HOPF ALGEBROIDS

THOMAS BRAZELTON

ABSTRACT. Notes from an expository talk given in the UPenn chromatic homotopy theory
seminar, spring 2021.

1. BASIC DEFINITIONS

Let &€ be a category with finite products. Then a group object in € is an element G € €
together with maps

m:GxG—G
e:1—-G
i:G— G,
multiplication, unity, and inversion, respectively, which satisfy the expected axioms.

Proposition 1.1. Let G be a group object in %, and assume that % is locally small. Then
for any X € %, we have that

Homg¢ (X, G)
is a group. Here the group operation is given by
Homy (X, G) x Homy (X, G) — Homy (X, G)
(fyh) = mo (f xh).

This leads us to a different definition. A group object structure on an element G € ¥ is an
extension
e
e

op
4 HE}G)SG'C.

That is, it is an element, together with some additional data, that represents a functor
¢°P — Grp.
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Suppose we want to categorify this a bit — so instead of the category Grp of groups, we
want to work with the category Grpd of groupoids. That is, suppose % is a locally small
category, and Grpd is the category of (small) groupoids. Consider a functor

F : ¢°° — Grpd.

What data do we need to represent it? We can’t claim that it is representable by a single
object anymore — given an object X € %, for any other object ¥ we will have that
Hom¢ (Y, X) is a set; that is, a discrete category. There is no nice way to view this set as
anything but a discrete groupoid in its own right.

The idea is to take two objects in €, let’s call them A and I', so that for any element
Y € ¢, we have that F(Y) is a groupoid, with objects and morphisms given by

obF(Y) = Homg (Y, A)

morF(Y) = Home (Y, T).
If you were handed two loose sets and told that one was the objects of a category and
the other was the morphisms, you might say “thanks for nothing.” We need a way to tell

which morphisms were traveling between which objects. That is, we should have source
and target maps

s,t :morF(Y) — obF(Y),
that is,
s,t : Homg (Y,I') — Homyg (Y, A).

Since we don’t really want these to depend on Y in any way, it might be natural to ask
that these come from post-composition with morphisms I' — A. To that end, we define
two maps, which by abuse of notation we also call source and target

s, t: T — A.

We also need identities — that is, for every object in F/(Y') there is a unique way to assign
it an identity morphsim. This can be thought of as a map

Homy (Y, A) = obF(Y) — morF(Y) = Homg (Y, T).

Again we want this to be independent of Y, so we could ask for it to come from post-
composition with a morphism

1:A—T.

Already we are forced to ask for some coherence between these things. The source of the
identity morphism is the object you started with, so the following diagram must commute

obF (Y )M morF'(Y)

obF(Y),
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which in our language corresponds to the commutative diagram

A—t,T
ih ls
A.

Similarly, we want that t o7 =1id 4.
We also want composition, which will (almost) be of the following form:
Hom(Y,I') x Hom(Y,T') - Hom(Y,T).

There is an issue here, which is that we don’t want any two morphisms to have a composite,
only composable morphisms. That is, the types of morphisms we want are pairs (f, g) where
the source of f is the target of g. That is, our composition should be

Hom(Y,T') Xgom(y,4) Hom(Y,I') — Hom(Y,T').

In order to make this natural, we assume that € has finite pullbacks. Then composition is
of the form

Hom(Y,I' x4 I') - Hom(Y,T),
where I x 4 T" is the pullback
I'x,I' — T

[
r —) I.

For naturality, we ask that composition comes from a map
m:I'xa4T' —=T.

We ask that composition is associative:

Dx T x 0 2% po 1
id x ml lm
[xoT —— 5 T\

And we ask that composing with the identity on the left or right doesn’t do anything

Ax, 029 poor Dxy A por

o TE

Stopping here, we’ve successfully represented a functor to (small) categories! That is, the
data above tells you how to represent a functor F' : ¥ — Cat. In order to deal with
groupoids, we have to confront the existence of inverses.
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To any morphism, you can uniquely associate its inverse. This should come from a mor-
phism ¢ : I" — I'. This forces us into three more coherence conditions:

(1) Inverting a morphism swaps source and target:
r =—r—/5T
\ ls /
t t
r
(2) Inverting twice does nothing

r <57
\ lc
idr

I

(3) Composing a morphism with its inverse gives the identity — this is strange because
the pair of maps i,c: I' — I" give a map I' — I' x I', not to the fiber product. So
we ask for dashed maps making the following diagram commute

r : (e,id) ['xT (id,c) / r
S I'xa0 t
lm
A . r A A
i i

This data tells you how to represent a functor F : €°P — Grpd.

How do we know that we’re done? Why couldn’t there be other coherence conditions?

Exercise 1.2. Check that if 4 = Set, then the data above specifies a small groupoid.

2. DIGRESSION ON STACKS

Suppose % is a category with a Grothendieck topology, and we have a functor

F:€°P — Set.

Then F is a sheaf if for any cover {U; — U}, we have an equalizer sequence
FU) = [[Fw) = [[FW: xv Uy).

This tells us that we can glue elements in F(U;) that agree on overlaps to get an element
in F(U), and that elements in F(U) are determined by what they look like locally.
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Set-valued sheaves automatically satisfy higher cocycle conditions, so it is equivalent to
say that

F(U) = lim (H F(U) = [[ F(U; xu Uj))
— lim (H FU) = [[FWinU)) = [[(FU: xu Uy xu Uy) — - )

There is a sense [Dug] in which the category Fun(4°P, Set) can be given a model structure
where sheaves are the fibrant objects. Then every presheaf can be turned into a sheaf by
fibrant replacement. This is called sheafification.

Now suppose that F' is a functor
F : €°° — Grpd.

We can ask a similar question — does local data glue to global data in a coherent way?
If so, we will call it a stack. It turns out we can impose the same condition as above, but
here wecan’t quite glue things directly. Instead we have to glue them in a looser way. This
is imposed by homotopy limits.

Definition 2.1. [Hol08| p. 1.3] A presheaf of groupoids F : €°P — Grpd is a stack if for
every cover {U; — U},, we have an equivalence of groupoids

F(U) = holim (H FU) = [[FU < Uj) - - ) .

The model structure here is on Grpd, and it is:

e weak equivalences = equivalences of categories
e fibrations have RLP with respect to A? — Al
e cofibrations are objectwise injections.

This is left proper, simplicial, cofibrantly generated |[HolO8, p. 2.1].

Again, there is a model structure on Fun(%°P,Grpd) in which the stacks are the fibrant
objects, so every presheaf of groupoids can be turned into a stack via fibrant replacement,
called stackification [HolO8, p. 1.2].

Example 2.2. Every sheaf of sets gives a sheaf of discrete groupoids, which is a stack.
Suppose we have a representable functor F' : 4°P — Grpd, represented by a groupoid object
(A,T). Then it can be stackified!
{groupoid objects on €} ~» {Grpd-valued presheaves on ¢’} ~ {stacks on €} .
Example 2.3. Let G be a topological group. Consider the functor
Top? — Grpd
X — Pring(X),

sending X to the groupoid of principal G-bundles. This is represented by the pair (x, G).
The associated stack is BG, the classifying stack of the group G.
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Example 2.4. Let F' : Top°® — Grpd be the functor sending a connected space Y to the
groupoid F'(Y) whose objects are maps Y — X, and whose isomorphisms are commutative

diagrams of the form
y I x
k l‘q'
X.

In particular, we see that F'(x) is just the translation groupoid £X. We claim this functor
is representable. That is, there are functors

Homrop(—, X)) : Top®® — Set
Homrop(—, G x X) : Top®® — Set,

with some coherence maps between X and G x X, representing F. That is, the pair
(X,G x X) is a groupoid object in spaces. We can stackify this, and we obtain M x g« x)-
This is the orbifold associated to G acting on X.

3. HOPF ALGEBROIDS

Definition 3.1. Let K be a commutative ring. A Hopf algebroid is a groupoid object in
the category of affine K-schemes.

Under the anti-equivalence of categories
Affg = CAlg,

we may consider a Hopf algebroid as a cogroupoid object in the category of commutative
K-algebras.

Definition 3.2. [Rav86, A.1] A Hopf algebroid over K is a pair (A,I') of elements in
CAlg,, together with maps

map definition categorical interpretation
n,:A—->T exhibiting I' € 4Mod | target

np:A—T exhibiting I" € Mod 4 | source

A:T =T x4T | coproduct composition

e:I'—> A counit identity

c:I'=»T conjugation inverse,

satisfying the following axioms:

(1) eny, = eep = 14 (source and target of an identity)

2) T®e)A=(e®T')A = 1r (composition with an identity)

3) T®A)A =(A®T)A (composition is associative)

4) eng = nr and 1 = eng (inverting a morphism interchanges source and target)
5) cc = 1r (inverse of inverse)
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(6) There are maps making the diagram commute:

F<—F®KF*>F

~
~
~
N

Nnr F@AF

:L

A < F

€ 13

Example 3.3. There is a functor
E : Ring — Grpd,

sending a ring R to the groupoid F(R), whose objects are explicit formulas for elliptic
curves with coefficients in R, and whose morphisms are reparametrizations. This functor
is representable, that is, it is given by a Hopf algebroid (A, T'). The associated stack M4 )
is the moduli stack of elliptic curves. For details, see [HM14; [Mat].

Example 3.4. Recall that for any spectrum E, its homology is defined by
E.(X)=m(ENX)=[S,ENX].

Thus the homology of itself is E.E = [S, E A E]. It also makes sense to denote by E, =
E.(x) = [E®°S°, EASY] =[S, E] = m.E.

If F is a commutative ring spectrum, with some unit map S — FE, then there is an induced
map

E=SANE—-FEANE.
Applying m,, we get a ring homomorphism
E.,=nmnE—>m (ENE)=E.E.

This exhibits E4(F) as a left m,E-module. Dually, we can take E = EAS — E A E to get
a right module structure. So the TL;DR here is that E.E is a ms E-bimodule.

By smashing with the unit u : S — E on the left or right, we obtain two maps £ — E A E.
Applying 7., we have

nL,Mr : Bx — EE.

Proposition 3.5. We have that ny, is a flat ring homomorphism if and only if ng is. Recall
that means that

E.E ®;,g (—) : Mod,, g — Mod, g

is exact. In this situation, we say that F is flat as a ring spectrum. This is often satisfied.
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Proposition 3.6. Let A and B be ring spectra. Then there is a pushout diagram
S— A

I

B —— AAB.

Applying 7, won’t preserve the pushout, but it will induce a ring homomorphism:

7 — m A

L

B — mAQ 7. B

m« (AN B).
If the unit map S — A is an equivalence (e.g. if A is the suspension spectrum of a sphere),
then m, will preserve the pushout, and the natural map
T A Q@B — m. (AN B)

will be a ring isomorphism.

As the tensor product is a coequalizer, we may consider the following commutative diagram,
to get an induced map on tensor products, where X is an arbitrary spectrum:

E.EQE,@EX —_———__({EE®EX — E.E®p, E.X

! |

m(ENENENEANX) _—_Im (ENEANEANX) —— m (EAEAX).

Proposition 3.7. If F is flat, then the map
E.E®p, E.X > 1 (EANENX)
is a ring isomorphism.
Proposition 3.8. For a sufficiently nice FE..-ring spectrum FE, we have that the pair

(E., ELE) is a Hopf algebroid.

Proof. We have to define all the data associated to it and then check the desired axioms
hold.

(1) By smashing with the unit v : S — E on the left or right, we obtain two maps
E — ENE. Applying m,, we have

nL,Mr : B« — B E.

These are target and source.
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(2) We have a flip map EA E — E A E which squares to the identity. Applying 7. we
get

c: E.E— E.F.

This is inverse.
(3) There is a multiplication map F A E 5 E coming from E being a ring spectrum.
Applying m, we get

E.E — E,.

This is counit.

(4) Finally, we want a coproduct map, which in our terminology will be of the form
E.E — (E.E) @, (ExE). Here is where we really require E,E to be a m,E-
bimodule! From the argument above, we have that

E.E®p, E.X > m (EANENX)
is an isomorphism. When X = F, then there is a natural map
ENE=EANS'ANE —-EANENME,
and by applying 7., we get a map
A:FBE.F— E,FE®, g EFE.

We can check all the axioms are satisfied (exercise). O

Example 3.9. We have that (MU,, MU,MU) is a Hopf algebroid. That is, it corepresents
a functor Ring — Grpd. We can ask what functor this is. After proving Quillen’s theorem,
we will have MU, = m,MU = L is the Lazard ring. So Hom(MU,, —) = Hom(L, —), which
represents formal group laws.

It turns out that Hom(MU,MU, —) will represent reparametrizations of formal group laws
(change of bases). So we have that the pair (MU, MU,MU) represents the functor

Ring — Grpd
R — {formal group laws over R} .

The stackification Myu, mu,mu Will be referred to as the moduli stack of formal groups,
and denoted Mpg. This has the following property:

Homgtack (Spec(A), Mpg) = {FGLs over A}.

This is an isomorphism of groupoids.

4. MODULES OVER A HOPF ALGEBROID

Definition 4.1. Let (A,T') be a Hopf algebroid. A comodule M over (A,T') is a left
A-module M with a “coaction” A-module map

n:M—->T®4 M,
so that
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(1) the composite M 5T @4 M ZOL M is the identity (counitality)
(2) we have that coassociativity holds:

M—" sTesM

Wl lA@M

In particular there is always a forgetful functor
coMod(4 ) — Mod.

Example 4.2. Let X be any spectrum, and E a flat ring spectrum. Then the map

EAX=EAS'AX 2 BAEAX

induces a map on homotopy
E.X - E.E®g, E.X.

We can check that this satisfies the axioms of a coaction map. Therefore for any spectrum,
we get an (Fy, E,FE)-comodule. This is functorial [Rav86, p. 2.2.8]:

E,.: Sp— coMod(g, g, F)
X— E.X.

Example 4.3. As a particular case, consider the sphere S?, viewed as a suspension spec-
trum. Then its F-homology is

E(S) =m (EAS") =m (S'E) =Y'E,.
So we have that X!E, € coMod(g, g, ) for each ¢ € Z.

Example 4.4. Let M be an E,-module. Then we have that F,E®,, g M is an (E, E.E)-
comodule, called the extended comodule where the coaction map is induced by the coprod-
uct on E,FE. This is also functorial, and defines a functor

Modr, g — coMod(p, g, k)
We call
This turns out to be right adjoint to the forgetful functor
forget : coMod(, g, ) = Modg, : extend.
If we were in the context of abelian categories, this would give us a lovely way to produce
injective objects in coMod (g, g, g). Since right adjoints preserve injective objects, we could

just take injective F,-modules and extend them. It turns out that coMod(g, g, ) will be
abelian under pretty weak conditions.
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Theorem 4.5. [Rav86, A.1.1.3] If I is a flat A-module, then we have that the category of
left (A,T')-comodules is abelian, with enough injectives.

Proof. Consider a short exact sequence of A-modules
0—-+B—=C—=D-—=0.
Then since I is flat, then I' ® 4 — is exact, so we have a short exact sequence
0=-T'®o4B—=-1T®4C—>T®4D —0.

If C has a (A,T')-comodule structure (by which we mean a map C' — I'® 4 C satisfying the
properties above) then we can verify that D € coMod (4 ) if and only if B € coMod 4 1.
Thus every map of comodules can be seen to have a kernel and cokernel defined in
coMod(4 ). We can check the other axioms of an abelian category hold. O

Example 4.6. If E is a flat ring spectrum, then we have an abelian category coMod g, g, g)-

Proposition 4.7. Let (A,I') be a Hopf algebroid, and M4 ) the associated stack. There
is an equivalence of categories

QCoh (M(A’F)) >~ coMod 4 1.

Let (A,T") be any flat Hopf algebroid, and let M be an arbitrary projective comodule.
Then there is a functor

HomcoMod(AYF)(M, —): coMod (4 1) — coMod 4 ).

We define Exté A F)(M ,—) to be the ith right derived functor of the functor above.

By the equivalence of categories between (A, I')-comodules and quasi-coherent sheaves over
M4y, this is the same as the right derived functors of gloabl sections over the quasi-
coherent sheaf Fj; associated to the comodule M. That is, these Ext groups are sheaf
cohomology over the stack M4 1.

Let t € Z, and consider X'E, as a comodule. Then we can consider
HomcoMod(ZtE*, —) : COMOd(E*,E*E) — COMOd(E*yE*E).
Let X be an arbitrary spectrum, so that E,X is a comodule, and consider the right derived

functors evaluated at E,X. These are of the form

Ext; (Z'E., E.X).

coMod(E*yE*E)

Theorem 4.8. (Adams, see [Culver]) Suppose that E is a flat ring spectrum, and let X
be an arbitrary spectrum. Then there is a spectral sequence

Ey' = Exty p (X°FE., B.X).

Under nice conditions, this converges to 7. (Xf), where X} is the E-nilpotent completion
of X.
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So the study of the homotopy of any spectrum (locally) reduces to understanding the
spectral sequence above. But even figuring out what E,F is in most situations is a difficult
result.

Example 4.9. When E = HIF,, we have that
(HF,).HF, = A",

called the dual Steenrod algebra. In general, we call E,F the dual E-Steenrod algebra.

Let’s try to use these ideas to compute the homotopy of MU and see where we get stuck

5. COMPUTING 7, MU
Recall:
Lemma 5.1. We have that

H, (MU;Z) = Zb, .. ]
where |b;| = 2i.
Lemma 5.2. We have that, rationally,

MU ® Q ~ H.MU ® Q.
It suffices then to understand the p-torsion in 7, MU, which is the same as understanding
7. (MU) ® Z, = m, (MU(AP)>???

So remember our spectral sequence

Ey' = Exty p (°E,, B.X) = ™ (X3) .
We want to apply it with X = MU, and £ = HF,. In this situation, we have

Ext’ (Fp, (HF,).MU) = .MU ® Z,.
So we want to understand

(HF,), MU = H, (MU;F,)

as a comodule over the dual Steenrod algebra A*. In order to do this, we need to develop
a bit more intuition for the category of comodules.
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6. THE BOX PRODUCT FOR COMODULES

Let (A,T') be a Hopf algebroid, with I" flat over A, and suppose that M and N are comod-
ules, with coaction maps s and 1y respectively. Define the cotensor product of M and
N as

Y ON—-Myy
ReCEhak 4 LN

MDFN::ker<M®AN M®AF®AN>.

This is not a comodule over the Hopf algebroid, it’s not even an A-module! It’s only a
K-module, where K is our base ring. However, it allows us to understand the K-module
structure on homs in coMod 4 ) a little better.

Proposition 6.1. [Rav86, A.1.1.6] If M, N are left (A,I")-comodules, and M is projective
over A, then we have that

Hom4 ry(M, N) = Hom4 (M, A)Op N.
Suppose that f: (A,T') — (B,X) is a map of Hopf algebroids (the definition is what you
might expect it to be).
Lemma 6.2. We have that I'®4 B is a right (B, X)-comodule, and we have a function
coMod(4 1) — coModp x)
N — (I'®4 B)OgN.
Another perspective on this is that there is a pullback-pushforward adjunction

f* i coMod (4 ) S coMod(py) : fu
Mw— B®a M
(P ®A B) DzN <~ N.

Remark 6.3. If we stackify (A,T") and (B, X), these are exactly pullback and pushforward
of quasi-coherent sheaves.

f*
—_—
QCon(Mar) , ~ QCoh(M(zy))
I+

So we have a natural isomorphism

HomcoMod(B’g) (f*M, N) = HomcoMod(A’p) (M’ f*N)

In particular we note that f*A = B, so for any N, we have

HomcoMod(B’Z) (Bu N) = HomcoMod(AYF) (A, f*N)



Thomas Brazelton Hopf algebroids April 9th, 2021

And by some homological algebra magic, this actually descends to an isomorphism on the
derived functors of Hom:

Ext{p s (B, N) = Ext{ 4 1) (4, fN).

This type of argument is called a change-of-rings theorem. This one is due to Miller—
Ravenel. We can use this one to finish computing the p-torsion in 7, MU.

7. SETTING UP THE SPECTRAL SEQUENCE FOR QUILLEN’S THEOREM

Recall we want to understand
Ext’y’ (Fp, H(MU; F,)) = m.(MU) ® Z,.

So we need to understand the mod p homology of MU as a comodule over the dual Steenrod
algebra A,.

We recall that HIF), is complex oriented — so there is a Thom class v : MU — HTF,,. Taking
mod p homology, we get a map

H, (MU;F,) — A..
Notation 7.1. We denote by
P(€17§2) .- )

a polynomial algebra over F,, on the generators ;, in degree
m_1 p=2
& = n
2" —=1) p>2
Define
P PE2,e2,..) p=2
P(fla€27"’) p>2
Lemma 7.2. [Rav86, p. 3.1.4] The image of the map H, (MU;F,) — A, is P,.
Theorem 7.3. (Milnor, Novikov) We have that
H, MU;F,) =P, ®C,

as comodules over the dual Steenrod algebra, where C' = P(z1,x2,...) for |z;| = 24, and i
any integer which is not 1 less than a power of p.

Exercise 7.4. We have that

Ay =P, ® (A ®@p, Fp).
Thus for any N we have

Pi® N = A4, ¢p,F,N.
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In particular, we can rewrite
We can now return to the computation at hand! With our new structure theorem about
H,(MU;F,), we see that

Exta, (Fp, He (MU;F,)) = Exta, (Fp, A04.0,.F,C) -

Then we can apply the change-of-rings theorem! This tells us that
Ext 4, (Fp, A*DA*@)P*FPC) ~ Exta,op,F,(Fp, C).

Finally for some magical reason(?) we are allowed to pull the C outside into a tensor.

Exta.@p,F, (Fp, C) ~ Exta.@p,F, (Fp, Fp) @ C.
Lemma 7.5. [Rav86, p. 3.1.9] We have that

Exta,@p,F,(Fp, Fp) ~ P(vo,v1,...),

where v; has bidegree (1,2p’ — 1).
Corollary 7.6. We have that

Exta, (Fp; H.(MU;Fp)) = C ® P(vg, v1, .. .).
Since |v;| = (1,2p* — 1), its total degree (t — s) is always going to be even! In particular,

there can be no nontrivial differentials, so the spectral sequence degenerates on the second
page.

Corollary 7.7. We have that
T (MU)) 2 Zy[vo, v1,...] @ C.

8. RELATIVE INJECTIVES

Definition 8.1. A relative injective comodule in coMod 4 ) is a direct summand of an
extended comodule.

Example 8.2. We say a spectrum K is a relative E-injective if K is a retract of a spectrum
of the form E' A X for some X. These are precisely the spectra whose E-homology (?) is
relatively injective in coMod(g, g, g)-

Lemma 8.3. [Goe04, p. 3.3] Suppose X is a spectrum whose homology F,X is projective
as an E,-module. Then for all spectra Y there is a Hurewicz map

[X, Y] — COMOd(E*,E*E) (E*X, E*Y),

which will be an isomorphism if Y is a relative E-injective spectrum.
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Definition 8.4. [Goe04) p. 3.4] An E,-Adams resolution for a spectrum Y is a sequence
Y - K5 K' 5 K? - ...

so that each K’ is a relative E,-injective, and for any other relative F,-injective J, we have
that the complex

o [K2J] = KL J) = [K°,J] = [Y,K] =0

is exact.

Under nice circumstances, we will have a spectral sequence
Exty, p (S'E.X EY) = [S"7°X, LgY],

where L is the Bousfield localization of Y. When X = S°, we have a spectral sequence
converging to the F,-local homotopy groups of Y.
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