AN INTRO TO THE NORM RESIDUE ISOMORPHISM THEOREM

THOMAS BRAZELTON

ABSTRACT. Talk notes for the Juvitop seminar, Fall 2025.

0. About

Intro talk for Juvitop Fall 2025, setting up the background of the *norm residue isomorphism theorem*.

1. History

By the end of the 1960's, the first few algebraic K-groups K_0 , K_1 , and K_2 had been defined and extensively explored, but no full constructions of the higher K-groups had yet appeared. In a 1967 course at Princeton, Milnor wrote down the first definition of K_2 of a ring in terms of Steinberg modules. A few results followed quickly thereafter, including Matsumoto's 1968 PhD thesis, in which he gave a presentation for K_2 of a field.

Theorem 1.1 (Matsumoto). If F is a field, we have that $K_2(F)$ is the abelian group generated by $symbols \{x, y\}$ with $x, y \in F^{\times}$, modulo the relations:

Exercise 1.2. Using this presentation, show that $K_2(\mathbb{F}_q) = 0$.

It turns out there is a close connection between algebraic K_2 and the Brauer group of a field – we recall that the Brauer group classifies central simple algebras over a field F.

Notation 1.3 ([Mil71, §15] [Wei13, III.6.9]). If ζ is a primitive nth root of unity in F, and $\alpha, \beta \in F^{\times}$, we can define the *cyclic algebra*, which is central and simple, defined to be the free unital associative F-algebra with the following generators and relations:

$$A_{\zeta}(\alpha, \beta) = F \langle x, y \mid x^n = \alpha = \beta, \ xy = \zeta yx \rangle.$$

For n=2 these are quaternion algebras.

Proposition 1.4 ([Mil71, 15.4]). For F as above, the function

$$F^{\times} \times F^{\times} \to \operatorname{Br}(F)$$

 $(\alpha, \beta) \mapsto A_{\zeta}(\alpha, \beta)$

satisfies the relations in Matsumoto's work, hence extends to what's called a $Galois\ symbol\ (or\ Steinberg\ symbol\ sometimes)^1$

$$K_2(F) \to \operatorname{Br}(F)$$
.

Exercise 1.5.

¹Note that this definition depends on a choice of primitive nth root of unity. See [Mil71, 15.5] for more on this.

- \triangleright We have that $A_{\zeta}(\alpha,\beta)^{\otimes_F n}$ is a matrix algebra (hence trivial in the Brauer group), so the Galois symbol lands in the n-torsion elements of the Brauer group Br(F)[n], and therefore
- \triangleright the Galois symbol factors through $K_2(F)/n$ \triangleright Br $(F)[n] = H^2_{\mathrm{et}}(F, \mu_n)$, and if $\mu_n \subseteq F^{\times}$ we have that this is also equivalent to $H^2_{\mathrm{et}}(F, \mu_n^{\otimes 2})$.

So altogether we are getting a map we also call the Galois symbol, or maybe the norm residue map:

$$K_2(F)/n \to H^2_{\text{et}}(F, \mu_n^{\otimes 2}).$$

and we can still define this even if F doesn't contain primitive nth roots of unity, just by using the cup product structure on étale cohomology.

Theorem 1.6 (Merkurjev-Suslin, 1980's). This is an isomorphism for every field.

This was proven for global fields by Tate in 1976, and by Merkurjev and Suslin in 1980-1981.

1.1. A connection to Iwasawa theory.

Theorem 1.7 (Garland). If F is a number field, $K_2(\mathcal{O}_F)$ is finite.

So what is its size? What does it mean?

Notation 1.8. For a number field F, we define

$$w_2(F) := \max \{ m \mid \operatorname{Gal}(F(\mu_m)/F) \text{ is 2-torsion} \}.$$

Conjecture 1.9 (Birch-Tate). For a totally real number field F, we have that

$$#K_2(\mathcal{O}_F) = w_2(F) \cdot \zeta_F(-1).$$

The odd parts of these numbers agree by Mazur-Wiles. The 2-adic part is equivalent to part of a huge conjecture in Iwasawa theory, apparently.

Contrast this with the observation that $K_2(\mathbb{R})$ is uncountably infinite [Wei13, III.5.9.1].

1.2. Enter quadratic forms. In a total change of pace, we can consider a field F (assumed to be of characteristic $\neq 2$ here) and study quadratic forms over it. Recall that quadratic forms are O_n -torsors on the étale site, we'll use this later. We define the Grothendieck-Witt ring GW(F) to be the group completion of the monoid of isomorphism classes of quadratic forms over F. Each quadratic form has a well-defined rank, just being the number of different variables used.

Definition 1.10. The fundamental ideal of F is defined to be the kernel of the rank map:

$$I(F) := \ker \left(\operatorname{GW}(F) \xrightarrow{\operatorname{rank}} \mathbb{Z} \right).$$

As an abelian group, I(F) is generated by the Pfister forms

$$\langle \langle a \rangle \rangle := \langle 1 \rangle - \langle a \rangle$$
.

Theorem 1.11 (Arason-Pfister's Hauptidealsatz). Given two elements $\alpha, \beta \in GW(F)$, they are equal if and only if they are equal modulo $I^{n+1}(F)$ for every $n \geq 0$. There is an isomorphism

$$GW(F) \cong \bigoplus_{n} I^{n}(F)/I^{n+1}(F)$$

Slogan 1.12. To form invariants of quadratic forms, we should better understand the associated graded parts of the filtration on the Grothendieck-Witt ring by powers of the fundamental ideal.

Example 1.13. We can compute that there are isomorphisms:

$$\operatorname{rank} \colon I^0(F)/I(F) \xrightarrow{\sim} \mathbb{Z}$$
 determinant : $I(F)/I^2(F) \xrightarrow{\sim} F^{\times}/\left(F^{\times}\right)^2$
$$w_2 \colon I^2(F)/I^3(F) \xrightarrow{\sim} \operatorname{Br}(F)[2].$$

By precomposing with the projection $GW(F) \to I^n(F)/I^{n+1}(F)$, these isomorphisms give *invariants* of quadratic forms. The first two are rank and determinant, ² let's define this latter one:

Definition 1.14. If $q = \sum a_i x_i^2$ is a diagonalized quadratic form, we define $w_2(q) \in \operatorname{Br}(F)$ to be the product of all the quaternion algebras $\prod_{i < j} {a_i, a_j \choose F}$. This w_2 is unrelated to the w_2 in the Birch-Tate conjecture as far as I know, it's just unfortunate overloaded notation.

Observation 1.15 (Milnor). The Hasse invariant w_2 factors through the Galois symbol,

$$I^{2}(F) \xrightarrow{w_{2}} \operatorname{Br}(F)[2]$$

$$K_{2}(M)/2$$

and moreover the kernel of the surjective map $I^2(F) \to K_2(F)/2$ is exactly $I^3(F)$. Hence we have an isomorphism

$$K_2(F)/2 \cong I^2(F)/I^3(F).$$

Milnor's idea was the following: whatever higher algebraic K-theory is (we don't know yet), perhaps it should be something where $K_n(F)/2$ comes with a natural symbol map to $I^n(F)/I^{n+1}(F)$. This led Milnor to define what is now known as $Milnor\ K$ -theory, which we'll see more about in the talk next week. We write it as $K_n^M(F)$, with a superscript M for Milnor. It comes with a natural map to honest algebraic K-theory, but this starts failing to be an isomorphism at n=3. Nevertheless Milnor K-theory is important in its own right.

As requested, it supports some symbol maps to the associated graded for GW(F):

Proposition 1.16 (Milnor). There is a symbol map

$$K_n^M(F)/2 \to I^n(F)/I^{n+1}(F)$$

 $\{a_1, \dots, a_n\} \mapsto \prod_{i=1}^n \langle \langle a_i \rangle \rangle,$

which is surjective.

Conjecture 1.17 (Milnor Conjecture 2). This map is a bijection.

Proven by Kato in characteristic 2 and by Orlov-Vishik-Voevodsky in characteristic $\neq 2$.

This leads us to a natural question:

Question 1.18. Can we construct symbol maps out of mod two Milnor K-theory valued in étale cohomology?

²Here $I^0(F)$ means GW(F) by convention, so the rank isomorphism is just from the definition of I(F).

³This notation $\left(\frac{a,b}{F}\right)$ is shorthand for the free unital associative F-algebra given by the generators and relations $\langle x,y\mid x^2=a,\ y^2=b,xy=-yx\rangle$. This might look more familiar to some after replacing x by \hat{i} , y by \hat{j} and xy by \hat{k} , in which case it is clearly a quaternion algebra.

Milnor also did this for us! Moreover, these make sense not just for μ_2 coefficients, but for all μ_n coefficients.

Theorem 1.19 (Bass-Tate, Milnor). Let F be a field containing nth roots of unity, where n is prime to the characteristic of F. Then the cup product map

$$(F^{\times})^{\otimes r} \cong H^1_{\mathrm{et}}(F,\mu_n)^{\otimes r} \xrightarrow{\cup} H^r_{\mathrm{et}}(F,\mu_n^{\otimes r})$$

factors through the Steinberg identity, inducing a graded ring homomorphism

$$K_*^M(F)/n \to H_{\operatorname{et}}^*(F,\mu_n^{\otimes *}).$$

Proof. It suffices to check the Steinberg identity holds on $H^2_{\mathrm{et}}(F,\mu_n^{\otimes 2})$

Theorem 1.20. This map is an isomorphism.

Proven by Merkurjev in n = 2, by Merkurjev-Suslin-Rost for n = 3, and by Voevodsky in general. It is a corollary of the more general norm residue isomorphism theorem.

Application: Milnor K-theory is defined very naturally in terms of generators and relations. This gives us a *presentation* for the étale cohomology ring.

Sub-application: This can make either side easier to compute, since we can compute étale cohomology via Milnor K-theory or Milnor K-theory via étale cohomology.

1.3. Aside: higher Hasse-Witt invariants. Let's pretend that we're over a field of characteristic $\neq 2$, so that we can write $\mathbb{Z}/2$ instead of $\mu_2^{\otimes n}$ everywhere. Let's also assume that we know the Milnor conjectures are true. Then we have a string of isomorphisms for every n of the form:

$$I^n(F)/I^{n+1}(F) \overset{\sim}{\leftarrow} K_n^M(F)/2 \xrightarrow{\sim} H_{\mathrm{et}}^n(F,\mathbb{Z}/2).$$

Altogether we are getting maps

$$\mathrm{GW}(F) \xrightarrow{\sim} \oplus_n H^n_{\mathrm{et}}(F,\mathbb{Z}/2)$$

which jointly classify all quadratic forms. We know the second one w_2 for instance is the Hasse-Witt invariant. We can ask what the others are – are they universal in some sense?

If we take a page from algebraic topology, we are asking for some universal étale cohomology classes which classify quadratic forms. Since quadratic forms of rank n are étale O_n torsors, they are represented by the stack BO_n . Hence in looking for cohomological invariants, we might ask – what is the étale cohomology of the stack BO_n ? This was computed by Jardine:

Theorem 1.21 (Jardine). We have that $H^*(BO_n; \mathbb{Z}/2)$ is the free $H^*(F, \mathbb{Z}/2)$ -algebra on generators w_1, \ldots, w_n , with $|w_i| = i$.

In other words, there are some universal invariants w_i for quadratic forms, and these are valued in $H^i_{\text{et}}(F,\mathbb{Z}/2)$. These are the Hasse-Witt invariants.

2. Another appearance of Milnor K-theory

(The following story comes from §2.4 of Gillet's paper in the Handbook, but is essentially the construction of the Rost complex.)

Let X be an integral Noetherian scheme, $U\subseteq X$ an open subscheme and $Z\subseteq X$ its closed complement. Then there is an exact sequence

$$(2.1) ? \to \operatorname{CH}(Y) \to \operatorname{CH}(X) \to \operatorname{CH}(U) \to 0.$$

Can we extend this to the left? Recall that the Chow group is the cokernel

$$CH(X) = coker(R(X) \xrightarrow{div} Z(X)),$$

where

$$R(X) = \bigoplus_{\xi \in X} k(\xi)^{\times},$$

$$Z(X) = \bigoplus_{\xi \in X} \mathbb{Z},$$

are the group of K_1 -chains and the group of cycles, respectively. By basic homological algebra, the thing extending Equation (2.1) to the left would have to be

$$\ker(R(U) \xrightarrow{\operatorname{div}} Z(U)).$$

What things have divisor zero on U? This is now just a question about U, it doesn't depend on Z or X, so we can forget about them.

Suppose we have an element in $k(\xi)$ mapping to zero under the divisor map, then it must have valuation zero at each discrete valuation. The only such elements in the field $k(\xi)$ are of the form ± 1 in general, so we know we need a formal combination of two or more rational functions.

Exercise 2.1. If the divisors associated to $f, g \in k(U)^{\times}$ have no components in common, then

$$g_{|\operatorname{div}(f)} - f_{\operatorname{div}(g)}$$

is zero in Z(U).

Proposition 2.2. If U is integral and ϕ, ψ are Cartier divisors with $\operatorname{div}(\phi) = \sum n_i[Y_i]$ and $\operatorname{div}(\psi) = \sum m_i[Z_i]$ then

$$\sum n_i \operatorname{div}(\psi_{|Y_i}) = \sum_j m_j \operatorname{div}(\phi_{|Z_j}).$$

Proof. Can be proven with intersection theory (in Fulton), purely algebraically, or with the coniveau spectral sequence in algebraic K-theory (original proof).

So we should extend

$$\bigoplus_x k(x)^{\times} \otimes k(x)^{\times} \to R(U) \to Z(U) \to 0.$$

What is this "divisor" map? It should send $f \otimes g$ to $f_{\text{div}(g)} - g_{|\text{div}(f)}$. Hence the kernel of this map is generated by elements $f \otimes g + g \otimes f$.

Exercise 2.3. Check another valid presentation of $K_2(F)$ is

$$F^{\times} \otimes F^{\times}/(x \otimes y + y \otimes x).$$

Slogan 2.4. Milnor K-theory appears in nature when attempting to develop a long exact localization sequence for Chow groups.

3. Generalizing everything

In the 80's, Beilinson and Lichtenbaum had conjectured the existence of certain chain complexes of Nisnevich sheaves, denoted $\mathbb{Z}(q)$ or $\mathbb{Z}/\ell(q)$ for a prime ℓ , with a laundry list of desirable properties. We can take hypercohomology of these and we obtain a bigraded ring

$$\bigoplus_{p,q} H^p(X,\mathbb{Z}(q)).$$

Roughly speaking these should form some graded parts of the algebraic K-theory of X. These complexes were later constructed explicitly by Voevodsky.

If X is a smooth variety over k and $\ell^{-1} \in k$, then we will soon see there is a natural map

$$H^p(X, \mathbb{Z}/\ell(q)) \to H^p_{\mathrm{et}}(X, \mu_{\ell}^{\otimes q}).$$

A more general version of the étale cohomology version of the Milnor conjectures is the following:

Conjecture 3.1. In the situation above,

$$H^p(X, \mathbb{Z}/\ell(q)) \to H^p_{\mathrm{et}}(X, \mu_{\ell}^{\otimes q})$$

is an isomorphism for $p \leq q$.

Example 3.2. If $X = \operatorname{Spec}(F)$, then

$$K_p^M(F)/\ell \cong H^{p,p}(F, \mathbb{Z}/\ell),$$

so the conjecture would imply the Bloch-Kato conjecture as phrased for Milnor K-theory modulo ℓ .

This can again be generalized, since it doesn't really depend upon the scheme X, but rather the complex of sheaves $\mathbb{Z}/\ell(q)$. If we let π denote the change of site functor from étale to Nisnevich sheaves, we have that

$$H_{\mathrm{et}}^n(X,\mu_\ell^{\otimes q}) \cong H_{\mathrm{Nis}}^n(X,R\pi_*\mu_\ell^{\otimes q}).$$

The conjecture above then arises from a map in the derived category of Nisnevich sheaves:

$$\mathbb{Z}/\ell(q) \to R\pi_*\mu_\ell^{\otimes q}.$$

The general conjecture is then the following (which we could call the norm residue isomorphism theorem):

Conjecture 3.3. The map

$$\mathbb{Z}/\ell(q) \to \tau^{\leq q} R \pi_* \mu_\ell^{\otimes q}$$

is an isomorphism in the derived category of Nisnevich sheaves.

This is the form of the conjecture we'll work towards proving this semester.

References

- [Mil71] John Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, no. 72, Princeton University Press, 1971.
- [Wei13] Charles A. Weibel, *The K-book*, Graduate Studies in Mathematics, vol. 145, American Mathematical Society, Providence, R.I., 2013.