM×∗, then its Costenoble–Waner dual is
f♯ ThE(−TE), whereas its left dual is f♯ ThE(−Tf) = f!SE.

Example 3.4. In the category of spectra, considered as the hom-category Sp∗×∗ in the
bicategory of parametrized spectra, fiberwise and Costenoble–Waner duality coincide.

Any map of spaces f : X → Y gives rise to a natural map of parametrized Y -spectra
f♯SX → SY . In the setting where both spaces are dualizable on the same side, we can
examine the relevant dual and it often gives rise to a transfer of some sort – our main
examples being a transfer constructed by May and Sigurdsson using Costenoble–Waner
duality for closed embeddings [MS06, 18.6.5] and the Pontraygin–Thom transfer, which
Ando, Blumberg, and Gepner characterize via fiberwise dualizability [ABG18]. In order
to establish a small case of functoriality for transfers, we will leverage the straightforward
functoriality of these natural maps, together with the composite of dual pairs theorem.

3.2. Transfers along closed immersions. Let i : Z ↪−→ X be a closed G-embedding
of smooth compact G-manifolds. We will discuss a Pontryagin–Thom transfer of the
form PT(i) : SX → i!SZ . In the non-equivariant setting, this transfer was constructed
by May and Sigurdsson [MS06, 18.6.3] (see also [ABG18, 4.17]).

First we will better understand the spectrum i!SX . An explicit point-set model will be
important later as we will leverage it to define refined Euler classes.

Proposition 3.5. Let i : Z ↪−→ X be a closed G-embedding. Then there is a weak
equivalence in SpX

G of the form

i!SZ ≃ Σ∞CX(X,X − Z),

where CX(X,X − Z) denotes the double mapping cylinder obtained by gluing the
cylinder (X − Z) × [0, 1] to two copies of X, based at the bottom copy of X, with
G-action happening levelwise in each slice of the cylinder.

Proof. By [KW10, 7.2], there is a weak equivalence in RetXG of the form

i♯ ThZ(Ni) ≃ CX(X,X − Z).

By taking suspension spectra, we would like to see that Σ∞i♯ ThZ(Ni) ≃ i!SZ . That is,
we must demonstrate an equivalence

i♯Σ
∞ ThZ(Ni) ∼= Σ∞i♯ThZ(Ni).

This follows from a more general fact – that we need not spectrify when applying the
forgetful functor to suspension spectra. This is a natural consequence of projection
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Theorem 2.24. If T ∈ RetXG is a retractive X-space, then the projection formula yields
the following natural isomorphism (the second follows from pullback preserving spheres)

εV
′−V

X ∧X i♯
(
εVZ ∧Z T

) ∼= i♯

(
i∗εV

′−V
X ∧Z εVZ ∧Z T

)
∼= i♯

(
εV

′

Z ∧Z T
)
.

In other words, we have that
{
i♯Σ

V
ZT

}
V ∈RO(G)

is already a spectrum. □

Proposition 3.6. ([MS06, 18.6.5]) Given a closed G-embedding of compact G-manifolds
i : Z ↪−→ M , the natural map i♯SZ → SM is Costenoble–Waner dualizable, with dual
given by applying ΣTM

M to a Pontryagin-Thom transfer

PT(i) : SM → i!SZ .

The explicit construction of this transfer relies heavily on the equivariant tubular
neighborhood theorem, and we refer the reader to [MS06, 18.6.3] for details about the
construction. Here we will be content with the dualizability of the natural inclusion
map of spheres, and the existence of a transfer.

3.3. Transfers along smooth proper families. If f : X → Y is a smooth proper
family, then via the adjunction in Theorem 2.50 we have a natural transformation
id → f!f

∗. The component of this transformation at the sphere spectrum is of the form
PT(f) : SY → f!SX . This is what is referred to as the equivariant Pontryagin–Thom
transfer associated to a smooth proper family of G-manifolds. If G is the trivial group,
this is consistent with the definition found in [ABG18, 4.13]. An explicit model for this
transfer may be found in [Hu03; MS06; ABG18].

Example 3.7. If M is a smooth compact G-manifold, then the structure map to a point
πM : M → ∗ induces (πM)♯SM → S in the category of spectra. Its fiberwise dual and
Costenoble–Waner dual coincide, and they are equal to PT(π), which is the classical
Pontryagin–Thom collapse map:

PT(πM) : S → (πM)!SM = Th(−TM).

Suppose we have a closed G-immersion of smooth compact G-manifolds Z ↪−→ M , and
consider the commutative diagram

Z M

∗

i

πZ
πM

An important lemma for us to establish is that transferring along πZ is equivalent to
first transferring along i and then along πM . This is an immediate consequence of the
characterization of transfers as Costenoble–Waner duals to natural maps.

Lemma 3.8. Let i : Z ↪−→ M be a closed G-immersion of smooth compact G-manifolds.
Then the composite

S PT(πM )−−−−→ (πM)!SM
(πM )! PT(i)−−−−−−→ π!i!SZ

is weakly equivalent to PT(i).
16



Proof. It is clear that the composite of natural maps

(πM)♯i♯SZ
(1)−→ (πM)♯SM

(2)−→ S
is equivalent to the map (πZ)♯SZ → S via the natural isomorphism (πM)♯i♯ ∼= (πZ)♯.
The Costenoble–Waner dual of the composite is PT(πZ) by Example 3.7. Via the
composite of dual pairs theorem [MS06, 16.5.1], this is equal to the composite of the
Costenoble–Waner duals of the two maps. The Costenoble–Waner dual of the map (2) is
PT(πM ), so in order to prove the lemma it suffices to verify that the Costenoble–Waner
dual of the map (1) is π! PT(i).

The compatibility of (πM )♯ with Costenoble–Waner duality can be found in [MS06, 17.3.3],
so it suffices to apply (πM)♯ to the Costenoble–Waner dual of i♯SZ → SM . This dual
is ΣTM

M PT(i) by Proposition 3.6. Hence altogether the dual of (1) is (πM)♯Σ
TM
M PT(i),

which is (πM)! PT(i). □

4. Cohomology

Here we develop a theory of cohomology with compact supports, twisted by perfect
complexes. This theory mirrors that found in the motivic setting (c.f. [DJK21; Elm+20;
BW21], etc.). The main goal is to demonstrate that cohomology classes can be pushed
forward by forgetting support, or by decomposing along the clopen components of the
support. In this sense, certain abstract cohomology classes can be understood in rings
as sums of local contributions of data. In Section 5 we will leverage this perspective to
prove conservation of number in the equivariant setting.

4.1. Twisted cohomology. Let ξ ∈ Perf(KOG(X)) be a perfect complex of equivariant
vector bundles over X, and let A ∈ SpG be an arbitrary genuine G-spectrum, which
represents an RO(G)-graded cohomology theory.

Definition 4.1. Define ξ-twisted cohomology with coefficients in A by

Aξ(X) :=
[
SX ,Σ

ξ
Xπ

∗
XA

]
X
.

When ξ is a trivial bundle, we show that Definition 4.1 recovers RO(G)-indexed coho-
mology groups.

Example 4.2. If ξ = εVX is a trivial bundle for some G-representation V , then εVX-twisted
cohomology is of the form

AεVX (X) =
[
SX , S

V
X ∧X π∗

XA
]
X
=

[
(πX)♯ S

−V
X , A

]
=

[
X+ ∧ S−V , A

]
.

This last group is precisely the definition of AV (X), that is, the A-cohomology of X
indexed over RO(G) (see e.g. [Lew+86, p. 35]).

Notation 4.3. For V a G-representation and A ∈ SpG any spectrum, Example 4.2
indicates that we can use AV (X) to refer to classical V th A-cohomology group of X or
the A-cohomology of X twisted by the trivial vector bundle εVX without loss of generality.

Similarly to Example 2.28, we will freely use AV (X) instead of AεVX (X).
17



When Z ⊆ X is a closed G-subspace, we can talk about cohomology classes that are
“supported” on Z. Let i : Z ↪−→ X denote the inclusion map.

Definition 4.4. For ξ ∈ Perf(KOG(X)), define ξ-twisted cohomology with coefficients
in A and support on Z to be

Aξ
Z(X) :=

[
i!SZ ,Σ

ξ
Xπ

∗
XA

]
X
.

We should provide some intuition as to why this is a reasonable definition of cohomology
supported on Z. Recall by Proposition 3.5 that i!SZ is equivalent to the double mapping
cylinder CX(X,X − Z). Collapsing this space along its cylinder coordinate, we obtain
the space in Figure 2.

X

Z

Figure 2. The homotopy type of the space i!S
0
Z .

The bottom copy of X is the basepoint, which has to be sent to the basepoint in the
target. What we are left with is an extra copy of Z, glued along the base, which is free
to be mapped anywhere in the target. Thus we think of maps out of CX(X,X − Z)
yielding cohomology classes supported on Z.

Definition 4.5. Precomposition with the Pontryagin–Thom transfer PT(i) : SX → i!SZ ,
defined in Proposition 3.6, induces a forgetting support map

Aξ
Z(X) → Aξ(X).

Proposition 4.6. Let M be a smooth proper G-manifold, and i : Z ↪−→ M a closed
G-embedding. Then there is a canonical isomorphism

ATM
Z (M) ∼= ATZ(Z).

Proof. We can write

ATM
Z (M) =

[
i!SZ ,Σ

TM
M π∗

MA
]
X
∼=

[
SZ , i

!ΣTM
M π∗

MA
]
Z
.

As the exceptional pullback is given by i! = ΣLi
Z i∗ = Σ−Ni

Z i∗, we may rewrite the above
as [

SZ ,Σ
−Ni
Z i∗ΣTM

M π∗
MA

]
Z
.

Commuting i∗ with the Thom transformation via Proposition 2.36 yields[
SZ ,Σ

−Ni
Z Σi∗TM

Z π∗
ZA

]
Z
.

From the short exact sequence

0 → TZ → i∗TM → Ni → 0,
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we have that Σ−Ni
Z Σi∗TM

Z
∼= ΣTZ

Z , from which we can see that ATM
Z (M) is isomorphic to[

SZ ,Σ
TZ
Z π∗

ZA
]
Z
= ATZ(Z). □

Recall classically that compactly supported cohomology classes decompose over their
support. In order to make this precise, we have to be careful about what we mean by
decomposing spaces equivariantly.

Terminology 4.7. Let i : Z ↪−→ X be a closed G-embedding. As a topological subspace,
we may decompose Z non-equivariantly into its clopen components: Z = ⨿iWi. As G
acts via homeomorphisms, we see that the G-orbit of any component is both closed and
open as well. Thus we may decompose Z as Z = ⨿G ·Wi, and we refer to the orbits
G ·Wi as the equivariant clopen components of Z in X.

By collapsing a double mapping cylinder CX(X,X − Z) down along the time axis, we
obtain a “fried egg” space as in Figure 2. When Z is decomposed into its equivariant
clopen components, we see that the double mapping cylinder decomposes as a wedge
sum over the base copy of X, as pictured in Figure 3.

∨ ≃

Figure 3. If Z = Z1 ⨿ Z2, then we have that CX(X,X − Z1) ∨X

CX(X,X − Z2) ≃ CX(X,X − Z).

Proposition 4.8. Take a closed G-embedding i : Z ↪−→ X, let Z = ⨿nZn be the
decomposition of Z into its equivariant clopen components, and denote by in : Zn ↪−→ X
the composite inclusion for each n. Then there is a weak equivalence

i♯ThZ(Ni) ≃ ∨n(in)!SZn .

Proof. Via Proposition 3.5, there is a weak equivalence in RetXG of the form i!S
0
Z ≃

CX(X,X − Z), and we may collapse the double mapping cylinder along the time axis
as in Figure 2. From there it is clear to see that it can be decomposed as a wedge sum
along the equivariant clopen components. The stable version of this statement follows
from observing that taking suspension spectra commutes with wedges. □

Example 4.9. For G a finite group, if i : G/H → M is the closed inclusion of an orbit
into a smooth manifold M , then there are weak equivalences in SpM

G of the form:

(6) i!SG/H ≃ Σ∞i♯(π
∗
G/H Th(TxM)) ≃ Σ∞i♯

(
ThG/H

(
TM |G/H

))
,

where x is any point in the orbit G/H.
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Proof. By collapsing the double mapping cylinder down around the points in the orbit,
we obtain the Thom spaces of the associated tangent spheres at each point in the orbit,
glued along G/H to M . Note however that for a chosen point x in the orbit, its tangent
space inherits an H-action,. Thus each Thom space is naturally an H-representation
sphere Th(TxM). The residual G-action comes from permuting the representation
spheres around between points in the orbit to get (G/H)× Th(TxM). Finally, in order
to obtain the collapse of the double mapping cylinders, we glue to M along the orbit
G/H. This gives an equivalence

CM(M,M −G/H) ≃ ((G/H)× Th(TxM)) ∪G/H M,

This yields the first equivalence in Equation 6. If G is further assumed to be finite, the
tangent space of G/H is trivial, hence the normal bundle Ni agrees with the tangent
space TM |G/H . In particular we see that

□(7) ThG/H

(
TM |G/H

)
≃ π∗

G/H Th(TxM).

Corollary 4.10. Cohomology with compact supports decomposes over its support, in
the sense that there is a group isomorphism

Ai∗ξ
Z (X) ∼=

⊕
n

A
i∗nξ
Zn

(X).

Proof. We see that Proposition 4.8 induces an isomorphism

Ai∗ξ
Z =

[
i!SZ ,Σ

ξ
Xπ

∗
XA

]
X

∼=
⊕
n

[
(in)!SZn ,Σ

ξ
Xπ

∗
XA

]
X
=

⊕
n

A
i∗nξ
Zn

(X). □

4.2. Integration. We can push cohomology classes forward along smooth proper families
or closed immersions. This comes at the cost of “untwisting” by a cotangent complex.

Proposition 4.11. Let f : X → Y be a smooth G-map between smooth compact
G-manifolds, and suppose that it is either a closed immersion or a smooth proper family.
Then for any ξ ∈ Perf(KOG(Y )), the Pontryagin–Thom transfer induces a pushforward

f∗ : A
Lf+f∗ξ(X) → Aξ(Y ).

Example 4.12. Let M be a smooth proper G-manifold. Then there is a pushforward

(πM)∗ : A
TM(M) → A0(∗) = πG

0 A.

Proposition 4.13. Let Z ⊆ M be a closed subspace. Then the following diagram
commutes

ATM
Z (M) ATM(M)

ATZ(Z) A0(∗),

∼=

forget

(πM )∗

(πZ)∗

where the left vertical isomorphism is the canonical one from Proposition 4.6.
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Proof. Observe that in the top left we can rewrite

ATM
Z (M) =

[
i!SZ , π

!
MA

]
X
∼= [(πM)! i!SZ , A]X .

The forgetful map is induced by the Pontryagin–Thom transfer SM → i!SZ as in
Definition 4.5, while the pushforward on M is precomposition with the unit S →
(πM)! SM . The pushforward from Z comes from recognizing that (πM)! i! = (πZ)! via
Proposition 2.49, and using the transfer SM → (πZ)! SZ . The fact that the Pontryagin–
Thom transfers along i and πM compose to the unit map along πZ is Lemma 3.8. □

Proposition 4.14. Let Z = ⨿nZn be a decomposition into its equivariant clopen
components, following the notation in Proposition 4.8. Then the following diagram
commutes: ⊕

nA
TZn(Zn)

ATZ(Z) A0(∗),

⊕n(πZn )∗∼=

(πZ)∗

where the left vertical map is the decomposition isomorphism in Corollary 4.10.

Proof. We remark that a cohomology class on ATZn(Zn) can be understood by pushing
forward directly, or by forgetting support and then pushing forward via Proposition 4.13.
That is, for any n, the diagram commutes:

ATZn(Zn)

ATZ(Z) A0(∗).

(πZn )∗

(πZ)∗

Applying Corollary 4.10, we see that when we sum over n, the left vertical map becomes
an isomorphism. □

4.3. Abstract orientation data. As we have seen in Proposition 4.13 and Proposi-
tion 4.14, given a cohomology class in ATM

Z (M), we can study it in two ways — by
forgetting its support and pushing it forward, or by decomposing it over its support and
pushing each of the individual contributions forward then summing. We have indicated
that this is an equality in πG

0 A.

We will be interested in the more general situation where we are twisting by a bundle
E → M which is not the tangent bundle. To study this, we need to find a way to relate
the E-twisted cohomology AE(−) with the cohomology twisted by the tangent bundle
ATM(−).

Definition 4.15. We say that a rank n bundle E → M over a G-manifold of dimension
n is relatively A-oriented if there is an isomorphism

(8) ρ : ΣE
Mπ∗

MA ≃ ΣTM
M π∗

MA.

Such a choice of isomorphism we call a relative orientation.
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In Subsection 5.2, we will see that complex oriented cohomology theories enjoy a
canonical choice of relative orientations, coming from the Thom isomorphism. More
generally, once we have a bundle which is relatively oriented in a ring spectrum A, we
can push forward cohomology classes. That is, if E → M is a rank n complex bundle
over a G-manifold of dimension n, then we can push forward a class in AE(M) using a
relative orientation ρ:

AE(M) ATM(M)

A0(∗).

ρ

(πM )∗

Note that if i : Z ↪−→ M is the inclusion of a closed subspace, by applying i∗ to Equation 8,
we obtain an isomorphism of the restricted vector bundle with the tangent bundle on V :

ρ|Z : Σ
E|Z
Z π∗

ZA ≃ ΣTZ
Z π∗

ZA.

In other words, a relative orientation for E → X in A descends to compactly supported
cohomology groups.

Proposition 4.16. Let E → M be a rank n complex G-vector bundle over a smooth
n-dimensional G-manifold, equipped with a relative A-orientation ρ. Suppose that
σ : M → E is a section with zero locus Z = Z(σ), which decomposes into clopen
components Z(σ) = ⨿nZn. Then the diagram commutes:

AE
Z (M) AE(M) ATM(M)

⊕
nA

E|Zn
Zn

(M)
⊕

nA
TZn(Zn) A0(∗).

∼=

forget ρ

(πM )∗

⊕n ρ|Zn
⊕n(πZn )∗

Proof. This follows directly from Proposition 4.13 and Proposition 4.14. □

Thus in the presence of a relative orientation, cohomology classes in AE
Z (M) can be

studied by forgetting support and pushing forward, or decomposing, pushing foward,
and then summing.

5. Equivariant conservation of number

Here we define refined Euler classes associated to sections of complex vector bundles,
valued in an equivariant cohomology theory. Proposition 4.16 indicates that these can
be computed as a sum over the local contributions of each of the components of the
zero locus of the section. When the cohomology theory A is complex oriented, and the
zeros are simple and isolated, we demonstrate a tractable formula for the local indices.
This gives us an equality in πG

0 A which is independent of the choice of section.
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5.1. Refined Euler classes. We fix some notation for this section.

Setup 5.1. Let G be a finite group, and let E → M be a G-equivariant vector bundle
of dimension n over a smooth compact n-manifold (real or complex). Let Z = Z(σ) be
the zero locus, with inclusion map i : Z ↪−→ M . Let A ∈ CAlg(SpG) be a genuine G-ring
spectrum.

The section σ induces a map of pairs (M,M − Z) → (E,E − M), where M ⊆ E
is the zero section. This induces an equivariant map of double mapping cylinders
CM(M,M − Z) → CE(E,E −M), which can be regarded as a map

(9) i!SZ → ΣE
MSM .

Definition 5.2. In the language of Setup 5.1, denote by e(E, σ, Z) ∈ AE
Z (M) the refined

Euler class, defined to be the composite

i!SZ → ΣE
MSM

ΣE
M1

−−→ ΣE
Mπ∗

MA,

where the first map is Equation 9 and the second is the unit on A.

Decomposing Z into its equivariant clopen components Z = ⨿Zn (as in Terminology 4.7),
we can invoke Corollary 4.10 to decompose the Euler class over its support:

AE
Z (M)

∼−→
⊕
n

AE
Zn
(M)

e(E, σ, Z) 7→ ⊕ne(E, σ, Zn).

Definition 5.3. When E is equipped with a relative A-orientation, the image of
e(E, σ, Zn) under pushforward is referred to as the local index, denoted by indZn(σ):

AE
Zn
(M) ∼= ATZn(Zn) →A0(∗)

e(E, σ, Zn) 7−→ indZn(σ).

We refer to the image of the (un)refined Euler class under pushforward as the Euler
number, and denote it by n(E, σ):

AE
Z

forget−−−→ ATM(M) → A0(∗) = πG
0 A

e(E, σ, Z) 7−→ n(E, σ).

We are suppressing the notation for the relative orientation, but the reader should
remark that these quantities depend upon the choice of relative orientation.

With this terminology in hand, we can state the following lemma.

Lemma 5.4. In Setup 5.1, if A is equipped with a relative A-orientation, then we
obtain an equality in πG

0 A of the form

n(E, σ) =
∑
n

indZn(σ).
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Moreover, the value n(E, σ) is independent of the choice of section σ, and only depends
upon the relative orientation.

Proof. We obtain the desired equality by following the Euler class e(E, σ, Z) in the
commutative diagram of Proposition 4.16. Thus we can compute the Euler number by
decomposing it over its support, and summing over the local indices. To see that this is
independent of σ, we remark that n(E, σ) was defined up to the homotopy class of σ.
Since every section can be G-equivariantly homotoped to the zero section, we observe
that n(E, σ) is independent of σ. □

Terminology 5.5. We say that σ has an isolated zero at a point x ∈ M if {x} is both
closed and open in Z(σ) ⊆ M . We say σ has a simple zero at x ∈ M if the zero is simple
in the classical sense — meaning the Jacobian determinant of σ at x is non-vanishing.
Note that the action of G preserves the properties of being isolated and simple.

Proposition 5.6. In Setup 5.1, if G/H ⊆ Z is a clopen component, and x ∈ G/H is a
simple isolated zero of σ, then there is a natural equivalence

AE
G/H(G/H) ∼=

[
π∗
G/H Th(TxM),Σ

E|G/H

G/H π∗
G/HA

]
,

under which the Euler class e(M,σ,G/H) corresponds to the composite of the intrinsic
derivative dxσ and the unit map on A:

(G/H)× Th(TxM) → (G/H)× Th(Ex) → (G/H)× (Th(Ex) ∧ A).

Proof. Via Example 4.9, the Euler class e(M,σ,G/H) can be considered as a composite
of the form

i♯j♯π
∗
G/H Th(TxM) → ΣE

MSM ,

where x ∈ G/H is any point in the orbit. By adjunction this is the same as

π∗
G/H Th(TxM) → j∗i∗ΣE

MSM = Σ
E|G/H

G/H SG/H .

If x is assumed to be simple, then Equation 7 tells us this is precisely the map

(G/H)× Th(TxM)
G/H×dxσ−−−−−−→ (G/H)× Th(Ex),

where dxσ is the intrinsic derivative of σ at the point x. □

Remark 5.7. Here is where orientation data is needed. We have an induced map
between H-representation spheres of the same dimension, but this does not canonically
give a class in the H-Burnside ring. The fact is while STxM−Ex is isomorphic to S0

when x is a simple zero, one must fix an isomorphism, and there is no canonical way
to do this. To circumvent this issue, we look at the map that the intrinsic derivative

STxM dxσ−−→ SEx induces on a cohomology theory A, where A comes equipped with some
canonical orientation data. In particular for such a ring spectrum A, we get a composite:

STxM dxσ∧u−−−→ SEx ∧ A
orientation data−−−−−−−−−→ STxM ∧ A.

This gives us a well-defined class in πH
0 A, and the associated local index is obtained

by transferring this up to G along the transfer available to us in the zeroth homotopy
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Mackey functor π0A.
2 In practice we will be concerned with complex oriented equivariant

ring spectra, where this “orientation data” is the data of a Thom class arising from a
universal one.

5.2. Complex orientations in the equivariant setting.

Definition 5.8. Let U denote a direct sum of infinitely many copies of each irreducible
complex representation of G, and denote by

BUG(n) := Gr(Cn,U),

the moduli space of n-dimensional subspaces of U . Since G acts naturally on U ,
it acts on BUG(n) as well, and BUG(n) comes equipped with a tautological bundle
γn : EUG(n) → BUG(n) which is easily seen to be equivariant.

Following tom Dieck [Die70], we may assemble the Thom spaces of the bundles Th(γn)
into a genuine G-spectrum by setting the V th space equal to Th(γ|V |), and then spectri-
fying (see [Sin01] for a lucid overview). This definition yields equivariant homotopical
bordism, which we denote by MUG.

Combining the work of tom Dieck [Die70] and Okonek [Oko82, §1], we make the following
definition.

Definition 5.9. Let G be a compact Lie group, and let A be a multiplicative RO(G)-
graded cohomology theory. Define a complex orientation on A to be a choice, for every

complex vector bundle p : E → X of complex rank k, of Thom classes τ(p) ∈ Ã2k(Th(E))
subject to the following conditions:

(0) (Thom isomorphisms) Cupping with the Thom class τ(p) induces a Thom
isomorphism:

A∗(−)
τ(p)∪−−−−−→ Ã∗+2k(− ∧ Th(E)).

(1) (Naturality) The pullback of a Thom class is the Thom class of the pullback
bundle.

(2) (Multiplicativity) The Thom class of a product bundle is the product of the
Thom classes of the respective bundles in the product.

(3) (Unitality) For any rank n representation V , viewed as an equivariant bundle
over a point, its Thom class τ(V ) is the image of 1 ∈ A0(∗) under the Thom
isomorphism.

Remark 5.10. The unitality condition dates back to tom Dieck and Okonek. Depending
on preference, one might drop this condition and obtain a more general notion of complex
orientations, in which we are allowed to rescale all our Thom classes by a unit in πG

0 A,
for instance.

2For the reader who may be unfamiliar with the language of Mackey functors, we refer them to the
excellent introductory paper [Web00].
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Note 5.11. In classical homotopy theory, the data of a complex orientation compresses
to a single Thom class for the universal line bundle. This reduction relies on having
a strong handle on the cell structure of the classifying space BU(n) for complex line
bundles. In the equivariant setting, a filtration of BUG(n) by equivariant Schubert cells
is made complicated by the possible existence of irreducible G-representations of higher
dimension. When G is abelian, all irreducible representations are one-dimensional, and
the cell structure on BUG(n) is better understood, so such a compression is possible,
and described in [CGK02]. This is the primary reason that our understanding of the
connection between equivariant complex orientations and equivariant formal group laws
is mostly limited these days to the case of abelian groups (see for instance [CGK00;
Hau22]).

Remark 5.12. For V a complex rank n representation, and A a complex oriented
cohomology theory, τ(V ) is a map SV → ΣnA. We observe that the following composite
is the Thom isomorphism, which we will also denote by τ(V ):

A ∧ SV 1∧τ(V )−−−−→ A ∧ ΣnA
µ−→ ΣnA,

where µ denotes the multiplication on the ring spectrum. In other words, ΣVA ≃ Σ|V |A.
This is the notion of GL-orientation one encounters e.g. in [BW21, 4.13].

Example 5.13. [Oko82] For any compact Lie group G, homotopical bordism MUG

admits a complex orientation.

Theorem 5.14. Given a compact Lie group G, a unital ring map MUG → A endows A
with a complex orientation. If G is furthermore assumed to be abelian, then this is an
equivalent definition of complex orientation [Oko82, Lemma 1.6], [CGK02, Theorem 1.2].

Example 5.15. [Oko82; Cos87] For any compact Lie group G, complex equivariant
K-theory KUG receives a ring map MUG → KUG and is therefore complex oriented.

Counterexample 5.16. Eilenberg–Maclane spectra of Mackey functors HM are gener-
ally not complex oriented, in stark contrast to the non-equivariant setting. By pulling
Thom classes back along the zero section, we obtain Euler classes in cohomology. If V is
a G-representation of dimension n, then pulling back the Thom class of its representation
sphere along the zero section S0 → SV yields a class in πG

−nMUG. This class is generally
nonzero, indicating that MUG is non-connective. All Eilenberg–MacLane spectra are
integrally connective, hence in order to create a ring map MUG → HM , we would
have to send Euler classes to zero, which destroys any possibility of the map preserving
information about orientation.

Remark 5.17. If A is a complex oriented cohomology theory, and V and W are complex
G-representations of the same dimension n, by unitality, we obtain isomorphisms

An(SV ) ∼= A0(∗) ∼= An(SW ).

By unitality of the complex orientation, this is an isomorphism of free πG
0 A-modules of

rank one, sending τ(V ) 7→ τ(W ). We may also refer to this a Thom isomorphism by
abuse of terminology.
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We record an important property enjoyed by complex oriented ring spectra in the
equivariant setting. Informally, the following propositions state that any isomorphism of
G-representations also represents the Thom isomorphism obtained by passing between
the two representations in any complex oriented cohomology theory.

Proposition 5.18. Let A be a complex oriented ring spectrum, and let f : V
∼−→ W be

any isomorphism of complex G-representations of dimension n. Then the isomorphism
f ∗ : An(SW ) ∼= An(SV ) has as its inverse the Thom isomorphism of Remark 5.17.

Proof. Since this is an isomorphism of free πG
0 A-modules of rank one, we have to check

where the generator is sent, and we observe that f ∗τ(W ) = τ(V ) by naturality of the
complex orientation. □

Remark 5.19. At no point in Proposition 5.18 did we use any specific properties of
the choice of isomorphism f . This is unsuprising, due to the fact that all isomorphisms
of complex representations V1

∼−→ V2 are homotopic [Die70, 1.1], thus there is a single
homotopy class [SV1 , SV2 ] corresponding to isomorphisms of representations. The argu-
ment above indicates roughly that after smashing with A, this homotopy class aligns
with that produced by the Thom isomorphism.

We can now revisit our discussion of local indices from Remark 5.7.

5.3. Local indices and conservation of number.

Lemma 5.20. Let A be any complex oriented ring spectrum in SpG, let E → M be
an equivariant complex vector bundle of rank n over a compact smooth G-manifold of
dimension n, and let σ : M → E be a section with an isolated simple zero at x ∈ M .
Then the local index, as defined in Definition 5.3, is

indG·x σ = TrGGx
(1).

Proof. We must argue that the composite

STxM ∧ A
dxσ∧A−−−−→ SEx ∧ A

τ−→ STxM ∧ A

is equal to 1 ∈ πG
0 A, where τ is arising from the Thom classes provided by the equivariant

complex orientation on A. As x is an isolated simple zero, the intrinsic derivative
is an injective map of G-representations of the same finite dimension, and hence is
an isomorphism dxσ : TxM → Ex. Thus we find ourselves under the conditions of
Proposition 5.18, from which the result follows. □

To wrap up this section, we explore a payoff of the formalism developed above, which
will serve as our primary computational tool. Namely, we can develop a theory of
conservation of number taking value in πG

0 A for any complex oriented equivariant
cohomology theory A.

By Lemma 5.20, the local index at an isolated simple orbit G · x is the trace TrGGx
(1)

from the isotropy group of x to the entire group G, where this transfer is taking place at
the level of the zeroth homotopy Mackey functor. The following key lemma should be
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thought of as an equivariant analogue of the Poincaré–Hopf theorem, with cohomology
classes valued in complex oriented G-ring spectra.

Lemma 5.21. (Equivariant conservation of number) Let E → M be an equivariant
complex rank n bundle over a smooth G-manifold of dimension n, and let σ : M → E be
any section whose zeros are isolated and simple. Let A ∈ SpG be any complex oriented
ring spectrum. Then there is an equality in πG

0 A:

n(E, σ) =
∑

G·x⊆Z(σ)

TrGGx
(1),

where the Euler number n(E, σ) is independent of the choice of σ.

Example 5.22. In complex K-theory, we have that KUGx(∗) = RC[Gx], and the transfer
of the trivial representation 1 is the regular representation of the finite G-set G/Gx. Thus
an Euler number computed as in Lemma 5.21 is given by the permutation representation
C[Z(σ)] of the zero locus of a section with isolated simple zeros, and the conservation
statement is that C[Z(σ)] ∼= C[Z(σ′)] is an isomorphism of G-representations for any
two sections with simple isolated zeros.

Ultimately we want to argue that an answer valued in the Burnside ring A(G) is
independent of a choice of section. The KUG-valued Euler class as in Example 5.22 is
insufficient for this purpose, due to the fact that the map πG

0 SG → πG
0 KUG from the

Burnside ring to the representation ring will often fail to be injective. We instead need
a complex oriented cohomology theory for which the unit map is an injection on πG

0 .

We thank William Balderrama for communicating the following argument to us.

Proposition 5.23. Homotopical bordism MUG detects nilpotence, in the sense that for
any ring spectrum A equipped with a ring map A → MUG, the kernel of π

G
⋆ A → πG

⋆ MUG

consists of nilpotent elements (see [BGH20, 3.20]).

Proof. Taking geometric fixed points commutes with the construction of a mapping
telescope, which allows us to conclude that nilpotence can be detected at the level
of geometric fixed points [BGH20, 3.17]. By [Sin01, 4.10], ΦHMUG decomposes as a
wedge sum of classical MU spectra. Finally, we can conclude by applying the classical
nilpotence theorem [DHS88]. □

We leverage this to prove our main result.

Theorem 5.24. (Equivariant conservation of number) Let E → M be an equivariant
complex rank n bundle over a smooth G-manifold of dimension n, and let σ, σ′ : M → E
be any two sections whose zeros are isolated and simple. Then Z(σ) and Z(σ′) are
isomorphic as finite G-sets. In other words, the G-orbits of the zeros are independent of
the choice of section.
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Proof. We know for such a section σ, we can obtain an Euler class valued in πG
0 MUG by

Lemma 5.21:

n(E, σ) =
∑

G·x⊆Z(σ)

TrGGx
(1).

As MUG detects nilpotence by Proposition 5.23, and the Burnside ring is reduced, we can
conclude that πG

0 SG → πG
0 MUG is injective. Remarking that the map π0SG → π0MUG

is a map of Tambara functors, we can observe that n(E, σ) admits a unique preimage in
A(G), given by TrGGx

(1), where this transfer is of the form TrGGx
: A(Gx) → A(G). This

is precisely the G-set Z(σ). □

In the following section we leverage this perspective to compute the equivariant count
of 27 lines on a symmetric smooth cubic surface.

6. The 27 lines on a smooth symmetric cubic surface

In this section we apply our methods to compute the orbits of lines on a smooth
symmetric cubic surface. In particular in the presence of symmetry we can state further
constraints about the number of lines defined on a real cubic surface.

6.1. 27 lines on a complex symmetric cubic surface.

Definition 6.1. We say that a cubic surface X = V (F ) ⊂ P3 is S4-symmetric (or just
symmetric) if F (x0, x1, x2, x3) is a symmetric polynomial.

In particular by letting S4 act on CP3 by permuting projective coordinates, we have
that symmetric cubics are precisely those preserved under this action. The lines on such
a cubic surface therefore come equipped with S4-orbits, and we can inquire about the
orbit type. By equivariant conservation of number, the answer is independent of the
choice of symmetric cubic surface.

Theorem 6.2. Given any smooth symmetric complex cubic surface, its 27 lines have
orbit type

[S4/C
o
2 ] + [S4/C

e
2 ] + [S4/D8] ,

where Co
2 is a single transposition, and Ce

2 is a product of two disjoint transpositions.

Proof. We remark that a symmetric complex cubic surface X induces a section of the
following S4-equivariant complex vector bundle:

Sym3S∗ GrC(1,CP3),
σX

where S denotes the tautological bundle on the Grassmannian. In particular σX(ℓ) = 0
if and only if ℓ ⊆ X is a line on the symmetric cubic. Since the 27 lines on X are
necessarily distinct (c.f. [EH16, Theorem 5.1]), the zero locus Z(σX) consists of 27 points
on GrC(1,CP3), each of which is a simple zero of σX .
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By Theorem 5.24, the S4-orbits will be independent of the choice of symmetric cubic, so
it suffices to pick our favorite symmetric cubic and compute the S4-orbits of its lines.
Consider the example of the Fermat cubic:

F =
{
[x0 : x1 : x2 : x3] : x

3
0 + x3

1 + x3
2 + x3

3 = 0
}
.

Fix ζ to be a primitive sixth root of unity in C, hence we have three distinct cube roots
of −1, namely ζ, ζ−1, and −1. The 27 lines on the Fermat are given by the following
equations, where [w : z] varies over CP1:

[w : −w : z : ζz] [w : −w : z : ζ−1z] [w : ζw : z : −z] [w : ζ−1w : z : −z]
[w : z : ζw : −z] [w : z : ζ−1w : −z] [w : z : −w : ζz] [w : z : −w : ζ−1z]
[w : z : −z : ζw] [w : z : −z : ζ−1w] [w : z : ζz : −w] [w : z : ζ−1z : −w]
[w : ζw : z : ζz] [w : ζw : z : ζ−1z] [w : ζ−1w : z : ζz] [w : ζ−1w : z : ζ−1z]
[w : z : ζw : ζz] [w : z : ζw : ζ−1z] [w : z : ζ−1w : ζz] [w : z : ζ−1w : ζ−1z]
[w : z : ζz : ζw] [w : z : ζ−1z : ζw] [w : z : ζz : ζ−1w] [w : z : ζ−1z : ζ−1w]

[w : −w : z : −z] [w : z : −w : −z] [w : z : −z : −w]

Thus the orbits are as follows (colors are chosen so that the orbits match the orbits of
the lines on Figure 1), where the notation Co

2 (odd) denotes a single transposition and
Ce

2 (even) denotes a product of two disjoint transpositions.

Color Generating line Isotropy subgroup Orbit type # of lines
Blue [w : −w : ζz : −z] ⟨(1 2)⟩ S4/C

o
2 12

Green [w : ζw : z : ζz] ⟨(1 3)(2 4)⟩ S4/C
e
2 12

Red [w : −w : z : −z] ⟨(1 3)(2 4), (1 2), (3 4)⟩ S4/D8 3

□

Given a subgroup G ≤ S4, it induces a natural action on CP3, and we can ask about the
27 lines on a G-symmetric smooth complex cubic surface. For this result, the following
is key.

Proposition 6.3. Let E → M be a G-equivariant rank n complex vector bundle over a
smooth compact G-manifold of dimension n. Let A be a complex oriented G-cohomology
theory, let nG(E) denote the Euler number of E in the A-cohomology theory, and for a
subgroup H ≤ G, let nH(E) denote the Euler number in the restricted H-equivariant
A-cohomology theory. Then we have that

nH(E) = ResGHnG(E).

Proof. This follows directly from the computation of the Euler number along a section
with isolated simple zeros being valued in the homotopy Mackey functor π0A. □

Thus given any subgroup G ≤ S4, we can compute the regular representation of the
orbits of its 27 lines under the associated G-action by restricting the answer for S4.
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Notation 6.4. We denote by Co
2 := ⟨(1 2)⟩ and Ce

2 := ⟨(1 2)(3 4)⟩ the odd and even
conjugacy classes of cyclic subgroups of order two in S4. We denote by K◁

4 the normal
Klein 4-subgroup of S4, andK4 the non-normal one. For a Klein four group, we denote by
CL

2 , C
R
2 , and C∆

2 the left, right, and diagonal cyclic subgroups of order two, respectively.

Corollary 6.5. For all of the conjugacy classes of subgroups G ≤ S4, we can compute
the G-orbits of the 27 lines on a G-symmetric smooth complex cubic surface, where the
G-action on CP3 is acting on coordinates. These are in Table 1.

Proof. Following Proposition 6.3, the orbits listed are the G-orbits of the 27 lines on
the Fermat cubic. □

Remark 6.6. We point out that the computations in Corollary 6.5 demonstrate the full
strength of working with an MUG-valued Euler class, rather than a KUG-valued Euler
class, for instance. In fact Theorem 6.2 can be proven with a KUS4-valued Euler class;
we first compute the permutation representation of the 27 lines on a symmetric cubic
surface, and then look to argue there is a unique S4-set with this given permutation
representation. While the Burnside ring homomorphism A(S4) → RC(S4) is not injective,
by looking for an honest S4-set (i.e. a point in the upper orthant of A(S4) ∼= Z11), we
obtain a system of integral linear equations and inequalities, and we can verify on a
computer using polyhedral methods that a unique solution exists. In trying to replicate
this argument for all subgroups of S4, we see that these polyhedral techniques fail for
both copies of the Klein four-group, as well as the dihedral group D8 ≤ S4. Thus in
order to obtain Corollary 6.5 the MUG-valued Euler class is needed.

Subgroup G ≤ S4 G-orbits of lines

e 27[e/e]

Co
2 12[C2/e] + 3[C2/C2]

Ce
2 10[C2/e] + 7[C2/C2]

C3 9[C3/e]

K◁
4 [K4/e] + 4[K4/CL

2 ] + 4[K4/CR
2 ] +

2[K4/C∆
2 ] + 3[K4/K4]

K4 4[K4/e] + [K4/CL
2 ] + [K4/CR

2 ] +

3[K4/C∆
2 ] + [K4/K4]

C4 5[C4/e] + 3[C4/Co
2 ] + [C4/C4]

S3 3[S3/e] + 3[S3/Co
2 ]

D8 [D8/e] + 3[D8/Ce
2 ] + [D8/Co

2 ] +
[D8/K4] + [D8/D8]

A4 [A4/e] + 2
[
A4/Ce

2

]
+ [A4/K4]

S4

[
S4/Co

2

]
+

[
S4/Ce

2

]
+ [S4/D8]

Table 1. G-orbits of the 27 lines on a cubic
surface, for G ⊆ S4

6.2. 27 lines on a real symmetric cu-
bic. Observe that in the proof of The-
orem 6.2, the three lines in the orbit
[S4/D8], labeled in red, were in fact de-
fined over the reals. This is true in gen-
eral.

Proposition 6.7. Let F be a real smooth
symmetric cubic. Then on its complexifica-
tion V (FC), the lines in the orbit [S4/D8]
are all defined over the reals, and hence
form an orbit [S4/D8] on V (F ).

Proof. Since lines defined over C but not
over R must come in complex conjugate
pairs, any such orbit of lines must be of
even size. Since |S4/D8| = 3, all of its
lines must in fact be real. □

The study of rationality of lines on a real
cubic surface is a classical problem dating
back to the mid-1800’s.
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Theorem 6.8. [Sch58] A real smooth cubic surface can only contain 3, 7, 15, or 27 real
lines, and all of these possibilities do in fact occur.

Proposition 6.7 actually implies more — by examining the possible fields of definition of
the other orbits of 12 lines, we can easily eliminate the possibility of seven real lines on
a real symmetric cubic surface. We can do better by using more refined information
about the lines in question, namely their topological type.

Definition 6.9. Let ℓ be a line on a smooth real cubic surface X, and consider the map

RP1 ∼= ℓ → SO(3)

x 7→ TxX.

This associates to each line ℓ on the cubic surface a loop in the frame bundle π1(SO(3)) =
Z/2 = {±1}. The line ℓ is said to be hyperbolic if the associated class is +1 ∈ Z/2, and
elliptic if its associated class is −1 ∈ Z/2. We refer to this as the type of the line ℓ ⊆ X.

Proposition 6.10. On a real symmetric cubic surface X, the S4 action on CP3 by
permuting coordinates preserves the topological type of any line.

Proof. Given a line ℓ on a real cubic X, we have that for any point p ∈ ℓ, there is a
uniquely determined point q ∈ ℓ so that their tangent spaces are equal: TpX = TqX.
This allows us to define an involution of the line ℓ, given by sending p 7→ q for every
such pair of points. The topological type of the line is equivalently defined via the
discriminant of the fixed locus of this involution [FK15]. Since this involution is defined
independent of coordinates, it is invariant under a change of coordinates, and therefore
the S4-action does not affect the geometric properties of the involution attached to a
line on X. □

This indicates that within an S4-orbit, all lines have the same type. A classical result
following from work of Segre indicates that the types of lines are constrained.

Theorem 6.11. [Seg42; BS95; OT14; FK15; KW21] Let X be a real smooth cubic
surface. Then the following equality holds:

# {real hyperbolic lines on X} −# {real elliptic lines on X} = 3.

Combining this with Schläfli’s result, we have the following possibilities for real lines on
a real smooth cubic surface:

Total number
of real lines

Number of
hyperbolic lines

Number of
elliptic lines

3 3 0
7 5 2
15 9 6
27 15 12.

Theorem 6.12. A real smooth symmetric cubic surface can only contain 3 or 27 real
lines, and both of these possibilities do occur.
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Proof. By the argument following Proposition 6.7, we have that the possibility of seven
lines cannot happen, so it suffices to argue that 15 lines cannot occur as well. By
Proposition 6.10, we have that the action preserves topological type. Since we only have
two orbits of sizes 3 and 12, we see that we cannot possibly have 9 hyperbolic lines and
6 elliptic lines, which are the prescribed types via Segre’s theorem, hence we cannot
have 15 lines. To argue existence of the other solutions, we observe that the Fermat
cubic is an example of a symmetric real cubic surface with three lines, while the Clebsch
is a symmetric real cubic surface admitting all 27. □
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[DJK21] Frédéric Déglise, Fangzhou Jin, and Adeel A. Khan. “Fundamental classes
in motivic homotopy theory”. In: J. Eur. Math. Soc. (JEMS) 23.12 (2021),
pp. 3935–3993.

[EH16] David Eisenbud and Joe Harris. 3264 and all that—a second course in alge-
braic geometry. Cambridge University Press, Cambridge, 2016, pp. xiv+616.

[Elm+20] Elden Elmanto et al. “Framed transfers and motivic fundamental classes”.
In: Journal of Topology 13.2 (Mar. 2020), pp. 460–500.

[FK15] S. Finashin and V. Kharlamov. “Abundance of 3-planes on real projective
hypersurfaces”. In: Arnold Math. J. 1.2 (2015), pp. 171–199.

[Hau22] Markus Hausmann. “Global group laws and equivariant bordism rings”. In:
Ann. of Math. (2) 195.3 (2022), pp. 841–910.

[Hu03] Po Hu. “Duality for smooth families in equivariant stable homotopy theory”.
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