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1. The homotopy coherent nerve

In the classical nerve construction, we recall that the nerve of a 1-category C is the sim-
plicial set N•C , whose n-cells NnC are the strings of n-composable morphisms in C .

We can adopt a slightly different perspective on this by viewing the ordered set [n] =
{0 < 1 < · · · < n} as a category in itself, rather than as an object of the category ∆. We
note then that we have a bijection

{order-preserving set maps [n]→ [m]} ←→ {functors [n]→ [m]} .

We can then view ∆ as a subcategory of the 2-category Cat, consisting of the categories
[n] for n ≥ 0, and the functors between them.

Remark 1.1. Note that, for any category C , the functor category Fun([n],C ) is the
collection of all n-composable morphisms in C .

Definition 1.2. We can redefine the classical nerve of a category C as the simplicial set

Fun(−,C ) : ∆op → Set.

A motivating example for the homotopy coherent nerve 1.3. Consider the sim-
plicial set N•Top, obtained by taking the nerve of the (small skeleton of the) category of
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topological spaces. An element of N2Top is a 2-cell which witnesses strict composition of
spaces:

Y

X Z,

gf

h

where here h = g ◦ f . A question we might be motivated to ask is as follows: could we
weaken the definition of the nerve so that it witnesses weak composition, instead of strict
composition? What we mean by this is could we create an altered construction of the nerve
where a 2-cell like that above would exist if h ' g ◦ f were homotopic instead of being
strictly equal. If this were possible, it would make sense that we should have a 2-cell for
each homotopy H : h ' g ◦ f . This will be made explicit by the homotopy coherent nerve.

Definition 1.4. A simplicially enriched category (occasionally called a simplicial category,
although this is overloaded terminology) C is a category enriched in sSet.

We will provide some examples below, but first give a glimpse of how this relates to ∞-
categories.

Digression 1.5. Recall that an (n, r)-category is an n-category so that all k-morphisms
are invertible for k > r. For example:

• a (1, 0)-category is just a groupoid
• an (∞, 1)-category is generally called an ∞-category
• an (∞, 0)-category is an ∞-groupoid.

If C is enriched in a category of (n, r)-categories, then C itself is an (n+ 1, r+ 1)-category.
As a particular instance of this, if C were a simplicially enriched category, all of whose
homs happened to be Kan complexes, then we might just as well think of C as being
enriched in Kan. Since Kan is a category of (∞, 0)-categories, then C is an (∞, 1)-category.
This hints at a more general notion that simplicially enriched categories might serve as a
model for (∞, 1)-categories. We will revisit this later.

Definition 1.6. A simplicial functor between simplicially enriched categories is a functor
F : C → D , which induces a map of simplicial sets for every pair of objects

HomC (X,Y )• → HomD(FX,FY )•,

satisfying some natural conditions relating to composition. In particular, if X = Y , then
it sends idX 7→ idFX under the map of 0-cells HomC (X,X)0 → HomD(FX,FX)0.

Notation 1.7. We have a category whose objects are simplicial sets, and whose morphisms
are simplicial functors. It is denoted (depending on who you are) by:{

Cat∆ (Kerodon)

sSet-Cat (nLab).



Thomas Brazelton The homotopy coherent nerve March 2nd, 2020

We will give an example of a simplicially enriched category.

Let (Q,≤) be a poset, and for any two elements x, y ∈ Q with x < y denote by Px,y the
associated poset consisting of finite chains {x < x0 < · · · < xn = y} which begin at x and
end at y. The order relation on Px,y is given by subdivision, e.g.

{x < x0 < y} < {x < x0 < x1 < y} .

Definition 1.8. For any poset (Q,≤), we get a simplicial category Path[Q]•, defined by

• obPath[Q]• = obQ
• HomPath[Q]•(x, y) = N•Px,y is the classical nerve of the poset Px,y
• idx ∈ HomPath[Q]•(x, x)
• Composition of 0-cells is given by taking a union; i.e.

HomPath[Q]•(y, z)0 ×HomPath[Q]•(x, y)0 → HomPath[Q]•(x, z)0

({x < x1 < · · · < xn = y} , {y < y1 < · · · < ym = z}) 7→ {x < x1 < · · · < xn = y < y1 < · · · < ym = z} .

• Higher composition is given by an inclusion of the product of simplicial sets

HomPath[Q]•(y, z)×HomPath[Q]•(x, y)→ HomPath[Q]•(x, z).

This will become clear in examples.

Example 1.9. If Q = [1] = {0 < 1}, then Path[1]• consists of the two objects 0 and 1,
and

HomPath[1]•(0, 1) = N•(P0,1) = ∆0.

Example 1.10. If Q = [2], then Path[2]• has three objects, 0, 1, and 2. We know that
HomPath[2]•(0, 1) and HomPath[2]•(1, 2) are 0-simplices by the previous example. We check
that HomPath[2]•(0, 2) = N•P0,2 is the nerve of the poset {0 < 2} → {0 < 1 < 2}, and hence

is a 1-simplex ∆1. We think about the composition law as a disjoint union of simplicial
sets

HomPath[2]•(1, 2)×HomPath[2]•(0, 1)→ HomPath[2]•(0, 2)

∆0 ×∆0 ↪−→ ∆1

({1 < 2} , {0 < 1}) 7→ {0 < 1 < 2} .

Thus composition sends the product of the two 0-simplices (that is, a 0-simplex) to the
0-simplex {0 < 1 < 2} ∈ HomPath[2]•(0, 2)0.
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Example 1.11. If Q = [3], then we have four objects. Again we know almost all the homs
by the previous examples, but we compute that

HomPath[3]•(0, 3) = N•P0,3 = N•


{0 < 3} {0 < 1 < 3}

{0 < 2 < 3} {0 < 1 < 2 < 3}


= (∆1)2.

There are three nontrivial compositions we can make:

HomPath[3]•(1, 2)×HomPath[3]•(0, 1)→ HomPath[3]•(0, 2)

HomPath[3]•(1, 3)×HomPath[3]•(0, 1)→ HomPath[3]•(0, 3)

HomPath[3]•(2, 3)×HomPath[3]•(0, 2)→ HomPath[3]•(0, 3).

The first we have already seen, and the second two should be symmetric in some sense, so
without loss of generality let’s pick the last one to study.

Call X = HomPath[3]•(2, 3)×HomPath[3]•(0, 2) the product of these two simplicial sets. We
recall that the n-cells of a product of simplicial sets are given by the n-cells of each term,
thus we see that X has two 0-cells:

X0 =
{

({2 < 3} , {0 < 2})
({2 < 3} , {0 < 1 < 2})

}
Moreover the edge {0 < 2} → {0 < 1 < 2} in HomPath[3]•(0, 2)1 induces a map between
these cells in X1:

({2 < 3} , {0 < 2})→ ({2 < 3} , {0 < 1 < 2}) .

Thus X looks like a 1-simplex ∆1. If we now look at the image of X in HomPath[3]•(0, 3),
we see that the 0-cells are taken to their unions, and the edge between them is preserved,
thus we obtain the lower edge of HomPath[3]•(0, 3):

HomPath[3]•(2, 3)×HomPath[3]•(0, 2)→ HomPath[3]•(0, 3)

∆1 ↪−→ N•P0,3 = N•


{0 < 3} {0 < 1 < 3}

{0 < 2 < 3} {0 < 1 < 2 < 3}


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Example 1.12. For one more nontrivial example, we look at the composition

HomPath[4]•(2, 4)×HomPath[4]•(0, 2)→ HomPath[4]•(0, 4).

One may check first of all that HomPath[4]•(0, 4) is the following simplicial set:

HomPath[4]•(0, 4) = N•



{0 < 4} {0 < 1 < 4}

{0 < 3 < 4} {0 < 1 < 3 < 4}

{0 < 2 < 4} {0 < 1 < 2 < 4}

{0 < 2 < 3 < 4} {0 < 1 < 2 < 3 < 4}



along with some additional composite arrows that are not drawn for the ease of the reader.

We have four 0-simplices in the product HomPath[4]•(2, 4)×HomPath[4]•(0, 2), and together
with their edges and faces, form a square:

N•


({2 < 4}, {0 < 2}) ({2 < 4}, {0 < 1 < 2})

({2 < 3 < 4}, {0 < 2}) ({2 < 3 < 4}, {0 < 1 < 22})

 ∼= (∆1)2
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The composition HomPath[4]•(2, 4)×HomPath[4]•(0, 2)→ HomPath[4]•(0, 4) includes this into
the cube as the bottom face:

(∆1)2 ↪−→ N•



{0 < 4} {0 < 1 < 4}

{0 < 3 < 4} {0 < 1 < 3 < 4}

{0 < 2 < 4} {0 < 1 < 2 < 4}

{0 < 2 < 3 < 4} {0 < 1 < 2 < 3 < 4}


Example 1.13. In general for [n], one has that N•Pi,j = (∆1)j−i−1.

We note that this path construction defines a functor

Path[−]• : Poset→ Cat∆.

Remark 1.14. For every x, y ∈ Path[Q]0, we have that

HomPath[Q]•(x, y) ' ∗

is contractible as a simplicial set (since it has an initial object {x < y}). Thus we should
think of Path[Q]• as some sort of “categorical thickening” of Q.

Definition 1.15. For any simplicially enriched category C ∈ Cat∆, we define its homotopy
coherent nerve Nhc

• (C ) as the simplicial set

∆op → Set

[n] 7→ HomCat∆ (Path[n]•,C ) .

Remark 1.16.

(1) The vertices of Nhc
• (C ) are the objects of C

(2) The edges of Nhc
• (C ) are the morphisms of C

(3) The face maps d1, d0 : Nhc
1 (C )→ Nhc

0 (C ) are the pair (codom,dom)
(4) The 0th degeneracy map s0 : Nhc

0 (C )→ Nhc
1 (C ) sends x to idx.

(5) An element of Nhc
2 (C ) is a map Path[2]• → C , which is the data of a (commutative

or non-commutative) diagram in C

Y

X Z,

gf

h
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and a homotopy h ⇒ g ◦ f , which corresponds to the image of the edge {0, 2} →
{0 < 1 < 2} in the simplical set Path[2]•.

One can prove that 2-cells correspond bijectively to homotopies at the simplicial
level (see Kerodon, 2.4.6).

Definition 1.17. There is a functor

(−)0 : Cat∆ → Cat

C 7→ C0,

given by taking the 0-cells of each of the simplicial homs. This is called the underlying
1-category of C . Similarly, we have a functor in the reverse direction

(−) : Cat→ Cat∆

D 7→ D ,

by sending a 1-category to the constant simplicial category D , whose homs are just disjoint
unions of 0-simplices, corresponding to elements in morD . We claim that there is an
adjunction of categories

HomCat (C ,D0) = HomCat∆ (C ,D) .

Remark 1.18. As hinted at earlier, we always have a simplicial functor Path[Q]• → Q,
simply given by contracting homs to a point. We note that for any ordinary functor of
categories Q→ C0, we can precompose with the collapse map and post-compose with the
inclusion of the 0-truncation to obtain a composite

Path[Q]• → Q→ C0 → C .

This induces an inclusion

FunCat(Q,C0) ↪−→ FunCat∆(Path[Q]•,C ).

Restricting our attention purely to elements of ∆, we get an inclusion

FunCat([n],C0) ↪−→ FunCat∆(Path[n]•,C ),

which induces an embedding of simplicial sets

N•(C ) ↪−→ Nhc
• (C ).

This is a bijection on edges and vertices, as we might expect. In general, we should not
expect this to be an isomorphism. However we do have that

N•(C )
∼=−→ Nhc

• (C )

is an isomorphism of simplicial sets.



Thomas Brazelton The homotopy coherent nerve March 2nd, 2020

2. Homotopy coherent nerve is a right adjoint

Definition 2.1. The classical nerve fits into an adjunction

h : sSet � Cat : N•.

Here h is the homotopy category of a simplicial set. We have that ob(hX) := X0, and that
mor(hX) is freely generated by elements of X1, equipped with their canonical direction as
simplicial edges, modulo composition relations witnessed by elements of X2.

One may suspect that an analogous statement holds for the homotopy coherent nerve.

Definition 2.2. We may extend the functor Path[−]• : Poset → Cat∆ to a functor
Path[−]• : sSet→ Cat∆ valued on all simplicial sets, fitting into the diagram below

Poset sSet

Cat∆.

N•

Path[−]•

Path[−]•

This is defined by

Path[−]• : sSet→ Cat∆

X 7→
∫ [n]∈∆

Xn · Path[n]•.

That is, it is the left Kan extension

∆ Cat∆

sSet

y

Path[−]•

By abuse of notation, we refer to Path[n]• both as the path simplicial category of the poset
[n], and Path[−]• applied to the simplicial set ∆n.

Theorem 2.3. There is an adjunction

Path[−]• : sSet � Cat∆ : Nhc
• .

Reality check 2.4. This aligns with our intuition, since

HomCat∆(Path[n]•,C ) ∼= HomsSet(∆
n, Nhc

• (C )) = Nhc
n (C ).

That is, Path[n]• corepresents n-cells in the homotopy coherent nerve, as we already knew.
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3. Kan locality

Definition 3.1. For a simplex ∆k ∈ sSet, we define its barycentric subdivision, denoted
sd∆k, to be the nerve of the poset of non-degenerate sub-simplices. This is intimately
related to our definitions of the nerve of Px,y before, however we drop the restriction that
our posets start and end with x and y. Here, for example, we have that

sd∆1 = {{0} → {0, 1} ← {1}}

sd∆2 =



{0} {0, 1} {1}

{0, 2} {0, 1, 2} {1, 2}

{2}


We define a functor

Ex : sSet→ sSet,

where

(ExX)k := HomsSet(sd∆k, X).

Remark 3.2. For any simplicial set, there is a functor

Ex∞ : sSet→ sSet,

defined to be the colimit

Ex∞(X) := colim (X → ExX → Ex(ExX)→ · · · ) .

Properties of Ex∞ 3.3. This functor has the following properties (among many others)

(1) Since sd∆0 ∼= ∆0, one sees Ex (and thus Ex∞) preserves 0-simplices
(2) For any X, we have that Ex∞X is a Kan fibration
(3) We have that Ex∞ is a fibrant replacement functor in the standard (Kan-Quillen)

model structure on sSet1

(4) Ex∞ preserves finite products, finite limits, filtered colimits, fibrations and acyclic
fibrations, weak equivalences.

Remark 3.4. The functor Sing•| − | : sSet→ sSet is also a fibrant replacement functor,
is easier to describe than Ex∞, and preserves fibrations and finite limits. However, it does
not preserve 0-simplices, and in general Sing•|X| is much bigger than Ex∞(X). Moreover,

1Cofibrations are levelwise injections, weak equivalences are those whose geom. realization is a weak
equivalence of spaces, fibrations are Kan fibrations, everything is cofibrant, fibrant objects are precisely the
Kan complexes.
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Ex∞ does not require us to use the category of spaces, so in that sense it is more general;
the definition is internal to sSet. See Guillou - Kan’s Ex functor

Definition 3.5. We say C ∈ Cat∆ is locally Kan if, for all x, y ∈ C , we have that

HomC (x, y) ∈ Kan ⊆ sSet.

Theorem 3.6. (Cordier-Porter) If C is a locally Kan simplicially enriched category, then
Nhc
• (C ) is an (∞, 1)-category.

Corollary 3.7. For any C ∈ Cat∆, we can obtain a locally Kan simplicially enriched
category, denoted Ex∞C , by applying the functor Ex∞ at every hom.

Definition 3.8. There is a functor

π0 : sSet→ Set,

defined by

π0(X) := coeq (d1, d0 : X1 ⇒ X0) .

That is, it is the set of connected components of X. If X is a Kan complex, then the image
d1, d0 : X1 → X0 × X0 is an equivalence relation on X0, so we can quotient out by it to
get the coequalizer.

Definition 3.9. For any C ∈ Cat∆, define by π0C the category of components, given by
taking π0 on every hom-sset in C ; that is

Homπ0C (a, b) := π0HomC (a, b).

We say g ∈ HomC (a, b)0 is a homotopy equivalence if g becomes an isomorphism in π0C .

Proposition 3.10. Let C be any simplicially enriched category. Then we have that

Nhc
• (Ex∞X)

is an (∞, 1)-category whose homotopy category is isomorphic to π0C .

4. The Bergner model structure on Cat∆

Definition 4.1. We say that a simplicial functor F : C is a Dwyer-Kan weak equivalence
if

(1) for any a, b ∈ C , the induced map

HomC (a, b)→ HomD(fa, fb)

is a weak equivalence of simplicial sets (in the standard model structure)
(2) the induced functor π0F : π0C → π0D is an equivalence of 1-categories

Definition 4.2. We say F : C → D is a fibration if

http://www.ms.uky.edu/~guillou/KanEx.pdf
https://ncatlab.org/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category
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(1) for any a, b ∈ C , the map

HomC (a, b)→ HomD(fa, fb)

is a (Kan) fibration of ssets
(2) for any c ∈ C and d ∈ D , and homotopy equivalence g ∈ HomD(fc, d)0, there is

an object c′ ∈ C and homotopy equivalence h : c→ c′ which fits into the (strictly)
commutative diagram

c c′

d

h

concisely; these are the maps that induce isofibrations on π0.

Theorem 4.3. There is a (right proper, cofibrantly generated model) category on Cat∆

with weak equivalences given by the Dwyer-Kan weak equivalences, and the prescribed
fibrations above.

The fibrant objects in this structure are exactly those categories enriched in Kan.

4.1. The Joyal model structure on ssets.

Definition 4.4. The Joyal model structure on simplicial sets is given by

• cofibrations are monomorphisms
• weak equivalences are those maps of simplicial sets f : X → Y so that the induced

simplicial functor

Path[f ]• : Path[X]• → Path[Y ]•

is a Dwyer-Kan weak equivalence of simplicially enriched categories.

Proposition 4.5. The fibrant objects in sSetJoyal are precisely the quasi-categories.

It almost looks as though this model structure was designed intentionally to interact well
with the Bergner model structure. Indeed this is the case.

Theorem 4.6. The adjunction

Path[−]• : sSetJoyal � Cat∆ : Nhc
•

is a Quillen equivalence.

Corollary 4.7. The right adjoint preserves fibrant objects, thus the homotopy coherent
nerve of a Kan-enriched category is a quasi-category.

This allows us to translate between two models of (∞, 1)-categories.
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