
GALOIS THEORY OF RING SPECTRA

Abstract. If/when you find any errors, send me an email at brazelton@math.harvard.edu

0. About

Notes from a talk in the Harvard/MIT BabyTop seminar, April 15th, 2025.

0.1. References used. All the classical references (Auslander-Goldman, etc.) were helpful, as was
Rognes’ paper and Akhil Mathew’s papers and notes on the topic. Chapter 6 of Lennart Meier’s
PhD thesis is a great reference for this subject. I also had some really helpful correspondence with
Daniel Davis while prepping this talk, and Liam Keenan and Andy Senger answered some random
questions I had throughout.

1. Descent for vintage rings

Let R → S be a ring homomorphism. If we think about this as a one-object cover Spec(S) →
Spec(R), we can consider its Čech complex, which is an augmented simplicial object

Spec(R)← Spec(S) ⇔ Spec(S ⊗R S) · · ·

If F : CRing→ C is any presheaf valued in any ∞-category, we can ask whether F admits descent
along this cover, which is the same as saying that the induced map

F(R)→ lim (F(S) ⇒ F(S ⊗R S) · · · )

is an equivalence.

If F is valued in a 1-category like sets or abelian groups, the limit condition truncates at the second
stage, and we recover the sheaf condition. We’ll be interested in the case where F(U) is a 1-category
(and hence lives in a 2-category). Here we get the stack condition.

The particular case we care about is the functor

Mod(−) : CRing→ Cat,

outputting the 1-category of modules over any input ring.

Theorem 1.1 (Grothendieck). If R→ S is a faithfully flat ring extension, then the induced map

(1) ModR → lim(ModS ⇒ ModS⊗RS · · · )

is an equivalence of categories.

This is called faithfully flat descent, and it’s a shade of a more general result, namely that QCoh is
an fpqc stack. The category on the right is often called the category of descent data.
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Remark 1.2 (On comonadicity). This result about descent can be equivalently phrased in terms
of comonadicity. Recall we have an extension-restriction of scalars adjunction

−⊗R : ModR ⇄ ModS .

Then we obtain a comonad Ω on ModS . The category of coalgebras coAlgΩ(ModS) can be identified
with the category of descent data, hence the descent condition can be reframed into a comonadicity
condition. This is an important perspective to keep in mind when trying to transport these ideas
to spectral algebraic geometry.

We can ask if the theorem above is if and only if – that is, if Mod admits descent along a ring
extension, then was that extension necessarily faithfully flat? The answer is no!

Theorem 1.3 ([JT84, pp. 18-19]). The following are equivalent:

(1) Equation (1) is an equivalence
(2) Extension of scalars along R→ S is comonadic
(3) S is pure as an R-module1

(4) Extension of scalars is faithful.

The latter two come from the fact that a left adjoint is fully faithful if and only if the unit is a
componentwise monomorphism.

2. Galois descent for vintage rings

A particular case of descent for modules is along Galois ring extensions. In this case, the category
of descent data admits a nice equivariant description.

Definition 2.1. Let k ⊆ L be a finite field extension. We say it is Galois if k is the fixed field for
some subgroup of Aut(L).

We might ask whether we can extend the notion of a Galois field extension to a Galois ring extension.
This was first done by Auslander and Goldman [AG60], and multiple other equivalent definitions
can be found in work of Chase, Harrison and Rosenberg [CHR65].

Definition 2.2. Let S ∈ CRing, let G ≤ Aut(S) be a finite subgroup, and let R = SG. We say
that R→ S is a Galois ring extension if the analogue of a normal basis theorem holds, that is if

S ⊗R S →
∏
g∈G

S

s1 ⊗ s2 7→ (s1g(s2))g∈G

is an isomorphism of S-algebras. Note that this is equivalent to R → S being finite étale in this
setting (Proposition A.3, at least when S is irreducible?).

Remark 2.3. There are a ton of equivalent definitions but they imply in particular that S needs
to be finitely generated and projective over R.

Example 2.4 ([Rog08, 2.3.3]). If K ⊆ L is a G-Galois extension of number fields, then OK → OL

is a G-Galois extension of rings if and only if K ⊆ L is unramified.

Example 2.5. There are no nontrivial connected Galois extensions of Z.

1This means R⊗RM → S⊗RM is injective for every M ∈ ModR. Equivalently the unit of the restriction-extension
adjunction is a levelwise monomorphism.
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Proof. See [Rog08, 10.3.2]. We know by Minkowski’s theorem in algebraic number theory that if
K is any number field, then the map Z → OK ramifies at at least one prime, hence is not étale.
So there are no rings of integers which are Galois over Z. If Z→ R is G-Galois for some arbitrary
ring R, then R is finitely generated and free over Z by necessity, hence Q → Q ⊗ R is a G-Galois
extension, implying Q ⊗ R ∼=

∏
iKi is a product of number fields. The integral closure of R is

contained in
∏

OKi , which implies each Ki = Q. □

Proposition 2.6 (see [Rog08, 2.3.4]). If R → S is a G-Galois extension, then S is faithfully flat2

as an R-module.

2.1. A nice characterization of the category of descent data along a Galois extension.
If G ≤ Aut(S), then G acts on the category of S-modules in a natural way. We can let EG denote
a free contractible G-category, and define the category of homotopy fixed points as

ModhGS := Fun(EG,ModS)
G.

Proposition 2.7. If R → S is a G-Galois ring extension, then the category of descent data is
equivalent to ModhGS , and the descent statement can be rephrased as an equivalence of categories

ModR
∼−→ ModhGS .

Example 2.8. In the simple case of R ⊆ C, and G = C2, we have that C2 acts on VectC by
sending each complex vector space to its conjugate. The category ModhC2

C is then the category of
isomorphisms V ∼= V̄ .

Remark 2.9. If θ : G→ Aut(S) is our representation, we can define Sθ[G] to be the twisted group
ring, with multiplication

s1g1 · s2g2 = s1θg1(s2)g1g2.

Then we have that

ModhGS
∼= ModSθ[G].

The twisted group ring is not commutative in general, clearly.

3. Homotopical Galois theory

Rognes was the first to try to extend the theory of Galois ring extensions from vintage rings to ring
spectra.

Definition 3.1 (Rognes). Let G be a finite group and let A → B be a map of E∞-rings. We say
that it is a G-Galois extension for some finite subgroup G ≤ AutCAlgA(B) if the induced maps

A→ BhG

B ⊗A B →
∏
g∈G

B

are equivalences.

Why would we care? In the classical theory of Galois ring extensions, the main goal was to see a nice
characterization of A-modules in terms of homotopy fixed points of the categories of B-modules,
giving us a nice descent condition to check. We want an analogous result here, but we could also
ask for some more stuff, for instance: can we compare π∗A and π∗B?

2Recall this means S ⊗R − preserves and reflects exact sequences.
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The answer to the first is yes, via the homotopy fixed points spectral sequence, which in the setting
of a G-Galois extension A→ B of E∞-ring spectra takes the form

Ep,q
2 = Hp(G;πqB)⇒ πq−pA.

In fact the information often flows the other way!

Proposition 3.2 ([Rog08, 5.3.1]). The ring extension KO→ KU is a C2-Galois ring extension.

Proof sketch. The argument that

KO→ KUhC2

is an equivalence dates back to Atiyah, and follows by a spectral sequence argument. You can find
this written up really nicely in some notes of Arun Debray.

The argument that KU ⊗KO KU → KU × KU is an equivalence is a bit more involved, leveraging
Bott periodicity and nilpotence. □

Example 3.3. The map

ko→ ku

is not Galois (see [Rog08, p. 27]).3

Proposition 3.4 (Sanity check [Rog08, 4.2.1]). If R→ S is a map of vintage commutative rings,
and G ≤ AutAlgR(S), then R → S is a G-Galois extension if rings if and only if HR → HS is a
G-Galois extension of ring spectra.

As another sanity check, we can ask whether a Galois extension is dualizable over the base ring.
This is true [Rog08, 6.2.1]. What is not necessarily true, however, is that a Galois extension is
faithfully flat.

3.1. Faithfulness. We saw for discrete rings that each Galois extension was faithfully flat. We
might ask if the same thing is true in higher algebra. The analogue we use here is just faithfulness.

Definition 3.5 ([Rog08, 4.3.1]). If A ∈ CAlg(Sp), and M ∈ Mod(A), we say that M is faithful if,
for any N ∈ ModA, if N ⊗A M ≃ ∗ then N ≃ ∗.

Theorem 3.6. Let f : A → B be a G-Galois map of ring spectra, for G a finite group. Then the
following are equivalent:

(1) B is faithful (considered as an A-module)
(2) Extension of scalars

Mod(A)→ Mod(B)

is conservative.
(3) We have descent along f in the sense that

Mod(A)
∼−→ Mod(B)hG

is an equivalence.
(4) An analogue of Hilbert 90 holds ([BD10, 1.0.2]):

BtG ≃ ∗

3The fiber of ko → kuhC2 is ∧j<0Σ
4jHZ/2, and the cofiber of ku⊗ko ku → ku× ku is HZ [Rog08, p. 27].

https://adebray.github.io/lecture_notes/u17_spectral_sequences_in_equivariant.pdf
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Proof. The equivalence of the first two is clear. The fact that a faithful Galois ring extension
satisfies descent can be found in [Ban17, 2.6], in [Mei12, §6], or in [Mat16, 9.4]. Similarly if we have
descent, then Mod(A) → Mod(B)hG is certainly conservative (being an equivalence of categories),
hence Mod(A) → Mod(B) is conservative, since the inclusion Mod(B)hG → Mod(B) is always
conservative. The equivalent definition using the Tate construction is [Rog08, 6.3.3]. □

It is not true that every G-Galois extension is faithful in homotopical Galois theory – this is a big
difference between the homotopical and the classical setting. A counterexample was pointed out by
Ben Wieland and can be found in an unpublished note of Rognes [Rog]. An easy example where
extensions are faithful is the following.

Example 3.7 ([Rog08, 6.3.4]). If A→ B is a finite G-Galois extension and |G| is invertible in π0B,
then A→ B is faithful. This is because the norm map induces an isomorphism on homotopy.

Remark 3.8. If A→ B is faithful and B is a dualizable A-module, then A→ A∧
B is an equivalence

[Rog08, 8.2.4].

Example 3.9. We have that S→ MU is not faithful [Rog08, 12.2.4], despite the fact that S→ S∧MU
is an equivalence. Rognes invites us to think about the unit map S→ MU as some massive “near-
maximal ramified Galois extension” [Rog08, p. 6, p. 92]

Remark 3.10. There is an analogue of twisted group rings in this setting, constructed as G+ ∧B,
with analogous properties to those found in the classical setting [Mei12, 6.1.3, 6.1.4]. It agrees
with HomA(B,B) in the case where A → B is faithful [Mei12, 6.2.4]. The equivalence of module
categories above can be proven by translating through the twisted group ring perspective, but in
order to argue this way faithfulness is needed.

4. The profinite Galois correspondence

Theorem 4.1 (Devinatz-Hopkins). There is a weak equivalence

LK(n)S→ EhGn
n .

We want to say this is a Galois ring extension, but recall Rognes’ definition requires the group to
be finite, whereas the Morava stabilizer group Gn is profinite. It is for this reason that Rognes
extends his definition to a profinite Galois extension. To talk about this, let’s first double back to
the ordinary profinite Galois correspondence.

We know the classical Galois correspondence – between subgroups of some finite Galois group G =
Gal(L/k) and intermediate Galois field extensions of k ⊆ L. Grothendieck advocated a more general
perspective on this, leveraging the absolute Galois group, which we’ll denote by Gs = Gal(ks/k).

Theorem 4.2 (Grothendieck Galois correspondence). There is an equivalence of categories

FEtopk
∼−→ FinGs ,

between the category of finite étale k-algebras and finite sets equipped with a continuous Gs-action.

In particular if G is a finite group, then a continuous homomorphism Gs → G corresponds to a
G-Galois extension of k. We can ask whether a similar object exists when k is a discrete ring, rather
than a field, and this is given by the étale fundamental group.

Theorem 4.3. For R a discrete commutative ring, there is an equivalence of categories

FEtopR
∼= Finπet

1 (R).
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Finally, an analogous question can be asked for ring spectra, and we obtain a profinite Galois
correspondence for ring spectra, due to Akhil Mathew. The correct analogue here is something
called the Galois group of an E∞-ring, which is denoted π1(Mod(R)) ([Mat16, 6.9]).

Theorem 4.4 ([Mat16]). If R is an E∞-ring and G is any finite group, there is a canonical bijection
between continuous homomorphisms π1(Mod(R)) → G and G-Galois extensions of R in the sense
of Rognes.

In particular, computing π1(Mod(R)) lets us understand the Galois theory of the ring spectrum R.
There is always a surjective map

π1(Mod(R)) ↠ πet
1 (R0),

where R0 = π0R, but this is in general not an isomorphism. There are nice settings where it is,
however.

Theorem 4.5 ([Mat16, 1.2]). If R is even periodic and π0R is regular and Noetherian, then
π1(Mod(R)) ∼= πet

1 (R) – that is, the Galois theory is completely determined by its discrete part.

Theorem 4.6 ([Mat16, 1.3]). We have that the Galois group of K(n)-local spectra is the extended
Morava stabilizer group.

Example 4.7. Every non-trivial ring is faithful over the K(n)-local sphere in the K(n)-local setting
[Rog08, 4.3.7].

A quick remark about this — any finite subquotient of the Morava stabilizer group (of which there
are many) yields a Galois ring extension of the K(n)-local sphere, and the methods of Devinatz and
Hopkins, combined with these perspectives of Rognes, allow for a study of the K(n)-local category
via Galois theory. The investigation into Galois extensions of the T (n)-local sphere was one of the
motivations for the recent work that led to the disproof of the telescope conjecture.

Another important example is the most basic one, that of the sphere spectrum.

Theorem 4.8 ([Rog08, 10.3.3], [Mat16, 6.19]). We have that π1(Sp) = ∗ is trivial, i.e. there are
no nonseparable Galois extensions of S.

We might phrase this as “the sphere spectrum is separably closed” [Rog08, 1.3]. Let’s prove this,
following Rognes.

Proof sketch. Suppose that S → B is some finite G-Galois extension. Then we can argue B is
dualizable as a module over S, hence has the homotopy type of a retract of a finite CW spectrum.
This implies its integral homology is finitely generated in each degree, and only nonzero in finitely
many degrees. Leveraging the condition B∧B ∼=

∏
g∈GB, we can argue that the homology must be

concentrated in degree zero, implying by Hurewicz that B is connective, with π0B ∼= H0B some free
abelian Z-module of rank equal to #G, which will turn out to be faithfully flat. We can then use this
to argue that Z = π0S→ π0B is a G-Galois extension of commutative rings, which by the theorem
of Minkowski implies that π0B ∼= Z#G. In particular B is the Moore spectrum SZ#G = ∨g∈GS. □

Appendix A. Galois and étale ring extensions

Let f : R→ S be a map of commutative rings. We always have a natural map

HomR(S,R)⊗R S → EndR(S)

λ⊗ s 7→
[
s′ 7→ λ(s′)s

]
.

In the case where S is finitely generated and projective over R, this is an isomorphism, whose inverse
is of the form EndR(S) ∼= S∨ ⊗R S, where (−)∨ denotes the categorical dual in ModR.
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Definition A.1 (see e.g. [Knu, 7.3.3]). If f exhibits S as a finitely generated projective R-module,
then we can define the reduced trace

trS/R : EndR(S)→ R

given by the evaluation map S∨ ⊗R S → R.

Denote by

ρ : S → EndR(S)

s 7→ mults

the regular representation of S as an R-algebra.

Definition A.2. If S is a commutative R-algebra which is finitely generated and projective as an
R-module, we define the trace trS/R : S → R to be the following composite

S
ρ−→ EndR(S)

ev−→ R.

Proposition A.3. In the setting of Definition A.2, the following are equivalent:

(1) f : R→ S is finite étale
(2) The trace pairing (x, y) 7→ trS/R(x · y) is non-degenerate
(3) S/m is a finite separable field extension over R/m for every maximal ideal m ⊴ R.

If R is Noetherian, we furthermore have

(4) S is projective as an S ⊗R S-module.

If S is irreducible4 and R = SG for some finite subgroup G ≤ AutR(S), then we equivalently have

(5) R→ S is Galois with Galois group G = AutR(S).

Proof. The equivalence of 1, 2, and 3 is in [Knu, I.7.3.3] and [Knu, III.5.1.10], where these conditions
are taken as a definition of finite and étale. We’d like to justify this agrees with the map of schemes
being finite and étale. Since S is finitely generated and projective over R, it is flat, and the
condition on residue fields provides that the map is unramified. Hence we see R → S is finite, flat
and unramified, i.e. finite étale.

If R is Noetherian then [AG60, 4.7] states that 4 and 3 are equivalent.

By [AG60, 1.3], separability is equivalent to the ring extension being Galois, provided all the
elements of G = AutR(S) are strongly distinct [AG60, 1.1]. In the case where S is irreducible,
being strongly distinct and distinct as functions agree, which is clearly satisfied. □

Appendix B. On Minkowski’s theorem

We saw in Example 2.5 that there are no nontrivial étale ring extensions of Z, and this reduced to
proving that for any number field K, we have that Z→ OK cannot be étale.

Theorem B.1 ([Neu02, III.2.12]). A prime p ramifies in K/Q if and only if p | ∆K .

See this note of K. Conrad for a proof.

4By irreducibility we mean Spec(R) is irreducible, i.e. the only idempotents in R are 0 and 1.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/disc.pdf#theorem.1.3
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The discriminant measures the size of a lattice attached to a number field – specifically, we look at
all the real and complex embeddings, and we get a map

K → Rr1 × Cr2 .

The image of OK is a lattice isomorphic to Zr1 × Z2r2 . The volume of its fundamental domain in
Rr1 × Cr2 is

√
|∆K |.

So it suffices for us to prove that for any number field K, the discriminant ∆K has a prime divisor.
A consequence of Minkowski’s theorem is a lower bound on ∆K for any number field Q ⊆ K of rank
n:

|∆K | ≥
(π
4

)n n2n

(n!)2
.

We check for n ≥ 2 that this lower bound is > 1.
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