
THE CHOW–WITT RINGS OF THE CLASSIFYING SPACES OF
QUADRATICALLY ORIENTED BUNDLES

THOMAS BRAZELTON AND MATTHIAS WENDT

Abstract. In this paper we compute the Chow–Witt rings of the classifying space
BSLc

n of quadratically oriented vector bundles of rank n. We also discuss the
corresponding quadratically-oriented cobordism spectrum MSLc and show that it
is equivalent to MSL after inverting η.
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1. Introduction

Quadratically oriented vector bundles1, or vector bundles whose determinant admits
a square root, are natural objects of study due to their importance in quadratically
enriched enumerative geometry. The theory of motivic cohomology theories which
support quadratic orientations, so-called SLc-oriented theories, is well-studied in mo-
tivic homotopy theory [Ana20]. Quadratically oriented bundles are further related

Date: January 10, 2025.
1Also called metalinear vector bundles in [AHW18, §3.3.2].
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to relatively oriented vector bundles, which are well-studied objects in motivic ho-
motopy theory [BM00; Fas08; Mor12; AF16; BW23] as well as in real enumerative
geometry [OT14].

With these perspectives in mind, the classifying space for quadratically oriented
vector bundles BSLc

n is a natural object to investigate, one reason being that its
cohomology is the natural home for characteristic classes of quadratically oriented
bundles.

As usual when dealing with torsors and classifying spaces in an algebrao-geometric or
motivic setting, there are different topologies and thus potentially different classifying
spaces to consider. Fortunately, the group SLc

n is special in the sense of Serre, i.e.,
étale-locally trivial torsors are already Zariski-locally trivial, which means that the
usual classifying spaces are all equivalent, cf. Proposition 3.3 and Corollary 6.4:

BZarSL
c
n ≃ BNisSL

c
n ≃ BétSL

c
n

For this reason, we drop notational distinctions between these different versions and
denote the classifying space of SLc

n simply by BSLc
n.

As the classifying space of quadratically oriented vector bundles, the space BSLc
n

is an interpolation between BSLn and BGLn; the properties of being oriented and
quadratically oriented are indistinguishable over R (although the additional informa-
tion of the square-root line bundle is still visible over R). This indicates a similarity
between BSLc

n and BSLn which we make precise in the language of Ij-cohomology.
On the other hand, BSLc

n is not A1-simply connected, instead its fundamental group
agrees with that of BGLn, and we might expect some similarity between BSLc

n and
BGLn, which will be visible in untwisted Witt-sheaf cohomology.

In this paper we compute the Chow–Witt rings of BSLc
n. Our methods of computa-

tion are heavily inspired by [HW19] and [Wen24]. The main result is the following,
see Subsection 5.4.

Theorem 1.1. Let k be a field of characteristic ̸= 2.

(1) The Chow–Witt groups of BSLc
n are described by a pullback square

C̃H
j
(BSLc

n,L) ker(∂j,L)

Hj(BSLc
n, I

j(L)) Chj(BSLc
n),

⌟

ρ
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Here, the possible twists are L = O,OP∞(−1), the trivial bundle and the
square-root of the determinant line bundle2 providing the orientation of the
universal vector bundle. The lower left corner is cohomology of the funda-
mental ideal sheaf, in the upper right the boundary map is

∂L,j : CH
j(BSLc

n)
mod 2−−−→ Chj(BSLc

n)
βL−→ Hj+1(BSLc

n, I
j+1(L)).

(2) The Chow ring of BSLc
n is described in Corollary 4.5, the I-cohomology ring

is described in Theorem 5.17, and the relevant kernels of boundary maps ∂j,L
are described in Lemma 5.23 and Lemma 5.24.

(3) The Chow–Witt ring is generated by the following classes

• the even Pontryagin classes p2i ∈ C̃H
4i
(BSLc

n,O) for i = 1, . . . , ⌊n−1
2
⌋,

which in terms of their Witt-sheaf and Chow contributions can be written
as

p2i =

(
p2i, c

2
2i + 2

2i−1∑
j=max 0,4i−n

(−1)jcjc4i−j

)
,

• the Euler class en ∈ C̃H
n
(BSLc

n,O) for even n, which in the fiber product
picture can be described as en = (en, cn),
• the Bockstein classes

β̃L(cJ) = β̃L(c2j1 · · · c2jl) ∈ C̃H
1+

∑l
i=1 2ji

(BSLc
n,L)

for index sets J =
{
0 < j1 < · · · < jl ≤ ⌊n−1

2
⌋
}
which can be empty if L

is the nontrivial twist,

• the hyperbolic Chern classes HL(x) ∈ C̃H
q
(BSLc

n,L) for x ∈ CHq(BSLc
n).

(4) The pullback is compatible with multiplicative structures, i.e., the fiber prod-
uct description in (1) can be used to reduce computations of products of
classes in Chow–Witt theory to computations in I-cohomology and Chow
theory.

The above theorem provides all the information to do computations in Chow–Witt
rings of BSLc

n. We don’t give a full list of relations, because in particular the hyper-
bolic Chern classes make this a painful task while not producing many additional
insights. To prove the result, we first provide in Section 2 an introduction to many
of our key players, including Chow–Witt groups, Bockstein homomorphisms and
motivic Steenrod squares, as well as Künneth formulas for Chow and Witt-sheaf
cohomology. In Section 3 we construct and discuss the classifying space BSLc

n of
metalinear vector bundles. In Section 4 we compute various oriented cohomologies of

2For most of the paper, we will also denote the square-root line bundle by Θ, to evoke the link
to theta-characteristics.
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BSLc
n, namely its Chow groups, Witt sheaf cohomology, and motivic cohomology, and

discuss the action of Steenrod squares. In Section 5 we compute the Ij-cohomology
of BSLc

n, which allows us to prove our main theorem on the Chow–Witt groups of
BSLc

n.

In Section 6 we explore the real Betti realizations of BSLc
n and the associated Thom

spectrum MSLc, from which we can show the following result (cf. Corollary 6.4 and
Proposition 6.11).

Proposition 1.2. The natural morphism SLn → SLc
n induces equivalences

ReR (BSLn) [1/2] ≃ ReR (BSL
c
n) [1/2]

ReR (MSL) [1/2] ≃ ReR (MSLc) [1/2].

Note that ReR (BSLn) ≃ BSOn and ReR (MSL) ≃ MSO.

Finally, as a consequence of this and the cohomology computations in this paper,
we show in Section 7 that the Thom spectra MSL and MSLc become equivalent
after inverting η. This fact is implicit in much of the literature comparing SL and
SLc-orientations, but to the best of our knowledge hasn’t been noted explicitly. The
statement is proved as Corollary 7.4, and the proof techniques owe much to the work
of Bachmann and Hopkins [BH20].

Corollary 1.3. Let k be a field of characteristic ̸= 2. The natural morphism MSL→
MSLc induces an equivalence in the η-inverted motivic stable homotopy category
SH(k)[η−1]:

MSL[η−1]
≃−→ MSLc[η−1]

1.1. Acknowledgements. The first named author is supported by an NSF Post-
doctoral Fellowship (DMS-2303242).

2. Preliminaries

We provide a rough introduction to Chow–Witt groups, the cohomology of A1-
invariant sheaves, and various long exact sequences and computational techniques.

Convention 2.1. All cohomology groups Hn(X,F ) are Nisnevich cohomology of a
strictly A1-invariant sheaf F of abelian groups, unless otherwise specified. We will
use • to denote Z-indexed cohomology theories. Finally we will denote by F (L) the
twist of a sheaf by a line bundle.
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2.1. Chow–Witt groups. By Morel [Mor12], there is a well-known cartesian square
of strictly A1-invariant Nisnevich sheaves

(2.2)

KMW
n KM

n

In KM
n /2.

⌟

The fibers of the horizontal arrows agree by virtue of this square being cartesian, and
the same is true for the vertical arrows, inducing four distinct short exact sequences
of sheaves

(2.3)

In+1 →KMW
n → KM

n ,

In+1 →In → KM
n /2,

2KM
n →KMW

n → In,

2KM
n →KM

n → KM
n /2.

These provide long exact sequences on Nisnevich cohomology.

Example 2.4. The Chow–Witt groups C̃H
n
(X) are defined as Hn(X,KMW

n ). Since
the Chow groups are similarly computable as the cohomology of Milnor K-theory
(Bloch’s formula), we obtain long exact sequences of the form

· · · → Hn(X, In+1)→ C̃H
n
(X)→ CHn(X)

∂−→ Hn+1(X, In+1)→ · · ·

Remark 2.5. The oriented intersection product

Ia × Ib → Ia+b

turns H•(X, I•) into a graded ring, and ∂ can be thought of as a graded abelian
group homomorphism

∂ : CH•(X)→ H•+1(X, I•+1).

Moreover, ∂ is a derivation, hence ker(∂) is a subring of CH•(X).

Notation 2.6. We denote the Chow groups modulo two by Chn(X).

The pullback square Equation 2.2 induces a map from Chow–Witt theory to the
pullback of Ij-cohomology with the kernel of ∂ (a subgroup of the Chow groups),
and we may ask how far it is from being an isomorphism. The following result gives
us some settings where this is indeed an isomorphism.
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Proposition 2.7. [HW19, Prop. 2.11] For X a smooth F -scheme, the canonical ring
hom

C̃H
•
(X)→ H•(X, I•)×Ch•(X) ker(∂)

is a surjective ring homomorphism, which is injective if either

(1) CH•(X) has no non-trivial 2-torsion
(2) the map η : Hn(X, In+1)→ Hn(X, In) is injective.

2.2. Bockstein homomorphisms. Recall that the short exact sequence of abelian
groups

(2.8) 0→ Z 2−→ Z→ Z/2Z→ 0

induces a long exact sequence on singular cohomology

· · · → Hq(X;Z) ρ−→ Hq(X;Z/2Z) β−→ Hq+1(X;Z) 2−→ Hq+1(X;Z)→ · · ·
whose boundary map is the integral Bockstein morphism β. There is a similar bound-
ary map in the long exact sequence associated to the short exact sequence

0→ Z/2Z→ Z/4Z→ Z/2Z→ 0;

this boundary map is the first Steenrod square Sq1 : Hq(X;Z/2Z)→ Hq+1(X;Z/2Z).
By definition, the integral Bockstein map and the first Steenrod square Sq1 are related
by the commutative diagram

Hq(X;Z/2Z) Hq+1(X;Z)

Hq+1(X;Z/2Z).

β

Sq1
ρ

Since Sq1 isn’t a ring homomorphism, but only a derivation, it’s hard to describe
its image and kernel directly from its definition. The following result, initially due
to Brown, allows us to circumvent this difficulty under some assumptions about the
torsion. This works for any prime, but we state it for the prime 2 here.

Lemma 2.9. [Bro82, Lemma 2.2], [Hat02, Corollary 3E.4] Suppose H•(X;Z) has
no 4-torsion. Then ρ : H•(X;Z) → H•(X;Z/2Z) is injective on the 2-torsion, the
image of the 2-torsion under ρ is im(Sq1), and we have that ker(β) = ker(Sq1).

This is a key result in the inductive computation of the integral cohomology of BOn

and BSOn in [Bro82]. We obtain an analogous story in the motivic context. The fol-
lowing short exact sequence of sheaves is intended to be reminiscent of Equation 2.8:

0→ In+1 → In → KM
n /2→ 0,
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and it admits a twisted generalization for any line bundle L over a base space X:

0→ In+1(L)→ In(L)→ KM
n /2→ 0.

This induces a long exact sequence of cohomology groups, often called the Bär se-
quence:

· · · → Hq(X, In+1(L)) η−→ Hq(X, In(L)) ρL−→ Hq(X,KM
n /2)

βL−→ Hq+1(X, In+1(L))→ · · ·

Here the map η is multiplication by the Hopf element η ∈ KMW
−1 , corresponding

to multiplication by 2 in the topological setting above. When q = n, we get that
Hn(X,KM

n /2)
∼= Chn(X) is the mod 2 Chow group of X.

Remark 2.10. When the cohomological index on the Bär sequence starts to reach
the exponent on the fundamental ideal, the nature of the sequence changes. In
particular, since negative powers of the fundamental ideal are by convention the
Witt sheaf, the Gersten resolution for Ij-cohomology identifies the cohomology with
Witt-sheaf cohomology in the following sense:

Hn(X, Ij(L)) ∼−→ Hn(X,W(L)) for n > j.

Moreover, negative mod 2 Milnor K-theory vanishes, so again a Gersten resolution
argument easily shows that

Hn(X,KM
j /2)

∼= 0 for n > j.

These observations together give an exact sequence exhibiting Witt-sheaf cohomology
as a quotient of I-cohomology:

(2.11) Chj(X)
βL−→ Hj+1(X, Ij+1(L)) η−→ Hj+1(X,W(L))→ 0.

Notation 2.12. We remark a few notational conventions.

(1) When the line bundle L is trivial, we drop the subscript and simply write β
and ρ instead of βL and ρL.

(2) When the cohomological degree matches the grading on the Ij and Milnor K-
theory sheaves, we will often add a subscript on the Bockstein and reduction
homomorphisms:

βj : H
j(X,KM

j /2)→ Hj+1(X; Ij+1)

ρj : H
j(X, Ij)→ Hj(X,KM

j /2).

This will be important later, as we will need to keep track of two distinct
Bocksteins in different degrees for a computation. As the subscript on β is
often reserved for twists of line bundles, when we are both twisting and being
cautious about degrees we will unfortunately need to denote this by βL,j.
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Just as in the classical context, we can piece together the maps in the Bär sequence to
obtain a motivic Steenrod square. This identification is due to Totaro [Tot03, The-
orem 1.1], and the twisted version is due to Asok and Fasel [AF15, Theorem 3.4.1].

Proposition 2.13. The composite

Chn(X)
βL,n−−→ Hn+1(X, In+1(L))

ρL,n+1−−−−→ Chn+1(X)

is the motivic Steenrod square Sq2L (note that we may also denote this Sq2L,n to be
consistent with Notation 2.12).

The Steenrod square satisfies Sq2L◦Sq2L = 0 by the Bär sequence, and it is a derivation
satisfying the Jacobi identity by e.g. [HW19, Lemma 2.10]. If we’d like to character-
ize the image or kernel of Sq2 on the mod two Chow groups of a k-variety, we might
want an analogue of Lemma 2.9 in the motivic setting. Note that in Brown’s original
paper, he operated under the assumption that all torsion in the integral cohomol-
ogy be 2-torsion. This condition can be weakened to just require that there is no
4-torsion. We can similarly strengthen the assumption that all torsion is η-torsion in
H•(X, I∗) to the assumption that there is no η2 torsion, obtaining a strengthening
of [Wen24, Lemma 2.4].

Lemma 2.14. Let X be a smooth scheme over a field of characteristic ̸= 2. If
Hn(X, In) has no η2-torsion, then

ρn : H
n(X, In)→ Chn(X)

is injective on the image of βn−1, and in particular ker(Sq2n−1) = ker(βn−1) =
im(ρn−1).

Proof. Suppose we have an x ∈ Chn−1(X) so that ρn (βn−1(x)) = 0. We’d like to
argue that βn−1(x) = 0. Since ρn (βn−1(x)) = 0, this implies by the Bär sequence
that βn−1(x) = ηy for some y ∈ Hn(X, In+1). Since ηy ∈ im(βn−1), we have that
ηy is η-torsion, implying η2y = 0 (in Hn(X, In−1) ∼= Hn(X,W)). By assumption of
η2-torsion-freeness, we conclude that ηy and/or y are actually zero, in either case
this tells us βn−1(x) = 0, and we have the first conclusion.

Since ρn is injective on the image of βn−1, the kernels of βn−1 and Sq2n−1 = ρn ◦ βn−1

agree, and the Bär sequence identifies ker(βn−1) = im(ρn−1). □

As a particular example, the assumption of η2-torsionfreeness is satisfied ifH•(X, I•−1) ∼=
H•(X,W) is free as a W(k)-module, since in this case also Hn(X, In) has no η-power
torsion, and Lemma 2.14 applies.



CHOW–WITT RINGS FOR METALINEAR BUNDLES 9

2.3. Twists and orientations. Given a line bundle L → X, we can twist an A1-
invariant sheaf of abelian groups by the bundle in order to obtain twisted cohomology.
The different twists that can appear are captured by the Picard group Pic(X) of
the scheme, but this can change depending on the orientation data attached to the
cohomology. Oriented sheaves, for example Milnor K-theory, do not see twists.
Quadratically oriented theories, like Milnor–Witt K-theory, Witt theory, and Ij-
cohomology, are insensitive to twists by squares of line bundles, hence the possible
twists are indexed by Pic(X)/2.

Example 2.15. We have that Ch1(BGLn) = Z/2Z, so there are two twists given by
the trivial bundle OBGLn and the tautological bundle OBGLn(−1). As a particular
case when n = 1, we have two twists over P∞ as well. This compares well to the
real realization where there are two isomorphism classes of rank 1 local systems over
RP∞, or more generally BO(n).

2.4. The localization sequence. Suppose Z ↪−→ X is a closed immersion of smooth
k-schemes, and U = X−Z is the open complement. Let F be a strongly A1-invariant
sheaf of abelian groups on X, and let L → X be a line bundle. Then we obtain a
long exact sequence on cohomology with supports:

(2.16) · · · → Hj
Z(X,F (L)) i∗−→ Hj(X,F (L))→ Hj(U,F (L)) ∂−→ · · ·

In case the sheaf F is part of a homotopy module M•, then purity allows to identify
the cohomology with supports as cohomology of Z:

Hj
Z(X,Mq(L)) ∼= Hj−d(Z,Mq−d(L ⊗ det−1NZ/X))

Here NZ/X denotes the normal bundle of the immersion Z ↪−→ X, and d denotes the
codimension of the immersion. Cohomology with supports can be interpreted as the
cohomology of the Thom space Th(NZ/X), and essentially the twists are a different
way to talk about cohomology of Thom spaces of line bundles.

Example 2.17. When F = KM
j , this specializes to the well-known localization

sequence on Chow groups

CHi−d(Z)→ CHi(X)→ CHi(U)→ 0,

where d = codim(Z,X). Note that there is no twist in the Chow group of Z because
Chow groups are part of a GL-orientable cohomology theory.

Example 2.18. Let i : Z → X be the inclusion of the zero locus of a vector bundle
over X. Assume that M• is an SLc-orientable homotopy module, so that H•(−,M•)
supports a theory of Euler classes. Then i∗ can be interpreted as multiplication with
the Euler class of the bundle. This is a classical fact for Chow groups, e.g. [Ful98,
Example 3.3.2].
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2.5. Künneth formulas. Given a group schemeG, one wants to construct a motivic
classifying space BG. Analogous to classical topology, we’d like to define this to be
the quotient EG/G of a contractible space with a free G-action. In the algebraic
setting, there are different topologies (Zariski, Nisnevich and étale, to mention the
most relevant ones for our setting), and consequently different possible such quotients
(in Zariski, Nisnevich or étale sheaves).

While the Zariski and Nisnevich classifying spaces typically agree, the étale topology
is typically different. For the Zariski and Nisnevich classifying spaces, one can work
with the simplicial sheaf bar construction model, while the classifying spaces for
the étale topology have Ind-scheme models and can be approximated by smooth
schemes. In particular, Totaro [Tot99] has used the latter approach in his definition
and computations of Chow groups of classifying spaces. His work shows that in order
to do cohomology computations for BétG (for cohomology theories in the heart of the
homotopy t-structure), it suffices to work with a finite-dimensional model for BétG,
with the appropriate dimension depending on the cohomological degrees of interest.

Explicitly, let V be a G-representation, and suppose that the locus Z ⊆ V on which
G does not act freely is of sufficiently high codimension. Then the quotient space
(V − Z)/G provides a model for BG up to a certain dimension, roughly equal to
the codimension of Z. The following proposition is well-known, and states that nice
approximations always exist, cf. [Tot99, Remark 1.4]:

Proposition 2.19. If G is an affine finite type algebraic group scheme over a field
k, then there always exist G-representations V whose nonfree locus S ⊆ V is of
arbitrarily high codimension. In particular such a G admits a well-defined BétG in
the homotopy category of motivic spaces H(k).

Totaro’s definition is originally stated for Chow groups of classifying spaces, but it
holds in a more general context, which we now outline. Recall that a homotopy
module M• is a strictly A1-invariant Z-graded Nisnevich sheaf of abelian groups
equipped with a desuspension isomorphism Mn

∼−→ (Mn+1)−1 for every n. It is a
classical fact that π0E is a homotopy module for any E ∈ SH(k), and in fact π0

induces an equivalence between the heart of the homotopy t-structure on SH(k) with
the category of homotopy modules, with the inverse given by Eilenberg–Mac Lane
spectra for homotopy modules.

The following now allows to compute (or, depending on ones point of view, define) the
cohomology of classifying spaces in terms of smooth approximations of the classifying
space, and in the generality below was established by di Lorenzo and Mantovani in
[DM23, Proposition 2.2.10]:
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Proposition 2.20. If Z ⊆ V has codimension i, then we have that

H• (BG,M) ∼= H• ((V − Z)/G,M) ,

for • ≤ i.

Totaro is able to leverage this to prove a Künneth formula for the Chow groups of
classifying spaces:

Theorem 2.21. [Tot99, §6] Working over a field, assume that G1 and G2 are (fi-
nite type) algebraic groups such that the classifying space BG1 has enough linear
approximations (in the sense of [Tot16]). Then there is a Künneth isomorphism

CH•(BG1 × BG2) ∼= CH•(BG1)⊗Z CH
•(BG2).

We should comment a bit about what goes into this proof and into the assumptions.
If X is a cellular variety, then its Chow groups are free abelian indexed over the
cells. In particular, if we look at the Chow group localization sequence arising from
the inclusion of a cell and its complement, we obtain a short exact sequence of free
abelian groups. Hence tensoring with −⊗ZCH

•(Y ) for any Y will still be exact. This
allows us to prove a Künneth theorem if one of the varieties is cellular, by inducting
on the codimension of the cells in its stratification [Tot99, §6].

This hinges on an inductive idea — if Z and X \Z satisfy a Künneth theorem, then
via localization X will as well. Thus we might expect that a large class of varieties
which satisfy a Künneth theorem might be one which includes affine space, and is
closed under some restricted two-out-of-three property. Indeed this is roughly the
definition of a linear scheme, a definition due to Janssen [Jan94] and under slightly
different assumptions Totaro [Tot16]. When BG1 admits enough linear models, these
linear models can be used to provide a Künneth theorem in the degrees where they are
effective at approximating BG1. More generally, one also has a Künneth isomorphism
for (higher) Chow groups coming from cellularity of varieties, as in [Kri13, §6].

Remark 2.22. In constructing a model for BG, we want a highly connected variety
on which G acts freely, as finite-dimensional approximation modeling BG = EG/G.
It is not strictly necessary to start with a G-representation V , but representations
are an (easily accessible and well-understood) source of contractible varieties with
G-action. The complement V \ S is then highly connected whenever S has high
codimension, and hence provides a good model for EG.

As an example, we claim that finite Grassmannians provide linear models for infinite
ones. Indeed, we could take a Stiefel variety GLn+k/GLk, on which GLn acts freely.
This Stiefel variety is highly connected, and after quotienting by the GLn-action, we
obtain a Jouanalou device over the Grassmannian, so it is A1-equivalent to Gr(n, k).
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This confirms what we might suspect, that Gr(n, k) is a model for BGLn. Moreover,
the Schubert cell stratification of the Grassmannian shows that it is linear (in either
the sense of Jannsen or Totaro).

Using similar techniques, Hudson, Matszangosz and Wendt obtained a Künneth the-
orem for Witt-sheaf cohomology groups, cf. [HMW24, Proposition 4.7]. Note that the
cellularity required for this Künneth formula is stronger than the notions of Jannsen
and Totaro, and actually requires a stratification by affine spaces.

Theorem 2.23. Let X1, X2 ∈ Smk for k perfect of characteristic ̸= 2, let Li → Xi

be line bundles, suppose that X1 is cellular, and suppose that all Hq(Xi,W(Li)) are
free W(k)-modules for i = 1, 2. Then we have a Künneth isomorphism given by the
exterior product map

H• (X1 ×X2,W (L1 ⊠ L2)) ∼= H• (X1,W(L1))⊗W(k) H
• (X2,W(L2)) .

We can leverage this, together with Totaro’s work, to prove a Künneth isomorphism
for infinite Grassmannians.

Example 2.24. For anym,n ≥ 1, and any line bundles L → BGLm and L′ → BGLn,
we have a Künneth isomorphism

H• (BGLm × BGLn,W (L⊠ L′)) ∼= H• (BGLm,W(L))⊗W(k) H
• (BGLn,W(L′)) .

Proof. Suppose we want to restrict to proving this in the range • ≤ s, and then we
want to let s tend to infinity. In such a finite range, since the Witt sheaf extends to
a homotopy module (W)n, we can reduce to geometric models of these classifying
spaces, which can be chosen to be finite Grassmannians. The Witt-sheaf cohomol-
ogy groups of finite Grassmannians are free W(k)-modules by the computations in
[Wen24], and the finite Grassmannians are cellular, so we can apply the Künneth
isomorphism for Witt cohomology to conclude. □

3. The classifying space of quadratically oriented bundles

In this section we construct the classifying space BSLc
n for quadratically oriented

rank n bundles, and provide a model for it as an ind-variety.

3.1. Quadratically oriented vector bundles. A quadratic orientation (called an
orientation in [Mor12, Definition 4.3]) on a (topological or algebraic) vector bundle
E → X is a choice of isomorphism ρ : detE ≃ Θ⊗2, where Θ is a line bundle on
X. Phrased differently, a quadratic orientation is a choice of square root of the
determinant bundle.
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We remark that quadratically oriented bundles can have different quadratic orien-
tations, corresponding to different choices of square root of the determinant bundle.
The different choices are a torsor under the group 2Pic(X) of 2-torsion line bundles
on X, which parametrizes the square roots of the trivial bundle.

Remark 3.1.

(1) An oriented bundle, i.e., one whose determinant is a trivial line bundle, is
canonically quadratically oriented.

(2) A rank n vector bundle E → X over a smooth n-dimensional base is relatively
oriented if Hom(detTX, detE) is quadratically oriented. If n is odd this
is the same as asking Hom(TX,E) to be quadratically oriented. Relative
orientations play a key role both in real enumerative geometry, cf. [OT14], as
well as in A1-enumerative geometry, cf. [BW23].

(3) Note that a relatively oriented bundle need not be quadratically oriented, for
example the tangent bundle of any smooth variety admits a canonical relative
orientation, but the tangent bundle on P2n, for instance, is not quadratically
oriented.

(4) Similarly, there exist quadratically oriented bundles which are not relatively
oriented, for instance OP2(2)⊕2.

Definition 3.2. [Ana20, Remark 2.8] We define the metalinear group3 SLc
n to be the

kernel of the homomorphism

GLn ×Gm → Gm

(g, t) 7→ t−2 det(g).

In particular SLc
n-torsors on X are quadratically oriented vector bundles, in the sense

described above.

3.2. Metalinear Hilbert 90. The following proposition establishes that the group
scheme SLc

n is special, a result which we will use to discuss its classifying space. We
don’t know of an explicit result in the literature stating that SLc

n is special, but it is
likely clear to anyone who ever considered the question. For example, Ananyevskiy
explicitly only considers Zariski-locally trivial SLc

n-torsors in [Ana20].

Proposition 3.3. The group SLc
n is special in the sense of Serre, i.e., the natural

change-of-topology map is a bijection:

H1
Zar(X, SLc

n)
∼=−→ H1

ét(X, SLc
n)

3This terminology is taken from [AHW18, §3.3.2].
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Proof. We use the defining short exact sequence

0→ SLc
n → GLn ×Gm

det×(−)−2

−−−−−−→ Gm → 0,

of algebraic groups, which gives rise to an exact sequence of non-abelian étale coho-
mologies

H0(X,GLn ×Gm)
det×(−)−2

−−−−−−→ H0(X,Gm)→ H1
ét(X, SLc

n)→ H1
ét(X,GLn ×Gm)

Note that the first cohomologies here are only pointed sets, and exactness at H1
ét(X, SLc

n)
only means that the image of the first map det×(−)−2 equals the preimage of the
base-point in H1

ét(X,GLn×Gm). It suffices to show the vanishing of H1
ét(X, SLc

n) for
X = Spec(R) the spectrum of a local ring R. In this case, H1

ét(X,GLn ×Gm) = {∗}
since GLn × Gm is well-known to be special (Hilbert 90). It remains to see that
det×(−)−2 is surjective, but that is easy to see since any unit in R can be realized
as determinant of a matrix. □

Remark 3.4. Alternatively, we could use the Huruguen–Merkurjev theorem on clas-
sification of reductive special groups, cf. [Mer22].

Corollary 3.5. We have that the following hold:

(1) The natural change-of-topology maps induce equivalences

BZarSL
c
n ≃ BNisSL

c
n ≃ BétSL

c
n,

hence we can unambiguously write BSLc
n for any of these.

(2) The classifying space BSLc
n fits into a pullback diagram of motivic spaces

BSLc
n BGm

BGLn BGm.

⌟
(−)2

Bdet

Proof. The first statement is an immediate consequence of the fact that SLc
n is special

as in Proposition 3.3. For the second statement, we use that the classifying space
functor converts fiber sequences of group schemes to A1-fiber sequences of motivic
spaces (cf. the discussions around homogeneous space fiber sequences in [AHW18])
and is product-preserving. □

3.3. The classifying space BSLc
n as an ind-variety. The motivic space BGLn,

while not a variety, can be naturally modeled as an ind-variety, or formal colimit of
varieties colimm→∞Gr(n,m) [MV99, Proposition 4.3.7]. Similarly, BSLn can be mod-

eled as a colimit of the (non-projective) oriented Grassmannians colimm→∞G̃r(n,m).
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With this in mind, one may ask whether an analogous statement is true for the clas-
sifying space BSLc

n, and we will discuss this in what follows. To do this, we will in
particular want to describe scheme models of the maps appearing in the pullback
description of BSLc

n in Corollary 3.5.

We begin with the observation that the determinant map BGLn → P∞ admits a very
natural model in the world of varieties.

Proposition 3.6. The determinant map BGLn → P∞ is the colimit of the Plücker

embeddings Gr(n,m)→ P(
m+n

n )−1 as m tends to ∞.

Proof. By construction, the hyperplane class O(1) on projective space pulls back to
the top wedge power ∧rS∗ of the dual tautological bundle over the Grassmannian.
Taking duals, we see that the tautological bundle O(−1) pulls back along the Plücker
embedding to the determinant bundle ∧rS.
Note that the Plücker embeddings are compatible with the stabilization maps on the
Grassmannian side. For given m, let V be an (m + n)-dimensional k-vector space,
and the Plücker embedding is given by

Gr(n,m)→ P(
m+n

n )−1

span{v1, . . . , vn} 7→ v1 ∧ · · · ∧ vn.

On the Grassmannian side, the stabilization Gr(n,m)→ Gr(n,m+ 1) is induced by
the embedding V = V ⊕ {0} ↪→ V ⊕ k, with last coordinate zero. This embedding
induces an embedding of projective spaces

P
(∧n

V
)
↪→ P

(∧n
(V ⊕ k)

)
whose image consists of n-fold wedges of basis vectors whose last coordinate is zero,
and which is a linear subspace of codimension dimk

∧n−1 V =
(
m+n
n−1

)
. Consequently,

we get a commutative diagram

Gr(n,m) Gr(n,m+ 1)

P (
∧n V ) P (

∧n(V ⊕ k)) ,

Pl Pl

and the colimit of the vertical maps as m→∞ realizes the determinant map. □

Unfortunately, the squaring map BGm → BGm is not representable (in the sense
usually used for stacks): for a morphism X → BGm, the source of the base-changed
squaring map BGm×BGmX → X isn’t a scheme. Another way to phrase the problem
is that the homotopy fiber of the squaring map is Bétµ2, which is not a scheme.
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Nevertheless, we can give an explicit description of BSLc
n as an ind-smooth ind-

scheme. This is based on viewing BSLc
n as the complement of the zero section of a

line bundle over BGLn × P∞. In Corollary 3.5, we saw that BSLc
n can be written as

fiber product; this is equivalent to writing BSLc
n as homotopy fiber of the morphism

B(det×(−)−2) : BGLn × P∞ → P∞

which for now we’ll just call f for simplicity. We may then view BSLc
n as the total

space of the Gm-torsor over BGLn×P∞ classified by f . Explicitly, there is a pullback
square of the form

BSLc
n EGm = A∞ ∖ {0}

BGLn × P∞ BGm = P∞,

⌟

f

where the projection A∞ ∖ {0} → P∞ quotients out by the diagonal action of Gm.
Thinking about each fiber as living inside an affine line, we can think about this as
the complement of the zero section of the tautological line bundle over P∞. That is,
there is a pullback square

f ∗O(−1) O(−1)

BGLn × P∞ BGm

⌟

f

such that the pullback square describing BSLc
n is obtained by taking complements of

zero sections. From this we can conclude that BSLc
n is the complement of the image

of the zero section z ∈ Γ(BGLn×P∞, f ∗O(−1)). Note that the line bundle f ∗O(−1)
classified by f could alternatively be written as det⊠O(2).
With this, we can now describe BSLc

n as an ind-scheme. We can first write BGLn×P∞

as colimit of the smooth projective schemes Gr(n,m) × PN . Over each of these,
we have a bundle det⊠O(2), obtained by pulling back the corresponding bundle
det⊠O(2) along the inclusion Gr(n,m) × PN → BGLn × P∞. If we denote the
complement of the zero section of det⊠O(2) over Gr(n,m) × PN by Grc(n,m;N),
we get the following

Corollary 3.7. We have that

BSLc
n ≃ colimm,N→∞Grc(n,m;N).

Proof. Colimits of motivic spaces are universal, meaning they commute with pull-
backs. Hence we can model BSLc

n as a colimit of the Grc(n,m;N)’s. □
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Remark 3.8. We will call the colimit

Grc(n,∞) := colimm,N→∞Grc(n,m;N)

the infinite metalinear Grassmannian. We could also call the finite-dimensional
schemes Grc(n,m;N) metalinear Grassmannians, but they don’t quite have the look-
and-feel of Grassmannians, due to the additional projective space appearing in the
definition. It seems that it is impossible to get rid of this additional factor, which
is related to the squaring map BGm → BGm not being representable, as discussed
above. In particular, if we want to define metalinear Grassmannians as fiber product
of the Plücker embedding Gr(n,m)→ PN (as a model of the determinant map) and
a model X → PN of the squaring map, this seems to always introduce the additional
PN -factor one way or another.

The above description of BSLc
n as complement of the zero section of the line bundle

det⊠O(2) over BGLn × P∞ will be important for a number of arguments in the
remainder of the paper. It provides a localization sequence associated to

im(z) /↪→ f ∗O(−1) ◦←↩ f ∗O(−1)∖ im(z),

where z is the zero section, whose image is BGLn × P∞. Similarly we may contract
the fibers of the line bundle to see that the total space is also f ∗O(−1) ≃ BGLn×P∞.
The complement is equivalent to f ∗O(−1)∖ im(z) ≃ BSLc

n as we have argued above.
We will use the associated localization sequence to deduce information about various
cohomology theories of BSLc

n.

3.4. Cellularity and dualizability. The suspension spectra of Grassmannians are
well-known to be cellular and strongly dualizable. This fact is important in a number
of places, for example in the computation of homology of the Thom spectrum MGL.
An analogous result for oriented Grassmannians was proved in [BH20, Lemma 4.15].
We observe that the same argument can also be used to show that the metalinear
Grassmannians enjoy the same properties:

Proposition 3.9. The suspension spectrum Σ∞
+Grc(n,m;N) of the metalinear Grass-

mannian of Remark 3.8 is cellular and strongly dualizable.

Proof. The proof follows the arguments in [BH20, Lemma 4.15].

To show strong dualizability, we use the description of Grc(n,m;N) as complement
of the zero section of f ∗OP∞(−1) ∼= det⊠O(2) on Gr(n,m)× PN . We consequently
get a cofiber sequence (of suspension spectra):

Grc(n,m;N)→ Gr(n,m)× PN → Th(det⊠O(2))
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The strong dualizability of Grc(n,m;N) then follows from the well-known strong
dualizability of Grassmannians Gr(n,m), projective spaces PN and Thom spaces
over these.

To show cellularity, we can use that Gr(n,m)× PN has a well-known cell structure:
it is a projective homogeneous variety for GLn+m ×GLN , and the cells are obtained
as orbits of a Borel subgroup. This can be turned into an unstable cell structure
as described in [Wen10, Section 3.3]. Realizing Grc(n,m;N) as complement of the
zero-section of a line bundle over Gr(n,m) × PN , we can lift the cell structure to
Grc(n,m;N): over each cell of Gr(n,m)×PN , the line bundle trivializes and therefore
we have a stratification of Grc(n,m;N) by cells of the form Ad × Gm (where the
dimension d of the affine space will depend on the cell). This can be turned into
an unstable (or stable) cell structure, where cell attachments happen via cofiber
sequences X \ Xi → X \ Xi−1 → Th(Ni) with Th(Ni) a wedge of spheres S2n−1,n.
Inductively, this would also be an alternative way of seeing the strong dualizability.

□

Remark 3.10. At this point it is not quite clear if we can write the metalinear
Grassmannians as homogeneous spaces under SLc

n. If possible, the cellularity could
also be deduced from the Bruhat decomposition for reductive groups, as in [BH20,
Lemma 4.15].

4. Oriented cohomologies of BSLc
n

In this section we compute the cohomology of BSLc
n in various GL-oriented cohomol-

ogy theories, namely Chow groups and motivic cohomology. We further investigate
the action of Steenrod squares on the mod two Chow groups of BSLc

n, which will be
needed in Section 5 to compute the Chow–Witt groups of BSLc

n.

4.1. Chow rings and possible twists on BSLc
n. In this section we compute the

Chow rings for BSLc
n. These will be needed both as piece of the Chow–Witt compu-

tation as well as to understand the possible twists in Pic(BSLc
n)/2 that may appear

in the Chow–Witt groups of BSLc
n.

Via the discussion in Subsection 3.3, we have a localization sequence associated to

(4.1) BGLn × P∞ /↪→ BGLn × P∞ ◦←↩ BSLc
n.

Proposition 4.2. For any i, there is a four-term localization sequence

CHi(BGLn × P∞)
−·c1(f∗O(−1))−−−−−−−−→ CHi+1(BGLn × P∞)→ CHi+1(BSLc

n)→ 0,

where the first map is multiplication by c1 (f
∗O(−1)) by Example 2.18.
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We’d like to leverage this to compute the Chow groups of BSLc
n. First note that

we can apply the Künneth formula for Chow groups (Theorem 2.21) to obtain the
following computation.

Corollary 4.3. We have that

CH• (BGLn × P∞) ∼= Z[c1, . . . , cn, θ]
with the class θ = c1(OP∞(−1)) of degree |θ| = 1, and |ci| = i.

We see then that CH•(BSLc
n) is the cokernel of multiplication by the first Chern class

of f ∗O(−1), which we compute as follows:

Proposition 4.4. The first Chern class of the pullback of O(−1) is
c1 (f

∗ (O(−1))) = c1 − 2θ.

Proof. We see that f ∗O(−1) will be the external tensor product of the pullback of
bundles to each of BGLn and P∞. This becomes the tensor product of line bundles,
which will translate to addition on CH1. For the determinant map

Bdet : BGLn → P∞,

the pullback of c1 will be c1, since c1(detE) = c1(E) for any vector bundle E. The
squaring map on P∞ will pull back O(−1) to O(−2), and then inverting it will send it
to O(2). Since O(−1) corresponds to θ, we have that O(2) corresponds to −2θ. □

Corollary 4.5. We have that

CH• (BSLc
n) =

Z[c1, . . . , cn, θ]
⟨c1 − 2θ⟩

Ch•(BSLc
n) = Z[c2, . . . , cn, θ]

From this discussion we see that

CH1 (BGLn × P∞) ∼= Z× Z,
where the copies of Z are generated by θ and c1. As possible twists are determined
by the mod 2 Picard group, we can mod out above to get

Ch1 (BGLn × P∞) ∼= Z/2Z× Z/2Z,
where one factor comes from the determinant of the universal bundle on BGLn and
the other factor comes from the determinant of the universal bundle on P∞. We can
write the four possible twists as

OBGLn×P∞ , OBGLn ⊠OP∞(−1),
OBGLn(−1)⊠OP∞ , OBGLn(−1)⊠OP∞(−1).
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Since the map

CH1 (BGLn × P∞)→ CH1 (BSLc
n)

is the quotient by c1−2θ, we get two possible twists for BSLc
n, namely OP∞(−1) and

the trivial one.

To connect this to the picture of quadratically oriented vector bundles, note that
the bundle we denoted by OP∞(−1) above is the bundle Θ providing the qua-
dratic orientation. Restricting f ∗O(−1) to the complement of the zero section forces
OBGLn(−1) ⊠ OP∞ to be isomorphic to OBGLn ⊠ OP∞(−2), i.e., Θ2 ∼= det on BSLc

n

which on the level of the Picard group is encoded in c1 − 2θ.

4.2. The Steenrod square action. In this section we characterize how Sq2 acts
on the mod 2 Chow groups of BSLc

n. This helps us to understand the image of the
Bockstein homomorphism, which will in turn allow us to compute the Ij-cohomology
of BSLc

n as well as its Chow–Witt theory.

We note that the maps BSLn → BSLc
n → BGLn induce pullback maps on Ch•(−)

which are compatible with the Steenrod algebra structure — that is, the pullbacks
are morphisms of modules over the Steenrod algebra. In particular, we have a com-
mutative diagram

Chj(BGLn) Chj(BSLc
n) Chj(BSLn)

Chj+1(BGLn) Chj+1(BSLc
n) Chj+1(BSLn).

Sq2 Sq2 Sq2

We can use this to understand how Sq2 acts on Ch•(BSLc
n). Via [Fas13, Remark 10.5]

or [HW19, p. 947], we have that

Sq2(c2i) = c2i+1

in Ch•(BSLn). From [Wen24, Proposition 3.12] we have that Sq2 acts on Ch•(BGLn)
by

Sq2(cj) = c1cj + (j − 1)cj+1.

Hence, via the commutative diagram above, we observe that the action of Sq2 on
Ch•(BSLc

n) kills Chern classes of odd degree, and increases the indices on Chern
classes of even degree. We also see that Sq2(cn) = 0 by consideration of degree.

It then suffices to understand how Sq2 acts on θ. Via the map BSLc
n → P∞, we get

a ring homomorphism

Z/2[t] ∼= Ch•(P∞)→ Ch•(BSLc
n)
∼= Z/2[c2, . . . , cn, θ],
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compatible with the Steenrod algebra action, and sending t 7→ θ. Since P∞ = BGL1,
we understand the action of Sq2, namely it sends Sq2(t) = t2 in Ch•(P∞), and so the
same happens to θ in Ch•(BSLc

n) as well.

Since Ch1(BSLc
n)
∼= Z/2Z, there is also a twisted Steenrod square associated to the

non-trivial line bundle class θ = [OP∞(−1)]. As usual, it differs from the untwisted
Steenrod square by multiplication with θ:

Sq2Θ(x) = θ · x+ Sq2(x).

As on P∞, the twisted Steenrod square maps 1 ∈ Ch0 to the class θ of the twisting
line bundle, and annihilates θ, cf. e.g. [Wen24, Section 3.6].

We summarize these results in the following.

Proposition 4.6. The action of

Sq2 : Ch•(BSLc
n)→ Ch•+1(BSLc

n)

is given by sending θ 7→ θ2, and

ci 7→


ci+1 2 | i, i < n

0 2 ∤ i, i < n

0 i = n.

The twisted Steenrod square is given by

Sq2Θ(x) = θ · x+ Sq2(x).

4.3. Motivic cohomology. As an aside, we explain a variant of the Chow-ring
computation in Corollary 4.5 for motivic cohomology.

Proposition 4.7. The motivic cohomology of BSLc
n is described as follows:

H•
mot(BSL

c
n,Z(•)) ∼= H•

mot(k,Z(•))[c1, . . . , cn, θ]/(c1 − 2θ)

The bidegrees of the generators are |ci| = (2i, i) and |θ| = (2, 1).

Proof. As in the arguments for Corollary 4.5, we use the description of BSLc
n as

complement of the zero section of a line bundle over BGLn×P∞, and the associated
localization sequence in motivic cohomology:

· · · → Hp(BGLn × P∞,Z(q)) c1(f∗O(−1))−−−−−−−→Hp+2(BGLn × P∞,Z(q + 1))→

→Hp+2(BSLc
n,Z(q + 1))

∂−→ · · ·
Using the projective bundle formula, we find

H•(BGLn × P∞,Z(•)) ∼= H•
mot(k,Z(•))[c1, . . . , cn, θ].
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As before, the first Chern class of f ∗O(−1) is c1(f ∗O(−1)) = c1 − 2θ, in particular,
multiplication with this class is injective on motivic cohomology of BGLn × P∞.
Consequently, the localization sequence splits up into short exact sequences showing
that H•

mot(BSL
c
n,Z(•)) is the cokernel of c1−2θ on H•

mot(BGLn,Z(•)) as claimed. □

5. Chow–Witt groups of BSLc
n

In this section we compute the Ij-cohomology of BSLc
n. Together with the results of

Section 4, this allows us to compute the Chow–Witt groups of BSLc
n.

5.1. The Witt-sheaf cohomology of BSLc
n. As a first step, we want to compute

Witt-sheaf cohomology, again using the pullback square description of BSLc
n.

Proposition 5.1. [Wen24, Proposition 4.5] The Witt-sheaf cohomology of BGLn is
given as a W(k)-algebra by

H•(BGLn,W) =

{
W(k)[p2, . . . , pn−1] n ≡ 1 (mod 2)

W(k)[p2, . . . , pn−2, e
2
n] n ≡ 0 (mod 2)

H•(BGLn,W(OBGLn(−1))) =

{
0 n ≡ 1 (mod 2)

H•(BGLn,W)[en] n ≡ 0 (mod 2)

Here the generators are Pontryagin classes p2i of degree 4i and a potential Euler class
en in degree n. Concisely we can phrase this as

H•(BGLn,W ⊕W(−1)) ∼=

{
W(k)[p2, p4, . . . , pn−2, en] n even

W(k)[p2, p4, . . . , pn−1] n odd.

As an example when n = 1, the Witt-sheaf cohomology groups of BGm = P∞ are
given by

H•(P∞,W) = W(k)

H•(P∞,W(OP∞(−1))) = 0,

i.e., the Witt-sheaf cohomology of P∞ is concentrated in degree 0.

Via Example 2.24 we obtain the following computation:
(5.2)

H• (BGLn × P∞,W) ∼= H•(BGLn,W)

H• (BGLn × P∞,W(OBGLn(−1))) ∼= H• (BGLn,W(OBGLn(−1)))
H• (BGLn × P∞,W(OP∞(−1))) ∼= 0

H• (BGLn × P∞,W(OP∞(−1)⊠OBGLn(−1))) ∼= 0.
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We combine this computation and the localization sequence to computeH•(BSLc
n,W),

and its twisted versions. Note that for

f := det(−)⊗ (−)−2 : BGLn × P∞ → P∞,

we have that

f ∗OP∞(−1) = OBGLn(−1)⊠OP∞(2).

On our localization sequence, we are cupping with the Euler class of the normal bun-
dle of the zero section of f ∗OP∞(−1), which is just the bundle itself. However this
bundle is of odd rank, hence its Euler class is hyperbolic, and vanishes in Witt coho-
mology by [Lev20] or the computation of Witt-sheaf cohomology in Proposition 5.1
above. Hence for any line bundle L → BGLn×P∞, the localization sequence in Witt
sheaf cohomology splits into short exact sequences of the form

0→ Hj (BGLn × P∞,W(L))→ Hj
(
BSLc

n,W(L|BSLc
n
)
)

→ Hj (BGLn × P∞,W(L ⊗ f ∗O(−1)))→ 0.

The last term is free as a W (k)-module by Equation 5.2, hence these sequences split.

Proposition 5.3. For any line bundle L → BGLn×P∞, we obtain an isomorphism
of W(k)-modules, where on the left-hand side we notationally simplify L|BSLc

n
to L:

Hj (BSLc
n,W (L)) ∼= Hj (BGLn × P∞,W(L))⊕Hj (BGLn × P∞,W(L ⊗ f ∗O(−1))) .

Now in order to compute the Witt sheaf cohomology of BSLc
n, it suffices to consider

the two line bundles we care about from Pic(BSLc
n)/2, namely the trivial one and

OP∞(−1) = Θ.

Proposition 5.4. As W(k)-modules, the Witt sheaf cohomology of BSLc
n is given

by

H• (BSLc
n,W) ∼= H• (BGLn,W ⊕W(−1))

H• (BSLc
n,W(OP∞(−1))) ∼= 0.

Proof. For the untwisted cohomology, using Proposition 5.3 we get

H• (BSLc
n,W) ∼= H•(BGLn × P∞,W)⊕H• (BGLn × P∞,W(OBGLn(−1)⊠OP∞(2))

∼= H•(BGLn × P∞,W)⊕H• (BGLn × P∞,W(OBGLn(−1))
∼= H•(BGLn,W)⊕H• (BGLn,W(OBGLn(−1))) .

For the twisted computation, again by Proposition 5.3 we get

H• (BSLc
n,W(OP∞(−1)))

∼= H•(BGLn × P∞,W(OP∞(−1)))⊕H•(BGLn × P∞,W(OBGLn(−1)⊠OP∞(−1))),
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which vanishes by Equation 5.2. □

We can further describe the ring structure on H• (BSLc
n,W). Note that pullback

along the map BSLc
n → BGLn induces a ring homomorphism

(5.5) H• (BGLn,W)→ H•(BSLc
n,W),

exhibiting H•(BSLc
n,W) as an algebra over H• (BGLn,W). From this it is clear that

the isomorphism in Proposition 5.3 is an isomorphism of H•(BGLn,W)-modules. By
Proposition 5.1, the twisted Witt-sheaf cohomology H•(BGLn,W(−1)) is a free rank
1 module over the untwisted cohomology ring H•(BGLn,W), generated by the Euler
class. Thus, as an H•(BGLn,W)-module, H• (BSLc

n,W) is a free module of rank
two, generated by 1 and the Euler class en. In order to describe the ring structure
it suffices to understand what happens when the Euler class on H• (BSLc

n,W) is
squared. Since Equation 5.5 is a ring homomorphism, this can be determined by
squaring the Euler class on the cohomology of BGLn with all twists considered. This
allows us to conclude the following:

Proposition 5.6. There is a ring isomorphism

H• (BSLc
n,W) ∼= H•(BGLn,W ⊕W(−1)).

We remark that this is precisely equal to the untwisted Witt sheaf cohomology of
BSLn by [Wen24]. Indeed there is a natural map BSLn → BSLc

n arising from the
pullback diagram in Corollary 3.5, and it is straightforward to see that this exhibits
a ring isomorphism

(5.7) H•(BSLc
n,W)

∼−→ H•(BSLn,W).

Here we can computeH•(BSLn,W) using, for example, work of Ananyevskiy [Ana15,
Theorem 10].

5.2. The Ij-cohomology of BSLc
n. In this section, we will describe a presentation

for I-cohomology of BSLc
n as W(k)-algebra. We briefly give an overview of the form

our results take. Essentially, I-cohomology is a direct sum of Witt-sheaf cohomology
and the image of Bockstein maps

βL : Ch
q(BSLc

n)→ Hq+1(BSLc
n, I

q+1(L)).

The multiplication of Bockstein classes can be determined by reduction to Ch•(BSLc
n),

and the formulas – up to some subtleties involving the class θ – largely agree with
the ones for Bockstein classes on BGLn, cf. [Čad99; Wen24]. Note in particular
that, while we have seen in Subsection 5.1 that the twisted Witt-sheaf cohomology
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of BSLc
n is trivial, there are nontrivial twisted Bockstein classes. The most funda-

mental of these is βΘ(1), which is the Euler class of the square-root bundle providing
the quadratic orientation of the universal bundle over BSLc

n.

To establish these results, observe first that since Hj+1(BSLc
n,W) is a free W(k)-

module by Proposition 5.6 above, we get a splitting of the four-term exact sequence
from Equation 2.11:

Chj (BSLc
n)

βj−→ Hj+1
(
BSLc

n, I
j+1
)
→ Hj+1 (BSLc

n,W)→ 0.

Hence the Ij-cohomology of BSLc
n is given, as W(k)-module, as a direct sum of its

Witt-sheaf cohomology plus the image of the Bockstein homomorphism:

Hj+1
(
BSLc

n, I
j+1
) ∼= im(βj)⊕Hj+1 (BSLc

n,W) .(5.8)

The same statement is true for twisted I-cohomology. In this case, since twisted
Witt-sheaf cohomology vanishes by Proposition 5.4, we simply have

Hj+1
(
BSLc

n, I
j+1(−1)

) ∼= im(βj)

as W(k)-modules. Note that, as a consequence of the Bär sequence, the image of the
Bockstein maps is annihilated by I(k) ⊴ W(k), i.e., the image of Bockstein consists
of 2-torsion.

To get a presentation for I-cohomology, we need formulas for multiplication of Bock-
stein classes. The key point here is that, since the reduction homomorphism ρ is
injective on the image of the Bockstein by Lemma 2.14, it suffices to understand the
image of the Steenrod square Sq2, for which we refer to Proposition 4.6. Products
of classes in the image of Sq2 can then be multiplied using the derivation prop-
erty for Sq2. For products not involving θ, the formulas are the classical ones in
H•(BSO(n),Z), cf. e.g. [Bro82], or [HW19, Proposition 7.13] for a motivic ver-
sion. The formulas below are basically identical to the ones for H•(BO(n),Z(t)), cf.
[Čad99, Lemma 4], or [Wen24, Definition 3.15] for a motivic version.

Proposition 5.9. The products of Bockstein classes in (total) I-cohomology of BSLc
n

are given as follows:

β(cJ) · βL(cJ ′) =
∑
k∈J

β(c2k) · P(J\{k})∩J ′ · βL(c∆(J\{k},J ′))(5.10)

βΘ(cJ) · βΘ(cJ ′) = β(cJ) · β(cJ ′) + βΘ(1) · PJ∩J ′ · βΘ(c∆(J,J ′))(5.11)

In these formulas, J and J ′ are index sets of the form J = {j1, . . . , jl} of natural
numbers 0 < j1 < j2 < · · · < jl ≤

[
1
2
(n− 1)

]
, and cJ = c2j1 · · · c2jl denotes the

corresponding product of even Stiefel–Whitney classes. Similarly, PJ =
∏

j∈J p2j
denotes the product of the corresponding even Pontryagin classes. Finally, ∆(J, J ′) =
(J \J ′)∪(J ′\J) on the right-hand side is the symmetric difference of index sets. The
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βL in Equation 5.10 allows to plug in the usual β or βΘ, but of course consistently
on both sides.

The index set J ′ can be empty, in which case c∅ = 1, and then β(1) = 0 whereas
βΘ(1) = e(OP∞(−1)) is the Euler class of the square-root bundle OP∞(−1) = Θ.

The Bockstein classes βL(θcJ) can be expressed as follows

β(θcJ) = βΘ(cJ)βΘ(1)(5.12)

βΘ(θcJ) = β(cJ)βΘ(1).(5.13)

All products of such classes can then be determined from Equation 5.10 and Equa-
tion 5.11 above.

Proof. By Lemma 2.14 and the torsion-freeness of Witt-sheaf cohomology observed
above, cf. (5.8), it suffices to check the equalities after applying the reduction map

ρ : Hq(BSLc
n, I

q(L))→ Chq(BSLc
n).

We therefore only need to verify the equalities in Ch•(BSLc
n), with βL replaced by

Sq2L, and with the Pontryagin classes replaced by their reductions ρ(p2i) = c22i, cf.
[HW19, Theorem 6.10].

For Equation 5.10, we note that the case βL = β follows from the corresponding
formula for I-cohomology of BGLn, cf. [Wen24, Definition 3.15]. For the case with
βΘ, as well as Equation 5.11, we can just replicate the proof of [Čad99, Lemma 4],
with the appropriate replacements, as follows:

ρ (β(cJ)βΘ(cJ ′)) = Sq2(cJ)
(
Sq2(cJ ′) + θcJ ′

)
= Sq2(cJ)Sq

2(cJ ′) + Sq2(cJ) · θ · cJ ′

=
∑
k∈J

Sq2(c2k)Sq
2(c∆(J\{k},J ′))ρ(P(J\{k})∩J ′)

+
∑
k∈J

Sq2(c2k) · c∆(J\{k},J ′) · ρ(P(J\{k})∩J ′) · θ

=
∑
k∈J

Sq2(c2k)Sq
2
Θ(c∆(J\{k},J ′))ρ(P(J\{k})∩J ′)

Here we only used the definition of Sq2Θ, the derivation property for Sq2, and the
fact that ρ(p2i) = c22i. The end result is the reduction of the right-hand side of
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Equation 5.10. Similarly, for Equation 5.11, we have

ρ (βΘ(cJ)βΘ(cJ ′)) =
(
Sq2(cJ) + θ · cJ

) (
Sq2(cJ ′) + θ · cJ ′

)
= Sq2(cJ)Sq

2(cJ ′) + θ
(
cJ · Sq2(cJ ′) + cJ ′ · Sq2(cJ)

)
+ θ2 · cJ · cJ ′

= Sq2(cJ)Sq
2(cJ ′) + θ · Sq2(cJcJ ′) + θ2 · c∆(J,J ′) · ρ (PJ∩J ′)

= Sq2(cJ)Sq
2(cJ ′) + θ · Sq2(c∆(J,J ′))ρ (PJ∩J ′) + θ2 · c∆(J,J ′) · ρ (PJ∩J ′)

= Sq2(cJ)Sq
2(cJ ′) + θ ·

(
Sq2(c∆(J,J ′)) + θ · c∆(J,J ′)

)
· ρ (PJ∩J ′)

= Sq2(cJ)Sq
2(cJ ′) +

(
Sq2Θ(1)Sq

2
Θ(c∆(J,J ′))

)
· ρ (PJ∩J ′)

Again, we have used only the standard properties for Sq2, and end up with the
reduction of the right-hand side of Equation 5.11.

To show Equation 5.12 and Equation 5.13, we apply the reduction technique and
check the corresponding formula for Steenrod squares:

Sq2(θcJ) = θSq2(cJ) + Sq2(θ)cJ =
(
Sq2(cJ) + θcJ

)
θ = Sq2Θ(cJ)Sq

2
Θ(1)

Sq2Θ(θcJ) = θSq2(cJ) + θ2cJ + θ2cJ = Sq2(cJ)Sq
2
Θ(1). □

Remark 5.14. The formula in Equation 5.12 should be compared to a similar for-
mula for BGLn, cf. [Wen24, Remark 3.18]. In that case, we have

β(c1cJ) = βdet(cJ)βdet(1),

allowing to remove c1 from Stiefel–Whitney monomials. Similarly, in the case BSLc
n,

Equation 5.12 allows to express Bocksteins βL(θcJ) in terms of Bocksteins βL(cJ).

A similar formula for twisted Bocksteins will be important below:

βΘ(c2i+1) = βΘ(θc2i) = βΘ(1)β(c2i)(5.15)

Compare this to a similar formula for untwisted Steenrod squares of odd Stiefel–
Whitney classes, cf. [Wen24, Example 3.30]. This formula is helpful for reducing the
necessary generators for the torsion in I-cohomology.4

Proposition 5.16. For either of the line bundles L = O,Θ, the image of the Bock-
stein homomorphisms

βL : Ch
•(BSLc

n)→ H•(BSLc
n, I

•(L))
agrees with the W(k)-torsion in I-cohomology. As a module over the non-torsion part
H•(BSLc

n,W), it is generated by the Bockstein classes βL (cJ) for βL = β, βΘ and
J running through the admissible index sets J = {0 < j1 < · · · < jl ≤

[
1
2
(n− 1)

]
}

with cJ = c2j1 · · · c2jl .
4Implicitly, we already use this, since the formula in Proposition 5.9 only concerns Bockstein

classes of products of even Chern classes.
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Proof. The identification of torsion as image of Bockstein follows from the splittings
discussed at the start of the section, cf. (5.8). The property that the image of
the Bockstein is annihilated by the fundamental ideal is a consequence of the Bär
sequence.

What we need to show is that the image of Bockstein can be generated by the classes
βL(cJ). To show that, we can use the same reduction technique as in the proof of
Proposition 5.9. Since the Bockstein maps are linear, it suffices to show that all
the classes βL(m) for arbitrary monomials m in θ, c1, . . . , cn are accounted for. For
that, it suffices to show that any Sq2L(m) is the reduction of a polynomial in βL(cJ)
and Pontryagin classes; the injectivity of ρ on the image of βL then shows that the
original class βL(m) can be rewritten to a product of generators as claimed (and
possibly some Pontryagin classes from the non-torsion part).

We deal with untwisted Steenrod squares Sq2(m) first. We can use the derivation
property to pull out squares of θ and even Chern classes c2i, as well as odd Chern
classes c2i+1 because Sq2(c2i+1) = 0. The class θ2 lifts to β(θ) and the classes c22i
lift to Pontryagin classes p2i. Since Sq2(c2i) = c2i+1, we can also lift the odd Chern
classes. Finally, we can use Equation 5.12 to get rid of a possible remaining θ in the
monomial m, and we’re left with a monomial cJ .

Now we deal with the twisted Steenrod squares Sq2Θ(m). We can pull out squares of
even Chern classes because of

Sq2Θ(c
2
2ix) = c22iSq

2(x) + θc22ix = c22iSq
2
Θ(x),

where again c22i is the reduction of the Pontryagin class p2i. Similarly, we can pull
out odd Chern classes because

Sq2Θ(c2i+1x) = c2i+1Sq
2(x) + θc2i+1x = c2i+1Sq

2
Θ(x),

and c2i+1 is the reduction of β(c2i). As a special case for x = 1, we note the re-
sulting formula βΘ(c2i+1) = β(c2i)βΘ(1) which already appeared in Equation 5.15.
Similarly, we can pull out squares of θ, and get rid of any possibly remaining θ using
Equation 5.13. □

We now formulate a presentation of the I-cohomology ring of BSLc
n similar to [Wen24,

Theorem 1.1, (3)].

Theorem 5.17. The (total) I•-cohomology ring⊕
q

Hq(BSLc
n, I

q)⊕Hq(BSLc
n, I

q(Θ))

of BSLc
n has the following presentation, as a Z ⊕ Z/2Z-graded commutative W(k)-

algebra:
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• The cohomology ring is generated by even Pontryagin classes p2i in degree
(4i, 0), for 1 ≤ i ≤

[
1
2
(n− 1)

]
, the Euler class in degree (n, 0) and the

(twisted) Bocksteins of products of Stiefel–Whitney classes

β(cJ) = β(c2j1 · · · c2jl), βΘ(cJ) = βΘ(c2j1 · · · c2jl)

with the index set J running through the (possibly empty) sets {j1, . . . , jr}
of positive natural numbers with 0 < j1 < · · · < jl ≤

[
1
2
(n− 1)

]
. For an

index set J = {j1, . . . , jl}, the degree of β(cJ) is
(
1 + 2

∑l
i=1 ji, 0

)
and the

degree of βΘ(cJ) is
(
1 + 2

∑l
i=1 ji, 1

)
.

• The relations satisfied in the I-cohomology ring are the following, using the
notation from Proposition 5.9:
(R1) I(k)β(cJ) = I(k)βΘ(cJ) = 0, and β(∅) = β(1) = 0.
(R2) If n = 2k + 1 is odd, we have e2k+1 = β(c2k).
(R3) For two index sets J, J ′, where J ′ can be empty, we have

β(cJ) · βL(cJ ′) =
∑
k∈J

β(c2k) · P(J\{k})∩J ′ · βL(c∆(J\{k},J ′))

βΘ(cJ) · βΘ(cJ ′) = β(cJ) · β(cJ ′) + βΘ(1) · PJ∩J ′ · βΘ(c∆(J,J ′)).

Proof. We first note that, as discussed at the start of the section, cf. (5.8), we have
an additive splitting for either of the two line bundles L = O,Θ:

Hq(BSLc
n, I

q(L)) ∼= im(βL)⊕Hj+1 (BSLc
n,W(L)) .

We first prove that we have described all the necessary generators, i.e., our given
generators actually generate the cohomology ring. By Proposition 5.6 and Propo-
sition 5.1, we know that the Pontryagin classes and Euler class generate the non-
torsion part given by Witt-sheaf cohomology. On the other hand, Proposition 5.16
shows that the image of Bockstein is generated by classes β(cJ) and βΘ(cJ), possi-
bly involving products with Pontryagin classes. Therefore, the classes we list in the
presentation generate the cohomology ring.

For the relations, we first note that all the formulas we list in (R1-3) actually hold in
the cohomology ring: the Bockstein classes are torsion by Proposition 5.16, the odd-
rank Euler class is a Bockstein class because this is already the case for BGLn, cf.
[Wen24], and the multiplication formulas in (R3) are established in Proposition 5.9.

It remains to show that all relations in the cohomology ring are accounted for in
our presentation. By Proposition 5.6 and Proposition 5.1, there are no relations for
non-torsion classes in Witt-sheaf cohomology.
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To show that all relations between torsion classes follow from our presentation, we
again use that the reduction map ρ is injective on the image of βL. Essentially, the
idea is to use the relations for Bockstein classes to reduce to a nice generating set
of monomials and then check via reduction that these are linearly independent in
Ch•(BSLc

n) by simple arguments comparing exponents appearing in monomials. The
first step in this program, as in the classical arguments of Brown [Bro82] and Čadek
[Čad99, p. 285]5, is to use the multiplication formulas (R3) to show that the (twisted)
torsion part of the Z⊕ Z/2Z-graded W(k)-algebra given by the presentation in the
statement will be generated by monomials

βΘ(1)
2l

(n−1)/2∏
i=1

pmi
2i

(n−1)/2∏
i=1

β(c2i)
kiβΘ(cJ) with J ̸= ∅, and(5.18)

βΘ(1)
2l+1

(n−1)/2∏
i=1

pmi
2i

(n−1)/2∏
i=1

β(c2i)
ki .(5.19)

Applying the reduction map to Ch•(BSLc
n), the monomials in (5.19) map to mono-

mials containing an odd power of θ and an even power of c2i (from the Pontryagin
classes). The elements in (5.18) reduce to a sum of monomials exactly one of which
contains an odd power of θ:

θ2l
(n−1)/2∏

i=1

cmi
2i

(n−1)/2∏
i=1

cki2i+1

(
Sq2(cJ) + θcJ

)
,

and which is uniquely determined by the numbers l,mi, ki, and contains odd powers
of c2j for j ∈ J . In particular, all the monomials generating the twisted torsion will
have linearly independent reductions in Ch•(BSLc

n), showing that we captured all
relations for the torsion part. □

Remark 5.20. It is interesting to observe that the torsion part of the presentation for
BSLc

n is the same as for BGLc
n. However, the natural map BSLc

n → BGLn doesn’t
induce an isomorphism, since it annihilates c1 and doesn’t hit nontrivial twisted
elements for BSLc

n. Moreover, there is also a difference in the Bockstein classes of
odd Chern classes which is not visible from the presentation. Bocksteins of odd
Chern classes are expressible in terms of the other generators, but the expressions
are different in the cases BGLn and BSLc

n. For example, for BGLn, we have Sq
2(c3) =

c1c3 and Sq2det(c3) = 0, whereas for BSLc
n, we have Sq2(c3) = 0 and Sq2Θ(c3) = θc3.

5It is interesting to note that Čadek in the proof in loc. cit. redefines the odd Stiefel–Whitney
classes such that the Steenrod square acts exactly as in the cohomology of BSLc

n.
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We illustrate the description of I•-cohomology in a small example, and further discuss
the relation between the torsion classes for BSLn, BSL

c
n and BGLn.

Example 5.21. For the case BSLc
4, the I-cohomology is generated by the following

classes:
p2, e4, β(c2), βΘ(1), βΘ(c2)

The generators have (cohomological) degrees |p2| = 4, |e4| = 4, |βΘ(1)| = 1, |β(c2)| =
|βΘ(c2)| = 3. The Witt-sheaf cohomology of BSLc

4 is the polynomial W(k)-algebra
generated by p2 and e4. The torsion part, i.e., the image of the Bockstein maps, is
generated (as W(k)[p2, e4]-module) by β(c2), βΘ(1) and βΘ(c2). There aren’t many
relations in the torsion part, but one special case of Equation 5.11 is

βΘ(c2)
2 = β(c2)

2 + βΘ(1)
2p2.

We list the first few untwisted cohomology groups, explicitly with generators:

H0(BSLc
4, I

0) ∼= W(k)

H1(BSLc
4, I) = 0

H2(BSLc
4, I

2) ∼= Z/2Z⟨βΘ(1)
2⟩

H3(BSLc
4, I

3) ∼= Z/2Z⟨β(c2)⟩
H4(BSLc

4, I
4) ∼= W(k)⟨p2, e4⟩ ⊕ Z/2Z⟨βΘ(1)

4, β(θc2) = βΘ(c2)βΘ(1)⟩
Similarly, we can list the first few twisted cohomology groups:

H0(BSLc
4, I

0(−1)) = H2(BSLc
4, I

0(−1)) = 0

H1(BSLc
4, I(−1)) ∼= Z/2Z⟨βΘ(1)⟩

H3(BSLc
4, I(−1)) ∼= Z/2Z⟨βΘ(1)

3, βΘ(c2)⟩
H4(BSLc

4, I(−1)) ∼= Z/2Z⟨βΘ(θc2) = βΘ(c3) = β(c2)βΘ(1)⟩

As we discussed already in Remark 5.20 above, the image of Bockstein is very similar
to the case BGLn, only that θ takes over the role of c1, see [Wen24, Example 3.30].
Still, some equalities of Bockstein classes are slightly different. For example, in
BGL3 we have β(c3) = β(c1c2), which is not true for BSLc

4, where instead we have
βΘ(c3) = βΘ(θc2). The reason is that for BGL3 we have Sq

2(c2) = c1c2+cbar3, which
is different from BSLc

4 where we have Sq2Θ(c2) = θc2 + c3.

Remark 5.22. The natural map BSLn → BSLc
n doesn’t induce an isomorphism in

I-cohomology. On the untwisted part of cohomology, it induces the reduction modulo
the ideal ⟨βΘ(1)

2⟩. This is a consequence of the product relation Equation 5.11 which
implies

βΘ(cJ)
2 ≡ β(cJ)

2 mod βΘ(1)
2.
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A special case of this appeared with βΘ(c2)
2 = β(c2)

2 + βΘ(1)
2p2 in Example 5.21.

5.3. The kernel of ∂. The remaining piece of our computation of the Chow–Witt
groups of BSLc

n is to compute the kernel of the homomorphism ∂.

Lemma 5.23. We have that the kernel of the Bockstein map

β : Ch•(BSLc
n)→ H•(BSLc

n, I
•)

is given by the subring generated by θ2, odd Chern classes, squares of even Chern
classes, the top Chern class cn, and Steenrod squares of products of even Chern
classes:

Z/2Z
[
θ2, c2i+1, c

2
2i, cn, Sq

2 (θec2j1 · · · c2jl)
]

e ∈ {0, 1} , l ≥ 0.

The kernel of the composite

∂ : CH•(BSLc
n)→ Ch•(BSLc

n)→ H•(BSLc
n, I

•)

is given by the subring

Z
[
θ2, c2i+1, c

2
2i, cn, Sq

2 (θec2j1 · · · c2jl) , 2c2j1 · · · c2jl
]
/(c1 − 2θ) ⊆ Z[θ, c1, . . . , cn]

(c1 − 2θ)
.

Proof. The exactness of the Bär sequence implies that the kernel of β is the image
of the reduction map ρ. On the other hand, as remarked before, the reduction map

ρ : Hq(BSLc
n, I

q)→ Chq(BSLc
n)

is injective on the image of the Bockstein map using Lemma 2.14. In particular,
we can alternatively compute the kernel of Bockstein as the kernel of Sq2, using the
description of the Steenrod square from Proposition 4.6.

Viewing ker β as the image of ρ, combined with the fact that ρ is compatible with
intersection products, implies immediately that ker β is a subring. Moreover, the
generators of I-cohomology as described in Theorem 5.17 will provide generators
for ker β. We will discuss below how the generators claimed in the lemma arise as
reductions, resp. how to see they are in the kernel of Sq2.

We first observe c1 = 2θ is killed in the reduction mod two map, and we recall
from Proposition 4.6 that all other odd-index Chern classes are killed by Sq2 because
c2i+1 = Sq2(c2i), thus Z[c1, c3, . . .] ⊆ ker(∂).

Since Sq2 is a derivation, we observe that Sq2(a2) = 2aSq2(a) ≡ 0 (mod 2), for any
cohomology class a. Therefore all the squares of the remaining characteristic classes
lie in the kernel. Then θ2 = Sq2(θ), and c22i are the reductions of Pontryagin classes
p2i.
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The top Chern class is the reduction of the Euler class, and the classes Sq2(θecJ) are
by definition in the image of the reduction map. In Theorem 5.17, we can also get
elements in untwisted I-cohomology as products of twisted classes βΘ(cJ). However,
using the multiplication relations in Theorem 5.17, the only additional elements we
can get this way can be expressed using Sq2(θcJ) = Sq2Θ(1)Sq

2
Θ(cJ). In particular, the

elements listed in the statement generate ker β as subring, finishing the proof. □

Lemma 5.24. We have that the kernel of the twisted Bockstein map

βΘ : Ch
•(BSLc

n)→ H•(BSLc
n, I

•(−1))

is the sub-(ker β)-module of Ch•(BSLc
n) generated by Sq2Θ(cJ).

Proof. Again, we can use the Bär sequence to compute ker βΘ as image of the reduc-
tion morphism

ρΘ : H
q(BSLc

n, I
q(−1))→ Chq(BSLc

n).

In the twisted case, there are no non-torsion classes, so ker βΘ actually agrees with the
image of ρΘ. The images of the generators βΘ(cJ) are Sq

2
Θ(cJ), and since the twisted

I-cohomology is generated by these as module over the untwisted I-cohomology, we
see that the image of ρΘ is generated by these classes as module over ker β. □

Remark 5.25. We take this opportunity to correct a small typo in the characteri-
zation of the kernel of the Bockstein homomorphism for the classifying space of the
special linear group as in [HW19, Theorem 6.10]. In the stated result, the Steenrod
squares of products of even Chern classes should be in the kernel of the Bockstein,
since they are in the image of ρ as proven in [HW19, Theorem 6.9]. Here is what the
formulation should have been:

Theorem 5.26. The kernel of the Bockstein map

β : Ch•(BSLn)→ H•(BSLn, I
•)

is given by the subring generated by odd Chern classes c2i+1, squares
of even Chern classes c22i, the top Chern class cn, and the Steenrod
squares of products of even Chern classes Sq2 (c2j1 · · · c2jl)

Z/2Z
[
c2i+1, c

2
2i, cn, Sq

2 (c2j1 · · · c2jl)
]
⊆ Z/2Z [c2, . . . , cn] .

5.4. Description of the Chow–Witt ring. In this section, we will now combine
our previous computations into a description of the Chow–Witt rings of the classi-
fying spaces of SLc

n.
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5.4.1. Fiber product description of Chow–Witt-groups. In this section, we will give
a proof of our main result Theorem 1.1. Here is where we have to start being a bit
careful about indices. For the Chow–Witt groups twisted by a line bundle L = O,Θ,
we have a pullback square

(5.27)

C̃H
j
(BSLc

n,L) ker(∂L,j)

Hj(BSLc
n, I

j(L)) Chj(BSLc
n),

⌟

ρ

using [HW19, Proposition 2.11] together with the 2-torsion-freeness of the Chow ring
from Corollary 4.5. The ∂j on the top right is the map

∂L,j : CH
j(BSLc

n)→ Chj(BSLc
n)

βL,j−−→ Hj+1(BSLc
n, I

j+1(L)),
while on the bottom left we have

Hj(BSLc
n, I

j(L)) ∼= im(βL,j−1)⊕Hj(BSLc
n,W(L)).

So it’s crucial to remember we’re dealing with two different Bockstein homomor-
phisms here. As before, we typically denote the twisted Bocksteins by βΘ, with θ
denoting the class of Θ in Ch1(BSLc

n) = Pic(BSLc
n)/2.

The right vertical map is the mod 2 reduction map, while the reduction mod η on
the bottom is described as follows, cf. [Wen24, Theorem 1.1.(4)]:

H•(BSLc
n, I

•)
ρ−→ Ch•(BSLc

n)

p2i 7→ c22i
en 7→ cn

β(cJ) 7→ Sq2(cJ)

The latter follows from Totaro’s identification ρβ = Sq2 as recalled in Proposi-
tion 2.13. Similarly, we have βΘ(cJ) 7→ Sq2Θ(cJ) in the description of the (twisted)
reduction map

Hj(BSLc
n, I

j(Θ))→ Chj(BSLc
n)

for L = Θ.

The additive decomposition of the Ij-cohomology induces an additive decomposition
of the Chow–Witt groups of BSLc

n. Explicitly, for each j, we will have some decom-

position of C̃H
j
(BSLc

n,L) into pieces that look like the integers or the Grothendieck–
Witt ring of the base field:

C̃H
j
(BSLc

n,L) ∼= GW(k)aj ⊕ Zbj .
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The classes contributing to Grothendieck–Witt are coming from the Witt-sheaf coho-
mology of BSLc

n, while the classes contributing a copy of the integers are coming from
the image of the Bockstein im(βL,j−1) or lift from 2-divisible classes in CHj(BSLc

n).
It suffices to compute them separately to obtain the additive structure.

5.4.2. Generators and relations. We now list some of the generators of the Chow–
Witt rings we will need. We begin with the natural non-torsion generators, given by
Chow–Witt characteristic classes:

p2i =

(
p2i, c

2
2i + 2

2i−1∑
j=max 0,4i−n

(−1)jcjc4i−j

)
(n even) en = (en, cn).

Here p2i are the even Pontryagin classes in Chow–Witt theory, and the equality de-
scribes the Chow–Witt-theoretic Pontryagin class as an element in the fiber product,
whose image in I-cohomology is again the appropriate Pontryagin class, and the
image in Chow theory is c22i+2

∑2i−1
j=max 0,4i−n(−1)jcjc4i−j. Similarly, the Chow–Witt-

theoretic Euler class reduces to the I-cohomological Euler class and the top Chern
class in Chow theory.

Note that the definition of Pontryagin classes used here is the one from [HW19,
Definition 5.6], in terms of the symplectification morphism BSLn → BSp2n. (These
classes would then have some desired behaviour, such as stabilization and agree-
ment of the top class with the square of the Euler class.) The formulas then follow
from their counterparts in the Chow–Witt ring of BGLn resp. BSLn, cf. [Wen24,
Theorem 1.1] and [HW19, Theorem 6.10].

Next, we have the torsion generators, giving rise to the Z-summands in the Chow–
Witt groups. The natural characteristic classes in I-cohomology are the Bockstein
classes

β(cJ) = β(c2j1 , . . . , c2jl) ∈ Hq(BSLc
n, I

q), βΘ(cJ) ∈ Hq(BSLc
n, I

q(Θ))

for an index set J = {j1, . . . , jl} which in the second case can be empty. Since we
have βL(cJ) 7→ Sq2L(cJ), we can choose a lift of Sq2L(cJ) along the mod 2 reduction
map CHq(BSLc

n)→ Chq(BSLc
n) and denote the resulting class

β̃L(cJ) =
(
βL(cJ), S̃q

2

L(cJ)
)
.

We could call these classes Bockstein classes in Chow–Witt theory, but it should be
noted that these are not really unique in that the Chow-part of the class involves a
choice of lift along Sq2L.
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Finally, we have some classes in Chow–Witt theory which are related to the fact
that the above lifts are not unique, since a lot of classes are killed in the reduction to
Ch•: any class 2x ∈ CH•(BSLc

n) will have trivial reduction mod 2, and consequently

(0, 2x) will be a valid element in C̃H
•
(BSLc

n,L), for both L = O,Θ.

The natural way to interpret these classes is via the injection

HL : CH
q(BSLc

n)→ C̃H
q
(BSLc

n,L)
induced from the natural morphism 2KM

q → KMW
q (L) of coefficient sheaves of

Equation 2.3. The image of the injection agrees with the kernel of the projec-

tion C̃H
q
(BSLc

n,L) → Hq(BSLc
n, I

q(L)). The classes in the image could be called
hyperbolic Chern classes, since the injection HL is a version of the hyperbolic mor-
phism from algebraic to hermitian K-theory.6 The hyperbolic Chern classes are all
I(k)-torsion, and explain the non-uniqueness of lifts of classes along the reduction

morphism C̃H
q
(BSLc

n,L) → Hq(BSLc
n, I

q(L)). In the fiber product description of
Diagram (5.27), the image HL(x) an element x ∈ CHq(BSLc

n) is identified as the
tuple (0, 2x), i.e., the reduction to I-cohomology is trivial, and the composition

CHq(BSLc
n)

HL−−→ C̃H
q
(BSLc

n,L)→ CHq(BSLc
n)

is identified with multiplication by 2.

We collect the relevant information for a description of the Chow–Witt ring of BSLc
n

in the following:

Theorem 5.28. Let k be a field of characteristic ̸= 2. The Chow–Witt ring

C̃H
•
(BSLc

n, ⋆) is generated as a GW(k)-algebra by the following classes:

• the even Pontryagin classes p2i ∈ C̃H
4i
(BSLc

n,O) for i = 1, . . . , ⌊n−1
2
⌋,

• the Euler class en ∈ C̃H
n
(BSLc

n,O) for n even,
• the Bockstein classes

β̃L(cJ) = β̃L(c2j1 · · · c2jl) ∈ C̃H
1+

∑l
i=1 2ji

(BSLc
n,L)

for index sets J = {0 < j1 < · · · < jl ≤ ⌊n−1
2
⌋} which in case β̃Θ can be

empty, and

• the hyperbolic Chern classes HL(x) ∈ C̃H
q
(BSLc

n,L) for x ∈ CHq(BSLc
n).

The Bockstein classes and hyperbolic Chern classes are I(k)-torsion. The products
can be determined using the fiber product description in Diagram (5.27). In partic-
ular,

6Also, the image of 1 ∈ CH0(BSLc
n)
∼= Z under H : CH0(BSLc

n) → C̃H
0
(BSLc

n)
∼= GW(k) is the

hyperbolic plane.
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• multiplication by a hyperbolic Chern class HL(x) can be determined using

the reduction morphism ϕ : C̃H
q
(BSLc

n,L)→ CHq(BSLc
n) via

HL(x) · y = HL(x · ϕ(y)),
• products of Bockstein classes are determined by relation (R3) in Theorem 5.17.

Proof. As noted at the beginning of Subsection 5.4, the Chow–Witt groups of BSLc
n

have a fiber product description as in Diagram (5.27). In particular, additive and
multiplicative structure of the Chow–Witt rings can be determined from those of
I-cohomology and Chow theory.

To prove the claim about generators, it suffices to show that all compatible pairs of
elements from Hq(BSLc

n, I
q(L))× ker(∂L,q) are accounted for. By Theorem 5.17, the

I-cohomology groups are generated (as W(k)-algebra) by Pontryagin classes, Euler
classes and Bockstein classes (in I-cohomology). By the exact sequence

CHq(BSLc
n)

HL−−→ C̃H
q
(BSLc

n,L)→ Hq(BSLc
n, I

q(L))→ 0

induced from the short exact sequence 0 → 2KM
q → KMW

q (L) → Iq(L) → 0, the
non-uniqueness of lifts from I-cohomology to Chow–Witt groups is accounted for by
the hyperbolic Chern classes. This shows that the classes listed indeed generate the
Chow–Witt ring.

The claims on multiplications follow directly from the fiber product description. For
the hyperbolic Chern classes, HL(x) = (0, 2x) in the fiber product description, and
consequently HL(x) ·y = (0, 2x ·ϕ(y)) = HL(x ·ϕ(y)). Any product with a Bockstein
class in I-cohomology can be determined by reduction to the mod 2 Chow ring by
Theorem 5.17, and from this we can compute any products of classes in the Chow–
Witt ring. □

Remark 5.29. The statement of Theorem 5.28 doesn’t provide a complete generators-
and-relations presentation of the Chow–Witt ring. Although we have a list of gener-
ators, this is not minimal in any sense, due to the problems with hyperbolic Chern
classes. Since

HO : CH•(BSLc
n)→ C̃H

•
(BSLc

n,O)
fails to be a ring homomorphism, it is not enough to simply include hyperbolic Chern
classes HO(ci). For example HO(c2)HO(c4) = HO(2c2c4), which means that HO(c2c4)
has to be included among the generators and cannot be expressed as a product of
other hyperbolic Chern classes. Also, it seems that a complete list of relations for
such products would not provide much additional insight. For this reason, we do
not make atttempts at producing a nice presentation. In any case, we want to
point out that any products one wishes to compute can be evaluated using the fiber
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product description, combined with computations in I-cohomology (where we have a
complete presentation in Theorem 5.17) and Chow theory (where we have a complete
presentation in Corollary 4.5).

Remark 5.30. We make a brief remark on the key new characteristic class for
BSLc

n: denoting, as before, by Θ the square-root of the determinant bundle, we
have the Euler class, which in the fiber product description can be identified as
e(Θ) = (βΘ(1), θ). This class is not in the image of restriction from BGLn, and
vanishes upon restriction to BSLn. In a way, via this Euler class, the characteristic
classes of BSLc

n have some information about the quadratic orientation of a vector
bundle; the Euler class e(Θ) is an obstruction for a quadratically oriented bundle
to be actually oriented, entirely related to the line bundle Θ used in the quadratic
orientation.

It is, however, important to note that for a variety X with a non-trivial 2-torsion
class [Θ] ∈ Pic(X), we can have a non-trivial quadratic orientation Θ⊗2 ∼= O of
the trivial line bundle O (or any oriented bundle, for that matter). In this case,
the trivial bundle would still have a nontrivial characteristic class as a quadratically
oriented bundle.

6. Real realizations of BSLc
n and MSLc

In this section we consider the image of BSLc
n and the associated Thom spectrum

MSLc under real Betti realization ReR.

6.1. The real realization of BSLc
n. We can ask what the real realization of the

space BSLc
n looks like, and how our computations here might reflect existing intuition

about quadratically oriented topological vector bundles. One obstruction we confront
is that the process of taking a classifying space and real realization functors do not
commute. That is, for a general group scheme G defined over the reals, it is not the
case that (BétG)(R) and B(G(R)) are equivalent.

We take this opportunity to discuss the real realization of classifying spaces as de-
scribed in [MMW25], before returning to the case of G = SLc

n.

Proposition 6.1. For G a smooth real group scheme, we have equivalences

ReR(BétG) ≃ B(G(C))hC2 ≃
⊔

[τ ]∈H1(C2,G)

BAut(τ)(R).

We briefly explain the notation to unpack what the statement is saying: The left-
most space ReR(BétG) is the real realization of the geometric classifying space BétG in
motivic homotopy. The space B(G(C))hC2 in the middle is the space of C2-homotopy
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fixed points on the classifying space BG(C) (of the complex Lie group G(C)), with
the complex conjugation action. For the description on the right-hand side, the index
set is the Galois cohomology group H1(C2, G) parametrizing strong real forms as in
[AT18]. For a real G-torsor [τ ] ∈ H1(C2, G) represented by an involution σ on G(C),
the group Aut(τ) is the automorphism group of the torsor τ , and Aut(τ)(R) = G(C)σ
is the fixed group of the involution.

As a consequence, for groups G which are not special in the sense of Serre, the
real realization of the geometric classifying space BétG will in general not be con-
nected. One example is the orthogonal groups, in which case we have the following
description, cf. [MMW25, Section 7].

Example 6.2. The On-torsors on the étale site over Spec(R) are exactly the iso-
morphism classes of rank n real quadratic forms. For an On-torsor τ ∈ H1(R,On),
represented by a quadratic form of signature (p, q), the real points of its automor-
phism group are an indefinite orthogonal group O(p, q). The real realization of the
geometric classifying space of the orthogonal groups can then be identified as

(BétOn)(R) =
⊔

p+q=n

BO(p, q).

Example 6.3. Assume G is a special group in the sense of Serre, i.e., the natural
map H1

Zar(X,G)→ H1
ét(X,G) is a bijection. Then we have

(BétG)(R) ≃ B(G(R)).
This applies in particular to SLn, GLn and Sp2n.

Note that the fact that GLn and SLn are special groups is essentially equivalent to
Hilbert’s theorem 90, the symplectic case is essentially Darboux’s theorem. Note also
that the description of real realization of BétG for special groups G doesn’t need the
machinery of [MMW25] and can be deduced more directly from Krishna’s equivalence
in [Kri12], which identifies the geometric classifying space with the simplicial bar
construction.

As we have seen that SLc
n is special (Proposition 3.3), we have the following result.

Corollary 6.4. The natural morphism BNisSL
c
n → BétSL

c
n is an equivalence, and we

have an equivalence

ReR(BSL
c
n) ≃ B(SLc

n(R)).

Remark 6.5. We can determine the group SLc
n(R) more precisely: it is the group

of pairs (A, u) of a matrix A ∈ GLn(R) and a unit u ∈ R× such that det(A) = u2.
There is a natural homomorphism

SLc
n(R)→ GLn(R)+ × R× : (A, u)→ (A, u),
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induced from the fiber product definition of SLc
n, where GLn(R)+ denotes the group

of real n × n-matrices with positive determinant. By e.g. Gram–Schmidt, we can
identify GLn(R)+ ≃ SO(n,R). Consequently, we get an equivalence

BSLc
n(R) ≃ BSO(n,R)× RP∞.(6.6)

This, together with the proposition above, provides an a posteriori explanation why
BSLn and BSLc

n have the same Witt cohomology in Equation 5.7, and why their
I-cohomology rings exhibit some difference in the torsion.

As a consequence, the natural map BSLn → BSLc
n induces the universal covering

map

ReR (BSLn) ≃ BSO(n,R)→ ReR (BSL
c
n)(6.7)

on real realization. This becomes a weak equivalence upon inverting 2. Note that
the action of π1 (ReR (BSL

c
n))
∼= Z/2Z on the higher homotopy groups of ReR (BSL

c
n)

is trivial (by virtue of the quadratic orientation).

6.2. Jacobson realization. Recall that since BGLn is cellular, we can use [Hor+21,
Theorem 5.7] (plus stabilization from finite-dimensional Grassmannians) to obtain
an isomorphism

Hj(BGLn, I
j(L)) ∼−→ Hj(BO(n);Z(L)).

Although BSLn is not cellular in the sense used in loc. cit., we still obtain an iso-
morphism under the realization map.7

Proposition 6.8. The real cycle class map of Jacobson [Jac17] is an isomorphism:

Hj(BSLn, I
j)

∼−→ Hj(BSO(n);Z)

Proof. These groups admit the same presentation by [HW19, Theorem 1.3], so it
suffices to check that the characteristic classes which generate the Ij-cohomology are
mapped to the associated characteristic classes in singular cohomology, which was
shown in [Hor+21, §6]. □

From Remark 6.5, we find that the real realization of BSLc
n is BSO(n) × RP∞, and

we obtain for each of the two line bundles L = O,Θ a commutative diagram

Hj(BSLn, I
j) Hj(BSO(n);Z)

Hj(BSLc
n, I

j(L)) Hj(BSO(n)× RP∞;Z(L))

∼

∼

7Note that again the cellularity here means stratification in terms of affine spaces, not the more
general notions of cellularity of Jannsen or Totaro.
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where the left vertical map is the natural one induced from the inclusion BSLn →
BSLc

n, the right vertical map is its real realization, and the other two morphisms are
instances of Jacobson’s real cycle class map. We can check that the lower-horizontal
morphism is also an isomorphism: using arguments as in the proof of Theorem 5.17,
we can see that the singular cohomology of BSO(n)×RP∞ has the same presentation
as the I-cohomology of BSLc

n. Since the latter is generated by characteristic classes
which under the real cycle class map are sent to their topological counterparts, we
find that the real cycle class map for BSLc

n is also an isomorphism. As we pointed out
in Remark 5.22, the difference between cohomology of BSLn and BSLc

n is tied to the
class βΘ(1) = e(Θ), which is the Euler class of the square-root line bundle Θ providing
the quadratic orientation det ∼= Θ⊗2. In the real realization, the class βΘ(1) = e(Θ)
can also be expressed as the Euler class of the pullback of the tautological line bundle
on RP∞.

6.3. The Thom spectrum MSLc. Following [Hoy+22, Remark 7.11], we can define
MSLc by first defining KSLc

: Schop → S by the pullback diagram

KSLc
K

Pic Pic,

det

(−)2

then defining MSLc to be the Thom spectrum given by first taking the composition

KSLc ×Z {0} → K → Pic(SH)

and then applying the motivic Thom spectrum functor of [BH21, §16]. It is clear
from this construction that MSLc is a motivic E∞ ring spectrum.

Remark 6.9. Wemay alternatively construct MSLc analogously to [BH20, Lemma 4.6],
leveraging our construction of BSLc

n as a metalinear Grassmannian in Corollary 3.7.

Denoting by γ
SLc

n
n the tautological rank n quadratically oriented bundle over the met-

alinear Grassmannian Grcn(∞), we then get equivalences MSLc
n ≃ Σ∞−2n,nTh

(
γ
SLc

n
n

)
and MSLc ≃ colimn MSLc

n as in [BH20, Section 4.2].

Remark 6.10. By Proposition 4.7, the characteristic classes of a quadratically ori-
ented bundle in motivic cohomology are Chern classes of the bundle, plus the first
Chern class of the square-root bundle Θ providing the quadratic orientation. More
generally, as in [Nan23], we can obtain the E-cohomology of MSLc for a GL-orientable
theory with additive formal group law:

E•,•(MSLc) ∼= E•,•[[θ, c1, c2, c3, . . . ]]/(c1 − 2θ)
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As a consequence, the motivic cohomology of BSLn and BSLc
n are still fairly close,

and the same would be true for the spectra MSL and MSLc. This might be interesting
for the evaluation of the HmotF2-based Adams spectral sequence converging to the
(suitably completed) motivic homotopy of MSLc. It would also be interesting to
know where MSLc fits in the interpolation between MSL and MGL in [Nan23].

6.4. Real realization of MSLc. In this subsection, we now want to describe the real
realization of the metalinear cobordism spectrum MSLc, based on the computation
of ReR(BSL

c
n) above. Essentially, we follow the arguments Bachmann and Hopkins

used in [BH20, Section 4.2] to compute the real realization of MSLn.

Proposition 6.11. The natural morphism MSLn → MSLc
n induces an equivalence

on real realization after inverting 2, i.e., there is an equivalence

ReR(MSLc
n)[1/2] ≃ MSOn[1/2].

Proof. As in the proof of [BH20, Corollary 4.7], we have

MSLc
n ≃ Σ∞−2n,ncofib (Tn → BSLc

n)

with Tn = (An \ {0})hSLc
n
the complement of the zero section of the universal rank n

quadratically oriented bundle. Note that here An \ {0} has the obvious SLc
n-action

given by the fundamental representation SLc
n ↪→ GLn × Gm → GLn.

8 Since SLc
n is

special by Proposition 3.3, Tn is equivalent to the bar construction of the SLc
n-space

(An \ {0}), using Krishna’s equivalence from [Kri12, Proposition 3.2]. In particular,
ReR(Tn) is equivalent to the bar construction of the SLc

n(R)-space Rn \ {0}. For a
more detailed discussion of real realization of homotopy orbit spaces/quotient stacks,
cf. [MMW25, Section 4].

As observed in Remark 6.5, we have BSLc
n(R) ∼= BSO(n) × RP∞, and under this

identification, the SLc
n(R)-space Rn \ {0} is the pullback of the universal bundle γn

from BSO(n). In particular, the cofiber of ReR(Tn)→ BSLc
n(R) can be identified as

cofib (ReR(Tn)→ ReR (BSL
c
n)) ≃ cofib (γn → BSO(n)) ∧ RP∞

+

Now, after inverting 2, the right-hand side can be identified with MSOn[1/2], cf. [BH20,
Corollary 4.7] for the identification of MSOn as real realization of MSLn. This shows
that we have an equivalence ReR (MSLc

n) [1/2]
∼= MSOn[1/2].

8Note that the representation SLc
n → GLn is not faithful, essentially it forgets about the choice

of line bundle Θ in the quadratic orientation. This is in line with the usage of quadratically oriented
theories: it only matters that we have Thom isomorphisms for quadratically oriented bundles, never
mind the choice of quadratic orientation and the line bundle Θ.
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Note also that the realization of the natural map SLn → SLc
n is the natural inclusion

SLn(R)→ SLc
n(R). In particular, this map induces equivalences ReR(MSLn)[1/2]→

ReR(MSLc
n)[1/2] as claimed. □

7. Comparing MSL and MSLc

In this section we compare the Thom spectra MSL and MSLc and show they are
identical after inverting the Hopf element η.

7.1. η-inverted theories. As another variation, we prove a version of Proposi-
tion 5.6 for a general MSLc-orientable cohomology theory in which η is invertible.
For the following result, we use notation from [Ana15] for the cohomology theory, but
keep the different numbering of the Pontryagin classes. The following then describes
the cohomology of BSLc

n, closely resembling [Ana15, Theorem 10], the second part
is also proved in [Hau23, Corollary 5.3.4].

Theorem 7.1. Assume A•,• is a representable SLc-orientable cohomology theory,
and denote A•(X) = A•,0

η (X). Then we have

A•(BSLc
2n)
∼= A•(pt)[[p2, . . . , p2n−2, e2n]]h

A•(BSLc
2n+1)

∼= A•(pt)[[p2, . . . , p2n]]h

The twisted A-cohomology of BSLc
n vanishes. In fact, the universal covering map

BSLn → BSLc
n induces an isomorphism onA-cohomology, mapping SLc-characteristic

classes to SL-characteristic classes.

More generally, the same is true for representable SL-orientable cohomology theories.

Proof. The proof uses the same arguments as the corresponding result for Witt-sheaf
cohomology in Subsection 5.1. The Witt-sheaf computation for BGLn in [Wen24]
can be extended to general η-inverted theories as follows: the vanishing of reduced
A-cohomology of P∞ can be seen as in [Nan23, Lemma 3.7], and building on this
as base of an induction, the argument of [Wen24, Proposition 4.8] goes through.
This provides the generalization of Proposition 5.1, and the rest of the arguments in
Subsection 5.1 goes through. Alternatively, of course, one can follow the arguments
for [Ana15, Theorem 10] for BSLc

n.

The claim that BSLn → BSLc
n induces an isomorphism on A-cohomology is the

analogue of Equation 5.7, in the discussion after Proposition 5.6. The polynomial
generators for A-cohomology of BSLn and BSLc

n are both induced by pullback from
the Pontryagin and Euler classes on BGLn via the natural covering maps to BGLn.
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The extension to SL-oriented theories uses Ananyevskiy’s theorem that SL-oriented
theories have Thom isomorphisms for SLc-bundles, cf. [Ana20, Theorem 1.1]. With
this, all the arguments above go through. The key point there is that we have a
localization sequence for the universal quadratically oriented oriented rank n bun-
dle on BSLc

n which together with the Thom isomorphism is used in the induction
arguments. □

Corollary 7.2. Assume A•,• is a representable SLc-orientable cohomology theory,
and denote A•(X) = A•,0

η (X). Then the A-homology of the infinite metalinear
Grassmannian Grc(2n + 1,∞) is the topological dual of the A-cohomology. The
natural morphism

G̃r(2n+ 1,∞)→ Grc(2n+ 1,∞)

induces an isomorphism in A-homology. In particular,

A•(MSLc) ≃ colimnA•(Grc(2n+ 1,∞)) ≃ A•[e2, e4, . . . ]

where we use the names for polynomial generators from [BH20, Theorem 4.1(2)].

Proof. As in (the end of) the proof of [BH20, Lemma 4.16], we can use the strong
dualizability and cellularity from Proposition 3.9, [BH20, Corollary 4.10] and [Ana15,
Remark 14] to see the claim on topological duals. From this and Theorem 7.1, we

get that G̃r(2n + 1,∞) → Grc(2n + 1,∞) induces an isomorphism in A-homology.
The claim about A-homology of MSLc follows from the corresponding claim for MSL
in [BH20, Theorem 4.1(2)]. □

Remark 7.3. As a particular consequence, one can compute the cohomology oper-
ations for MSLc[η−1] from this result, as endomorphisms of MSLc[η−1] in SH[η−1],
using Theorem 7.1 and Thom isomorphisms:(

MSLc
η

)•,• (
MSLc

η

) ∼= (MSLc
η

)•,•
[[p2, p4, . . . ]]

We now want to use the computation of cohomology of BSLc
n for η-inverted quadrat-

ically oriented cohomology theories to compare MSL and MSLc, using ideas from
[BH20].

Corollary 7.4. Let k be a field of characteristic ̸= 2. The natural morphism MSL→
MSLc becomes an equivalence in the η-inverted stable motivic homotopy SH(k)[η−1].
In particular, we also have

π∗MSLc[η−1] ∼= W[y2, y4, . . . ].

Proof. As in the homotopy computations in [BH20, Section 8], it suffices to check
that the map ν : MSL → MSLc is an equivalence both after inverting 2 and after
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completing at 2. We can check ν[1/2] is an equivalence on real realizations, using
Proposition 6.11.

It remains to show that ν(2) is an equivalence. Recall from [BH20, Theorem 1.1] that
there is a resolution

S[η−1](2) → kw(2)
φ−→ Σ4kw(2)

of the η-local sphere in terms of the connective Balmer–Witt K-theory spectrum kw.
Because of this resolution, it suffices to show that the natural morphism MSL →
MSLc induces an equivalence in (2-completed) kw-homology, compatible with the
map φ. Using Corollary 7.2, we have isomorphisms

kw∗[e2, e4, . . . ] ∼= π∗(kw ∧MSL)
∼=−→ π∗(kw ∧MSLc).

Since this isomorphism is in fact induced (via Thom isomorphism) from an kw-

homology isomorphism kw∗(G̃r(2n + 1,∞)) → kw∗(Grc(2n + 1,∞)), we see that
the polynomial generators arise from the cells of HP∞, both for MSL and MSLc.
In particular, the kw-homology isomorphism above is compatible with the map φ,
which shows that ν(2) is an equivalence.

The claim on the homotopy sheaves is then immediate from [BH20, Theorem 8.8],
but can alternatively also be proved just as in loc. cit. □

Remark 7.5. It is well-known that SL-orientations and SLc-orientations are very
closely related. One instance of this is Ananyevskiy’s theorem that SL-oriented
theories have Thom isomorphisms for SLc-bundles, cf. [Ana20, Theorem 1.1], which
we have already used above. The η-local equivalence MSL[η−1] → MSLc[η−1] is
another version of this close connection, showing that, after inverting η, there is
really no difference between SL-orientations and SLc-orientations.
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[Nan23] Ahina Nandy. An interpolation between special linear and general alge-

braic cobordism MSL and MGL. 2023. arXiv: 2310.15721 [math.AT].
[OT14] Christian Okonek and Andrei Teleman. “Intrinsic signs and lower bounds

in real algebraic geometry”. In: J. Reine Angew. Math. 688 (2014),
pp. 219–241.

[Tot03] Burt Totaro. “Non-injectivity of the map from theWitt group of a variety
to the Witt group of its function field”. In: J. Inst. Math. Jussieu 2.3
(2003), pp. 483–493.

[Tot16] Burt Totaro. “The motive of a classifying space”. In: Geom. Topol. 20.4
(2016), pp. 2079–2133.

https://arxiv.org/abs/1206.5952
https://arxiv.org/abs/2310.15721


REFERENCES 48

[Tot99] Burt Totaro. “The Chow ring of a classifying space”. In: Algebraic K-
theory (Seattle, WA, 1997). Vol. 67. Proc. Sympos. Pure Math. Amer.
Math. Soc., Providence, RI, 1999, pp. 249–281.

[Wen10] Matthias Wendt. More examples of motivic cell structures. 2010. arXiv:
1012.0454 [math.AG].

[Wen24] Matthias Wendt. “Chow–Witt rings of Grassmannians”. In:Algebr. Geom.
Topol. 24.1 (2024), pp. 1–48.

https://arxiv.org/abs/1012.0454

	1. Introduction
	2. Preliminaries
	3. The classifying space of quadratically oriented bundles
	4. Oriented cohomologies of BSLnc
	5. Chow–Witt groups of BSLnc
	6. Real realizations of BSLnc and MSLc
	7. Comparing MSL and MSLc
	References

