AN INTRO TO THE NORM RESIDUE ISOMORPHISM THEOREM

THOMAS BRAZELTON

ABSTRACT. Talk notes for the Juvitop seminar, Fall 2025.

0. ABouT

Intro talk for Juvitop Fall 2025, setting up the background of the norm residue isomorphism
theorem.

1. HISTORY

By the end of the 1960’s, the first few algebraic K-groups Ky, K1, and Ko had been defined and
extensively explored, but no full constructions of the higher K-groups had yet appeared. In a 1967
course at Princeton, Milnor wrote down the first definition of K5 of a ring in terms of Steinberg
modules. A few results followed quickly thereafter, including Matsumoto’s 1968 PhD thesis, in
which he gave a presentation for Ks of a field.

Theorem 1.1 (Matsumoto). If F is a field, we have that Ko(F') is the abelian group generated by
symbols {x,y} with z,y € F*, modulo the relations:

> {z1ez, y} = {z1,y} + {z2,y} and {z, y1y2} = {2, 91} + {2, 42}
> {z,1 -z} =0.
Exercise 1.2. Using this presentation, show that Ky(F,) = 0.

It turns out there is a close connection between algebraic K and the Brauer group of a field —
we recall that the Brauer group classifies central simple algebras over a field F.

Notation 1.3 ([Mil71, §15] [Weil3, II1.6.9]). If ¢ is a primitive nth root of unity in F', and o, § € F'*,
we can define the cyclic algebra, which is central and simple, defined to be the free unital associative
F-algebra with the following generators and relations:

Ac(a,B) = F(z,y| 2" =a=p, zy = (yz).
For n = 2 these are quaternion algebras.
Proposition 1.4 ([Mil71, 15.4]). For F' as above, the function
F* x F* — Br(F)
(a, B) = A¢(a, B)

satisfies the relations in Matsumoto’s work, hence extends to what’s called a Galois symbol (or
Steinberg symbol sometimes)?

K5(F) — Br(F).
Exercise 1.5.

INote that this definition depends on a choice of primitive nth root of unity. See [Mil71, 15.5] for more on this.
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> We have that A¢(a, 3)®F™ is a matrix algebra (hence trivial in the Brauer group), so the
Galois symbol lands in the n-torsion elements of the Brauer group Br(F)[n], and therefore

> the Galois symbol factors through Ko(F')/n

> Br(F)[n] = H2(F, ju,), and if p, C F* we have that this is also equivalent to HZ (F, u$?).

So altogether we are getting a map we also call the Galois symbol, or maybe the norm residue
map:
Es(F)/n — Hg(F, 1)

and we can still define this even if F' doesn’t contain primitive nth roots of unity, just by using the
cup product structure on étale cohomology.

Theorem 1.6 (Merkurjev-Suslin, 1980’s). This is an isomorphism for every field.
This was proven for global fields by Tate in 1976, and by Merkurjev and Suslin in 1980-1981.

1.1. A connection to Iwasawa theory.

Theorem 1.7 (Garland). If F' is a number field, K(OF) is finite.

So what is its size? What does it mean?
Notation 1.8. For a number field F', we define
wa(F) := max {m | Gal(F'(p,)/F) is 2-torsion} .
Conjecture 1.9 (Birch-Tate). For a totally real number field F', we have that
#K5(Op) = wao(F) - Cp(—1).
The odd parts of these numbers agree by Mazur-Wiles. The 2-adic part is equivalent to part of a
huge conjecture in Iwasawa theory, apparently.

Contrast this with the observation that K3(R) is uncountably infinite [Weil3, I11.5.9.1].

1.2. Enter quadratic forms. In a total change of pace, we can consider a field F' (assumed to
be of characteristic # 2 here) and study quadratic forms over it. Recall that quadratic forms are
Op-torsors on the étale site, we’ll use this later. We define the Grothendieck—Witt ring GW(F') to
be the group completion of the monoid of isomorphism classes of quadratic forms over F'. Each
quadratic form has a well-defined rank, just being the number of different variables used.

Definition 1.10. The fundamental ideal of F' is defined to be the kernel of the rank map:
I(F) = ker (GW(F) rank, Z) .

As an abelian group, I(F') is generated by the Pfister forms
{(a)) = (1) = {a).

Theorem 1.11 (Arason-Pfister’s Hauptidealsatz). Given two elements «, 5 € GW(F), they are
equal if and only if they are equal modulo "+1( ) for every n > 0. There is an isomorphism

@ In /In+1 )

Slogan 1.12. To form invariants of quadratic forms, we should better understand the associated
graded parts of the filtration on the Grothendieck-Witt ring by powers of the fundamental ideal.
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Example 1.13. We can compute that there are isomorphisms:
rank: I°(F)/I(F) = 7Z
determinant: I(F)/I*(F) = F*/ (F*)®
wy: I*(F)/I3(F) = Br(F)[2].

By precomposing with the projection GW(F) — I"(F)/I"T(F), these isomorphisms give invariants
of quadratic forms. The first two are rank and determinant,? let’s define this latter one:

Definition 1.14. If ¢ = 3" a;2? is a diagonalized quadratic form, we define w2 (q) € Br(F) to be

the product of all the quaternion algebras [[;_; (“%2).3 This wo is unrelated to the wy in the
Birch-Tate conjecture as far as I know, it’s just unfortunate overloaded notation.

Observation 1.15 (Milnor). The Hasse invariant wy factors through the Galois symbol,

I*(F) = Br(F)[2]

~

Ky (M) /2

and moreover the kernel of the surjective map I?(F) — Ka(F)/2 is exactly I3(F). Hence we have
an isomorphism

Ks(F) /22 IX(F)/I°(F).

Milnor’s idea was the following: whatever higher algebraic K-theory is (we don’t know yet),
perhaps it should be something where K,,(F)/2 comes with a natural symbol map to I"(F)/I"1(F).
This led Milnor to define what is now known as Milnor K -theory, which we’ll see more about in
the talk next week. We write it as Kéw (F), with a superscript M for Milnor. It comes with a

natural map to honest algebraic K-theory, but this starts failing to be an isomorphism at n = 3.
Nevertheless Milnor K-theory is important in its own right.

As requested, it supports some symbol maps to the associated graded for GW (F):
Proposition 1.16 (Milnor). There is a symbol map
Ky (F)/2 = I'(F)/I"TY(F)

{a1,...,an} — H((ai»,

which is surjective.

Conjecture 1.17 (Milnor Conjecture 2). This map is a bijection.

Proven by Kato in characteristic 2 and by Orlov-Vishik-Voevodsky in characteristic # 2.

This leads us to a natural question:

Question 1.18. Can we construct symbol maps out of mod two Milnor K-theory valued in étale
cohomology?

2Here I°(F) means GW(F) by convention, so the rank isomorphism is just from the definition of I(F).

3This notation ( %’) is shorthand for the free unital associative F-algebra given by the generators and relations

<x, y | 22=aqa, Y’ =bay = fyx>. This might look more familiar to some after replacing x by i, y by 7 and zy by lAc,
in which case it is clearly a quaternion algebra.
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Milnor also did this for us! Moreover, these make sense not just for uo coefficients, but for all pu,
coefficients.

Theorem 1.19 (Bass-Tate, Milnor). Let F' be a field containing nth roots of unity, where n is
prime to the characteristic of F'. Then the cup product map

~ U
(FX)®T - Helt(F’ Mn)®r - Hgt(Fv M%T)
factors through the Steinberg identity, inducing a graded ring homomorphism

KX (F)/n— H(F, ™).

Proof. Tt suffices to check the Steinberg identity holds on HZ (F, u%?) O

Theorem 1.20. This map is an isomorphism.

Proven by Merkurjev in n = 2, by Merkurjev-Suslin-Rost for n = 3, and by Voevodsky in general.
It is a corollary of the more general norm residue isomorphism theorem.

Application: Milnor K-theory is defined very naturally in terms of generators and relations.
This gives us a presentation for the étale cohomology ring.

Sub-application: This can make either side easier to compute, since we can compute étale
cohomology via Milnor K-theory or Milnor K-theory via étale cohomology.

1.3. Aside: higher Hasse-Witt invariants. Let’s pretend that we're over a field of characteristic

# 2, so that we can write Z/2 instead of ,u%z’” everywhere. Let’s also assume that we know the

Milnor conjectures are true. Then we have a string of isomorphisms for every n of the form:
I"(F)/1"™Y(F) & KM(FY/2 = HY(F,7./2).
Altogether we are getting maps
GW(F) = @,H (F,Z/2)

which jointly classify all quadratic forms. We know the second one ws for instance is the Hasse-Witt
invariant. We can ask what the others are — are they universal in some sense?

If we take a page from algebraic topology, we are asking for some universal étale cohomology
classes which classify quadratic forms. Since quadratic forms of rank n are étale O,, torsors, they
are represented by the stack BO,,. Hence in looking for cohomological invariants, we might ask —
what is the étale cohomology of the stack BO,,7 This was computed by Jardine:

Theorem 1.21 (Jardine). We have that H*(BO,,;Z/2) is the free H*(F, Z/2)-algebra on generators
Wi, ..., Wy, With |w;| = 1.

In other words, there are some universal invariants w; for quadratic forms, and these are valued
in H. (F,Z/2). These are the Hasse- Witt invariants.

2. ANOTHER APPEARANCE OF MILNOR K-THEORY
(The following story comes from §2.4 of Gillet’s paper in the Handbook, but is essentially the
construction of the Rost complex.)

Let X be an integral Noetherian scheme, U C X an open subscheme and Z C X its closed
complement. Then there is an exact sequence

(2.1) ? - CH(Y) — CH(X) — CH(U) — 0.
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Can we extend this to the left? Recall that the Chow group is the cokernel
CH(X) = coker(R(X) L% Z(X)),
where
R(X) = @eexk(§)™,
Z(X) = Beex L,

are the group of Kj-chains and the group of cycles, respectively. By basic homological algebra, the

thing extending Equation (2.1) to the left would have to be
ker(R(U) L% z(U)).

What things have divisor zero on U? This is now just a question about U, it doesn’t depend on Z
or X, so we can forget about them.

Suppose we have an element in k() mapping to zero under the divisor map, then it must have
valuation zero at each discrete valuation. The only such elements in the field k() are of the form
+1 in general, so we know we need a formal combination of two or more rational functions.

Exercise 2.1. If the divisors associated to f,g € k(U)* have no components in common, then
gidiv(f) — Jaiv(g)
is zero in Z(U).

Proposition 2.2. If U is integral and ¢, are Cartier divisors with div(¢) = > n;[Y;] and
div(¢) =3 m;[Z;] then

Y nidiv(dyy,) = Y mdiv(gyz,)-
j

Proof. Can be proven with intersection theory (in Fulton), purely algebraically, or with the coniveau
spectral sequence in algebraic K-theory (original proof). O

So we should extend
@k(2) @ k(x)* — R(U) = Z(U) — 0.

What is this “divisor” map? It should send f ® g to fqiv(g) — 9jaiv(y)- Hence the kernel of this map
is generated by elements f ® g+ g ® f.

Exercise 2.3. Check another valid presentation of Ks(F) is
F*QF /(z@y+y®uz).

Slogan 2.4. Milnor K-theory appears in nature when attempting to develop a long exact localization
sequence for Chow groups.

3. GENERALIZING EVERYTHING

In the 80’s, Beilinson and Lichtenbaum had conjectured the existence of certain chain complexes
of Nisnevich sheaves, denoted Z(q) or Z/¢(q) for a prime ¢, with a laundry list of desirable properties.
We can take hypercohomology of these and we obtain a bigraded ring

@p,qu(Xa Z(q))-

Roughly speaking these should form some graded parts of the algebraic K-theory of X. These
complexes were later constructed explicitly by Voevodsky.
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If X is a smooth variety over k and ¢~' € k, then we will soon see there is a natural map
HP(X,Z/(q)) = H(X, p).
A more general version of the étale cohomology version of the Milnor conjectures is the following:
Conjecture 3.1. In the situation above,
HP(X,Z/0(q)) — HY (X, p)
is an isomorphism for p < q.
Example 3.2. If X = Spec(F'), then
K, (F)/t = HP?(F,Z]¢),

so the conjecture would imply the Bloch-Kato conjecture as phrased for Milnor K-theory modulo 4.

This can again be generalized, since it doesn’t really depend upon the scheme X, but rather the
complex of sheaves Z/l(q). If we let m denote the change of site functor from étale to Nisnevich
sheaves, we have that

® ~Y X
(th(Xa /’Lg q) - Hl%is(Xv Rﬂ'*'u,g q),
The conjecture above then arises from a map in the derived category of Nisnevich sheaves:
Z/0(q) — R ?.

The general conjecture is then the following (which we could call the norm residue isomorphism
theorem):

Conjecture 3.3. The map
Z7]0(q) — TSqRT(*/L?q

is an isomorphism in the derived category of Nisnevich sheaves.

This is the form of the conjecture we’ll work towards proving this semester.
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