
A MOTIVIC CRASH COURSE

Abstract. We will give an overview of the construction of motivic spaces and spectra, highlighting
the construction of Eilenberg–MacLane spaces and spectra. We will discuss motivic cohomology and
the motive attached to a variety. Finally we will present some computations and key properties of
motives that will be used later in the seminar.

Please send any errors you find to brazelton@math.harvard.edu

0. About

Notes from a talk in the Thursday seminar at Harvard on 10/3/24. The seminar is about the
motivic Stenrod algebra and the motivic Wilson space hypothesis.

References: In prepping this talk I drew a lot from Brian Shin’s presentation of motivic cohomology
from the IWOAT workshop this last summer. Brian learned much of it from Shane Kelly’s notes on
Voevodsky correspondence [Kel], from Marc Hoyois’ paper on the HMH theorem [Hoy15] and the
book of Mazza–Voevodsky–Weibel [MVW06]. In prepping this talk I also referenced some fantastic
survey papers on motivic cohomology, a classical reference being Deligne’s paper on Voevodsky’s
lectures [Del09], and modern ones including Peter Haine’s note [Hai] and Elden Elmanto’s IHES
minicourse from 2023 [Elm]. The original reference for motives of Eilenberg–MacLane spaces being
pure proper Tate (the ultimate goal of this talk) is the original paper of Voevodsky [Voe10]. Other
references are cited throughout.

1. Motivic homotopy theory

Assumptions: Here k will be a field, usually perfect. By Smk we mean the category of finite type
smooth k-schemes.

Let PSh(Smk) denote the ∞-category of ∞-presheaves on Smk. We can think about this as
presheaves of “spaces up to weak equivalence.”

Definition 1.1. We say {Ui → X} is a Nisnevich cover if each Ui → X is étale, and for every
x ∈ X there exists an i and a y ∈ Ui mapping to x and inducing an isomorphism on residue fields.

We say F ∈ PSh(Smk) is a Nisnevich sheaf if, for every Nisnevich cover {Ui → X}, the induced
map

F (X)→ lim
(∏

F (Ui) ⇒
∏

F (Uij) ⇒ · · ·
)

is an equivalence.

Denote by ShvNis(Smk) ⊆ PSh(Smk) the full subcategory of Nisnevich sheaves.

Definition 1.2. We say F ∈ PSh(Smk) is A1-invariant if, for every X ∈ Smk, the projection
X × A1 → X induces an equivalence

F (X)→ F (X × A1).

We denote by PShA1(Smk) ⊆ PSh(Smk) the full subcategory of A1-invariant presheaves.
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Definition 1.3. We define the category of motivic spaces to be

Spc(k) := ShvNis(Smk) ∩ PShA1(Smk) ⊆ PSh(Smk).

Each of these is an accessible subcategory of PSh(Smk), and hence the inclusions admit left adjoints

LNis : PSh(Smk)→ ShvNis(Smk)

LA1 : PSh(Smk)→ PShA1(Smk).

We can define the algebraic n-simplex over our base field k as

∆n := Speck[x0, . . . , x1]/(
∑

xi − 1).

These form a cosimplicial variety ∆•.

Proposition 1.4. We can identify LA1 with the singular chains construction

Sing(F )(X) := colim[n]∈∆opF (X ×∆n).

Since ∆op is sifted, colimits over it commute with products, hence we see that LA1 preserves finite
products.

To obtain a motivic space from a presheaf it is not enough to A1 localize and sheafify, since A1-
localization might break the sheaf condition, and sheafifying may violate A1-invariance. To that
end we define motivic localization as

Lmot := colimn→∞ (LNis ◦ LA1)◦n .

This is adjoint to the inclusion of motivic spaces in presheaves, and preserves finite products.

Example 1.5.

(1) Any X ∈ Smk gives rise to a motivic space LmothX given by the motivic localization of the
representable presheaf. We call this X as well, by abuse of notation.

(2) Any S ∈ S gives rise to a constant presheaf, whose motivic localization we also call S.
(3) Any simplicial variety, any stack, etc. give rise to motivic spaces.

There is a pointed version Spc(S)∗, analogous to how we have topological spaces and pointed
topological spaces. In this setting we have a smash product, denoted ∧.
There are two kinds of motivic spheres, coming from algebra (things like Gm and P1) and things
from topology (constant presheaves at simplicial spheres). This is the source of the bigrading in
motivic homotopy theory.

Proposition 1.6. We have that P1 ≃ S1 ∧Gm.

Proof. This comes from the cover

Gm A1

A1 P1.

□

Convention: We write

S1,0 := S1

S1,1 := Gm

Sm+n,n = G∧n
m ∧ (S1)∧m.
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This gives rise to suspension loops adjunction. Letting Σp,q := Sp,q ∧ −, we get

Σp,q : Spc(k)∗ ⇄ Spc(k)∗ :Ωp,q.

This only makes sense when Sp,q is a motivic space, i.e. in the range p ≥ q ≥ 0.

Notation 1.7. If we wanted to be pedantic, we would write Σ1,0 for the suspension Σ = S1 ∧ −
above. Often people write Σn := Σn,0, and decorate with a subscript when smashing by a different
sphere:

ΣGm := Σ1,1

ΣP1 := Σ2,1.

1.1. Stable motivic homotopy. By inverting smashing with respect to the projective line, we
obtain a new category, called the stable motivic homotopy category

SH(k) := Spc(k)∗
[
(P1)−1

]
.

Remark 1.8. This is not sheaves of spectra, that is a different category, denoted SHS1
(k).

This comes with an adjunction

Σ∞ : Spc(k)∗ ⇄ SH(k) :Ω∞.

The smash product ∧ in Spc(k)∗ gives rise to a symmetric monoidal structure ⊗ on SH(k). Its unit
is 1 ∈ SH(k), the motivic sphere spectrum.

If E ∈ SH(k) is a motivic spectrum, it gives rise to a cohomology theory — for any motivic space
X, we denote by

Ea,b(X) =
[
X,Sa,b ⊗ E

]
.

Example 1.9. We have that algebraic K-theory forms a motivic spectrum, called KGL.

Example 1.10. We will construct a motivic cohomology spectrum HR for each ring R.

1.2. Thom spectra.

Definition 1.11. If ξ : V → X is an algebraic vector bundle with zero section z : X → V , we denote
by

ThX(ξ) :=
V

V − z(X)

the Thom space attached to the bundle. It is an invertible object in SH(X).

This assignment

Vect(X)→ Pic(SH(X))

ξ 7→ ThX(ξ)

is functorial and maps to a group so it factors through its group completion

K(X)→ Pic(SH(X)).
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Definition 1.12. We define

MGLS := colim(X,ξ)ThX(ξ),

where the colimit is over all X ∈ SmS and all ξ ∈ K(X) so that rank(ξ) = 0.

This is an E∞-ring, and it is the universal oriented ring spectrum.

Remark 1.13. If k ⊆ C is a subfield of the complex numbers, we have a Betti realization functor

ReC : Smk → Top,

which extends to a functor

ReC : SH(k)→ Sp.

We have that ReCMGL = MU.

Wilson’s theorem dealt with understanding the cohomology of Ω∞Σ2nMU. By analogy, we are
interested in understanding the cohomology of Ω∞Σ2n,nMGL. First we have to say what we mean
by cohomology in this context.

2. Motivic cohomology

Goal: For every commutative ring R, define an object HRmot ∈ SH(k) representing motivic coho-
mology.

We want this cohomology theory to be R-linear, to of course admit pullbacks on cohomology from
contravariance, but also to have pushforwards along finite maps.

Definition 2.1. Given X,Y ∈ Smk, an elementary finite correspondence from X to Y is a span of
the form

Z

X Y,

where Z is integral, the map Z ↪−→ X ×Y is a closed immersion, and Z → X is finite and dominant
over a component of X.

Definition 2.2. Given a ring R, we denote by CorrRk (X,Y ) the set of formal R-linear combinations
of elementary finite correspondences. For example when R = Z, we have that correspondences are
particular kinds of algebraic cycles:

CorrRk (X,Y ) ⊆ Zk(X ×k Y ).

Proposition 2.3. We can construct a category Corr(Smk;R) with objects X ∈ Smk, with hom-sets
given by isomorphism classes of R-linear correspondence, with composition given by pullback.

There is a functor

γ : Smk → Corr(Smk;R)

(X → Y ) 7→ (X
id← X → Y ).

We claim that Corr(Smk;R) admits a monoidal structure for which γ is symmetric monoidal (the
symmetric monoidal structure on Smk is given by cartesian product).
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Notation 2.4. If C is a small category with finite coproducts, we denote by PShΣ ⊆ PSh the full
subcategory spanned by presheaves sending finite coproducts to products. For example because
disjoint unions are Nisnevich covers, we have that

ShvNis(Smk) ⊆ PShΣ(Smk).

Definition 2.5. An R-linear Σ-presheaf with transfers is an object of

PShΣ(Corr(Smk;R)).

Alternatively, instead of looking at presheaves valued in spaces, we can look at additive R-linear
presheaves valued in R-modules. This gives us the category of R-linear presheaves with transfers:

PST(k;R) := Fun⊕R (Corr(Smk;R)op,ModR) .

This latter category is abelian with enough injectives (c.f. [MVW06, p. 2.3]).

There are now two paths forward to define motivic cohomology

(1) Pretend PShΣ(Corr(Smk;R)) is PSh(Smk) and mirror the construction of the stable motivic
homotopy category (localize at A1, sheafify, invert the projective line). This gives us a
category of highly structured motivic spectra, called the category of Voevodsky motives.
It comes with natural adjunctions to ordinary motivic spectra, and we will construct the
spectrum representing motivic cohomology via this adjunction.

(2) Consider the derived category of the abelian category PST(k;R), and construct motivic
complexes whose hypercohomology compute motivic cohomology.

It’s a powerful result that these agree. The former gives us powerful formal properties like an
E∞-structure on motivic cohomology, while the latter gives us explicit formulas to carry out com-
putations. We will give an overview of both.

3. Motivic cohomology, the fancy way

The inclusion γ : Smk → Corr(Smop
k , R) induces an adjunction

(1) Rtr : PShΣ(Smk) ⇄ PShΣ(Corr(Smk;R)) :γ∗

On the left hand side we localize at A1 and Nisnevich sheafify. We can do the analogous process
on the right hand side and we get a category of R-linear motivic spaces with transfers, denoted
Spctr(k;R):

Smk PShΣ(Smk) Spc(k) Spc(k)∗ SH(k)

Corr(Smk) PShΣ(Smk) Spctr(k;R)

Theorem 3.1. Working over a perfect field, there is no need to iterate A1-localization and Nisnevich
sheafification here — that is, we have that

Lmot = LNisLA1 : PretrΣ(Smk;R)→ Spctr(k).

Proposition 3.2. The category PShtrΣ(Smk;R) is obtained as a localization of the category of chain
complexes of R-linear functors

Ch≥0 (FunR(Corr(Smk;R)op,ModR) ,

where ModR is the ordinary 1-category of R-modules.
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Corollary 3.3. Every object in PShtrΣ(Smk;R) can be modeled by an honest chain complex of
presheaves of R-modules

Remark 3.4. The adjunction in Equation 1 descends to an adjunction (we use the same notation
for functors by abuse of notation): There is a natural functor

Rtr : Spc(k)∗ ⇄ Spctr(k;R) :γ∗.

Here Spctr(k;R) is an R-linear version of the category DMeff
≥0(k) of effective bounded below Voevod-

sky motives.

Notation 3.5. We denote by R(q)[p] the image of the (p, q)-sphere under Rtr:

Rtr(S
p,q) =: R(q)[p].

We refer to R(1)[2] as the Tate motive.

By inverting the Tate motive R(1)[2] = Rtr(P1), we obtain the category of motivic spectra with
transfers:

SHtr(k;R) := Spctr(k;R)
[
Rtr(P1)−1

]
.

This is what’s often denoted by DM(k), the category of Voevodsky motives.

Remark 3.6. The notation DM(k) is intended to mimic D(M(k)) – this is intended to be the
derived category of the hypothetical abelian category of motives.

By formal nonsense, γ further induces an adjunction

Rtr : SH
tr(k;R) ⇄ SH(k) :γ∗.

Here Rtr is symmetric monoidal, and hence γ∗ is lax monoidal.

Theorem 3.7. (Voevodsky cancellation) If k is a perfect field, then the stabilization map

Σ∞
tr : Spc

tr(k;R)→ SHtr(k;R)

is fully faithful.

Upshot 3.8. Any spectrum lying in the image of this embedding can be modeled as an explicit
chain complex of presheaves with transfers.

We remark the only algebraic thing we did was look at correspondences. The rest was formal
categorical nonsense. Nevertheless, we get a definition of motivic cohomology out of this nonsense.

Definition 3.9. We define motivic cohomology HRmot ∈ SH(k) to be

HRmot := γ∗Rtr(S
0).

Remark 3.10. Since Rtr is symmetric monoidal, γ∗ is lax monoidal and hence preserves CAlg
objects. Therefore HRmot has an E∞ structure for free.

Notation 3.11. We denote by

HRp,q(X) = Hp
mot(X,R(q)) := π0MapSH(k)

(
Σ∞X+,Σ

p,qHRmot
)
.

So motivic cohomology is representable by definition.
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4. Motivic cohomology, the non-fancy way

Recall we had this category of R-linear presheaves with transfer :

PST(k;R) := Fun⊕R (Corr(Smk;R)op,ModR) .

Simplification: It’s actually totally okay to carry everything out over Z and then tensor with R
at the very end, so we’ll do that simplification here, to get the Z-linear category of presheaves with
transfers that people may be familiar with.

PST(k) := Fun⊕ (Corr(Smk)
op,Ab) .

We’d still like to impose some sort of A1-invariance here, and we know how to do this, via the
singular construction:

C• : PST(k)→ Fun(∆op,PST(k))

F 7→ F (U ×∆•).

By taking an alternating sum of face maps (i.e. Dold–Kan), we get a chain complex which we also
call C•F by abuse of notation:

C• : PST(k)→ Ch≥0(PST(k))

F 7→ C•F.

Proposition 4.1. [MVW06, p. 2.19] The homology presheaves HnC•F are homotopy invariant for
any n and any F ∈ PST(k).

Remark 4.2. (On hypercohomology) The idea of hypercohomology is to extend the allowable
coefficients for sheaf cohomology from a single sheaf of abelian groups to a complex of abelian
groups. It’s almost the same as cohomology with coefficients in the cohomology sheaves of the
complex, in the sense that there is a spectral sequence for F ∈ Ch(Ab(X)):

Hp(X,Hq(F •)⇒ Hp+q(X,F •).

We now have a composite functor1

Smop
k

Ztr−−→ Corr(Smk;R)op ↪−→ PST(k)
C•−→ Ch≥0(PST(k)).

We can mirror the smash product construction without creating motivic spaces by taking two
pointed schemes (X,x) and (Y, y) and defining

Ztr(X ∧ Y ) := coker
(
Ztr(X)⊕ Ztr(Y )

id×y+x×id−−−−−−−→ Ztr(X × Y )
)
.

Definition 4.3. We define the motivic complex Z(q) to be

Z(q) := C•Ztr(G∧q
m )[−q].

It turns out we already get some kind of strong sheaf condition without sheafifying!

Proposition 4.4. [MVW06, pp. 3.2, 6.2, 6.4] For every Y ∈ Smk, we have that Ztr(Y ) is an étale
sheaf and C•Ztr(Y ) is a chain complex of étale sheaves.

Notation 4.5. For any ring R (or abelian group) we denote by R(q) := Z(q) ⊗ R the (derived?)
tensor product.

1The notation between [Hoy15] and [MVW06] unfortunately gets swapped here. We should probably call this γ
but instead we’re calling it Ztr to match with what’s written in [MVW06].
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Definition 4.6. We define motivic cohomology to be hypercohomology with coefficients in the
motivic complex

Hp,q
mot(X,R) := Hp

Zar(X,R(q)).

We can compute motivic cohomology as hypercohomology in either the Zariski or Nisnevich site, it
doesn’t matter which.

Proposition 4.7. [MVW06, pp. 13.9, 13.10, 13.11] Let k be a perfect field, and let X ∈ Smk be
smooth. Then motivic cohomology can be computed using Nisnevich hypercohomology

Hp,q
mot(X;R) = Hp

Zar(X,R(q)) = Hp
Nis(X,R(q)).

Warning 4.8. Hypercohomology in the étale site doesn’t agree in general. It does in a range! This
is essentially the content of the Bloch–Kato conjecture.

Bloch–Kato: Let X be smooth over k, and ℓ invertible in k. Then

Hp
mot(X,Z/ℓ(q))→ Hp

et(X,Z/ℓ(q))
is an isomorphism for q ≥ p and injective for q ≥ p− 1.

5. Some computations

Example 5.1. [MVW06, p. 21]

(1) R(q) = 0 for q < 0, by convention
(2) R(0) = R concentrated in degree zero
(3) Z(1) = Gm[−1] [MVW06, p. 4.1]

So

Hp,q(X;R) = 0 for q < 0.

For X irreducible:

Hp(X,R(0)) = Hp(X,R).

In weight one, we get

H0(X,Z(1)) = 0

H1(X,Z(1)) = O×(X)

H2(X,Z(1)) = Pic(X).

The computation of weight one motivic cohomology with Z/ℓ coefficients is a bit more subtle.
Without using the full strength of Bloch–Kato we can still see that [MVW06, p. 4.8]

Z/ℓ(1)et ≃ µℓ,

which lets us compute

H1(X;Z/ℓ(1)) ∼= H1
et(X,µℓ)

by a combination of Hilbert 90 and some diagram chasing ([MVW06, p. 4.9]).

This also can be proven by arguing that

Z/ℓ(q) = Gm/qGm[−1]
over nice bases (c.f. [Elm, p. 2.0.5]).

The motivic cohomology groups agree with Bloch’s higher Chow groups:
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Theorem 5.2. (Voevodsky) Let X be a smooth variety. Then we have

Hp(X;Z(q)) = Hp,q
mot(X;Z) =

{
CHq(X, 2q − p) q ≥ 0 and 2q − p ≥ 0

0 else

c.f. [Hai, p. 4.10].

Example 5.3. When 2q = p, we obtain the ordinary Chow groups

H2q,q(X;A) ∼= CHq(X)⊗A.

We have seen motivic cohomology vanishes for q ≤ 0 (actually q ≤ 1). We establish some further
vanishing results.

Theorem 5.4. (Vanishing theorems, [MVW06, pp. 3.6, 19.3]) If X is smooth, then

Hp,q(X,A) = 0

for p > q + dimX or p > 2q

Proof. The first range is immediate. We have that Z(q) is zero in degrees above q. Since H i
Zar(X,−)

vanishes for i > dimX, so vanishing for p > q + dimX follows by the hypercohomology spectral
sequence. Vanishing for the other range is a bit harder. □

6. Eilenberg–MacLane spaces

Since we have defined HR ∈ SH(k), we can obtain Eilenberg–MacLane spaces in the following way:

K(R(q), p) := Ω∞HR⊗ Sp,q.

Note that Sp,q is only a space when p ≥ q and p > 0.2 We can define Eilenberg–MacLane spaces
outside this range by taking loop spaces.

Warning: For any sheaf of abelian groups A, we can construct Eilenberg–MacLane spaces K(A, n),
representing Hn

Nis(−,A), with homotopy sheaves concentrated in a single simplicial degree. The
spaces K(R(q), p) do not have this property. They are (p−1)-connected, but have higher nontrivial
homotopy sheaves (see e.g. [AFH19, p. 2.21])

Example 6.1. Since Z(1) = O×[−1], we get that

Gm = K(Z(1), 1).

The Picard group of line bundles is H2,1(−,Z) by comparison to Chow, so we get

P∞ = K(Z(1), 2).

Remark 6.2. We are particularly interested in the Eilenberg–MacLane spaces K(Z(2n), n), since
these represent Chow groups.

2In [Voe10, p. 6] Voevodsky remarks it is hard to describe the structure of K(A(q), p) (he calls them K(A, p, q))
when p < q and q ≥ 2.
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7. Motivic cohomology of an algebraically closed field

As an example we will use in the seminar, we want to compute H∗,∗
mot(Spec(k);Z/ℓ) for k an alge-

braically closed field.

Multiplication by ℓ induces a map

Gm
ℓ−→ Gm,

whose fiber is a K(Z/ℓ(1), 0). A choice of primitive ℓth root of unity, given by S0 → Gm, gives rise
to a class we call τ ∈ π0K(Z/ℓ(1), 0):

S0

K(Z/ℓ(1), 0) Gm Gm.
ℓ

In particular we obtain some class τ ∈ H0,1
mot(k;Z/ℓ).

Proposition 7.1. If k = k̄, there is an isomorphism

H∗
et(Spec(k);µℓ) =

{
Z/ℓ ∗ = 0

0 else

Via comparison to the étale site, and using our truncation result above, we can conclude the following
theorem of Suslin.

Theorem 7.2. [Voe10, p. 83] If k = k̄, we have that

H∗,∗
mot(Spec(k);Z/ℓ) ∼= Z/ℓ[τ ].

Here |τ | = (0, 1).

Proof sketch. We want to compute Hp(k,Z/ℓ(q)). Since Z(q) = 0 for q < 0, we assume q ≥ 0.
Since a field is dimension zero, by the vanishing theorem, we have that Hp(k,Z/ℓ(q)) = 0 for p > q.
Hence we’re left with the range p ≤ q, which is precisely the range in which Bloch–Kato implies we
are isomorphic to étale cohomology.

Since Z/ℓ(q)et = µ⊗q
ℓ = µℓ for any q (by algebraic closure), we conclude that

Hp,q(k,Z/ℓ) =

{
Z/ℓ p = 0, q ≥ 0

0 else

In particular the result follows. □

Remark 7.3. We have that H0
et(X,Z/ℓ(q)) = Z/ℓ even when q is negative. So we have that

H∗
et(k,Z/ℓ(∗)) = Z/ℓ[τ, τ−1].

Corollary 7.4. Let X be any motivic space or spectrum. Then H∗,∗(X,Z/ℓ) is a module over
Z/ℓ[τ ].

8. Motives

For any ring R, we can now create the category ModR := ModHRmot of modules over motivic
cohomology with R coefficients.

Terminology 8.1. Given X ∈ SH(k) a motivic spectrum, we denote by X⊗R the motive attached
to X. This is an element in ModR.
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Definition 8.2. We say an R-module M is split if we have an equivalence

M
∼−→ ∨αΣpα,qαR,

for some (uniquely determined) family of bidegrees (pα, qα) (c.f. [Hoy15, p. 193]).

Corollary 8.3. There is a monoidal adjunction

ModHR ⇄ SHtr(k;R),

compatible with the adjunction SHtr(k;R) ⇄ SH(k).

Definition 8.4.

(1) An HR-module is split/cellular if it is generated by HR-modules of the form Σp,qHR.
(2) An object in SHtr(k;R) is cellular if it is generated by objects of the form RtrΣ

p,q1.

Lemma 8.5. [Hoy15, p. 4.4] This restricts to an equivalence on the full subcategories of cellular
objects.

Definition 8.6. [Voe10, p. 2.60], [Hoy15, p. 196] An object in Spctr(k;R) is called split proper Tate
if it is equivalent to a direct sum of objects of the form

Rtr(S
p,q),

for p ≥ 2q. That is, non-negative S1-suspensions of tensor powers of P1.

Theorem 8.7. [Voe10, p. 3.33] We have that

(Z/ℓ)trK(Z/ℓ(q), p)
is split proper Tate for any p ≥ 2q.

Corollary 8.8. The motivic cohomology

H∗,∗(K(Z/ℓ(a), b),Z/ℓ)
is τ -torsion free as a module over H∗,∗(k,Z/ℓ)

Corollary 8.9. The motivic Steenrod algebra at a prime p can be computed as

A∗,∗ = lim
n→∞

H̃∗+2n,∗+n(K(Fp(2n), n);Fp).

Sketch. We have to argue a certain lim1 term vanishes, which simplifies by leveraging thatK(Fp(2n), n)
is split proper Tate. □

This lets us leverage unstable cohomology operations (reduced power operations and Bocksteins)
to describe the motivic Steenrod algebra.
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