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In the study of manifolds, one generally cares about the classification of manifolds up to
diffeomorphism or homeomorphism. In algebraic topology, we often work with an even
weaker notion of equivalence, called homotopy equivalence. The interval I = [0, 1] allows
us to form parametrized continuous changes in topological spaces. This is the basic idea
behind homotopy theory.

Definition 1. Let f : X → Y and g : X → Y be continuous maps between topological
spaces. We say that f and g are homotopic, denoted f ' g, if there exists a continuous
map

H : X × I → Y,

such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. In this case we call H a
homotopy between f and g.

We can check that homotopy forms an equivalence relation on the class of maps X → Y .

Definition 2. Two spaces X and Y are homotopy equivalent, denoted X ' Y if there
exist maps f : X → Y , and g : Y → X such that f ◦ g ' idY and g ◦ f ' idX .

Every homeomorphism is a homotopy equivalence, but not the other way around.

Example 1. The closed unit disk Dn is homotopy equivalent to a point ∗, but they are
clearly not homeomorphic.

In general, spaces which are homotopy equivalent to a point are called contractible.

The nth homotopy group πn(X,x0) is the set of all “based” homotopy classes of maps
Sn → X sending 1 7→ x0, where a based homotopy H : Sn × I → X sending (1, t) 7→ x0
for all t. This is a group if n ≥ 1, and an abelian group if n ≥ 2.

In particular, π0(X,x0) is just the set of path components of X.

Proposition 1. If f : X → Y is a homotopy equivalence (with inverse g : Y → X), it
induces isomorphisms on each πn(X,x0) ∼= πn(Y, f(x0)).
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Proof. Pick a basepoint x0 ∈ X. Since gf ' idX , we have that x0 and g ◦ f(x0) lie in the
same path component of X. It is easy to see then that πn(X,x0) ∼= πn(X, (g ◦ f)(x0)).
Then consider the composition of maps induced by post-composition

πn(X,x0)
f∗−→ πn(Y, f(x0))

g∗−→ πn(X, g ◦ f(x0)).

This is an isomorphism since g◦f ' idX . Similarly, we can consider the composition f∗◦g∗
which is a group isomorphism, and together we conclude that πn(X,x0) ∼= πn(Y, f(x0)).

We will call an n-manifold M a homotopy n-sphere if it is homotopy equivalent to Sn.

Theorem 2. (The Generalized Poincaré Conjecture) Every homotopy n-sphere is homeo-
morphic to Sn.

A homotopy equivalence induces a bijection on path components, so we can just worry
about connected manifolds.

1. The Case n = 1

The following is a classical fact.

Theorem 3. (Classification of 1-manifolds) Every connected 1-manifold is homeomorphic
to one of the following:

1. the real line R

2. a ray R≥0

3. the circle S1

4. the unit interval [0, 1].

Therefore, every connected 1-manifold is either contractible, or homeomorphic to S1.

2. The Case n = 2

The classification of surfaces is a relatively easy theorem, often proved at the end of an
introductory algebraic topology course.

Definition 3. The connected sum X#Y of two n-manifolds X and Y is obtained by
cutting out an open disk Dn from each of X and Y , and then gluing X and Y together
along the boundaries ∂Dn = Sn−1.
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Figure 1: The connected sum
of two tori

It is not difficult to see that homeomorphism classes of closed
n-manifolds form a monoid under #, with identity element
Sn.

Theorem 4. (Classification of closed surfaces) Any con-
nected closed surface is homeomorphic to one of

1. the sphere S2

2. a connected sum of tori #gT 2, for g ≥ 1

3. a connected sum of real projective planes #kRP2, for
k ≥ 1.

One can show that

π1(#
gT 2) = 〈a1, . . . , ag, b1, . . . , bg | [a1, b1] · · · [ag, bg] = 1〉

π1(#
kRP2) = 〈a1, . . . , ak : a21 · · · a2k = 1〉.

Neither of these groups are trivial for any choice of g or k. Thus if M ' S2, it must have
fundamental group π1(M) = π1(S2) = {e}. Therefore M ∼= S2.

(Another way to see this is that the universal covers of #gT 2 and #kRP2 are contractible,

and thus have trivial higher homotopy groups, since πi(M) ∼= πi(M̃) for i ≥ 2. But
π2(S

2) ∼= Z.)

3. The Case n = 3

Perelman proved this in 2003 (and won the Fields Medal in 2006) for resolving this case.
It involves the theory of surgery on manifolds.

4. The Case n = 4

Freedman solved this in 1982, and also received a Fields Medal.

5. The Case n ≥ 5

In order to prove the Generalized Poincaré conjecture in high dimensions, we must first
discuss some of the theory of cobordisms.
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Definition 4. Let M and N be two n-manifolds. We say they are cobordant if there exists
a compact n + 1-dimensional manifold W such that ∂W = M q N . In this case, we call
W a cobordism between M and N .

Definition 5. Let W and W ′ be cobordisms over M . We say that they are isomorphic if

there exists a homeomorphism f : W
∼=−→W ′ which restricts to the identity map on M .

Example 2.

1. Any manifold M is cobordant to itself, via W = M × [0, 1].

2. If M = ∂W for some n + 1-dimensional manifold W , then M is cobordant to the
empty set, by simply noticing that ∂W = M q∅.

3. If M = ∂W1 and N = ∂W2, then M and N are cobordant by taking the disjoint
union W = W1 qW2.

4. For any two n-manifolds M and N , we have that M#N and M qN are cobordant.
This generalizes the “pair of pants” cobordism in Figure 2.

5. Any two manifolds with the same Stiefel-Whitney numbers are cobordant.

Figure 2: The “pair of pants”
exhibiting a cobordism be-
tween S1 and S1 q S1

By ∂W = M qN , we really mean that ∂W = i(M) q j(N),
where i : M ↪−→ ∂W and j : N ↪−→ ∂W are embeddings.
However, we could strengthen this condition a little bit:

Definition 6. Let M and N be two manifolds, and let W be
a cobordism between them. We say that W is an h-cobordism
if the inclusion maps M ↪−→ W and N ↪−→ W are homotopy
equivalences.

We may think of h-cobordisms as witnesses to a homotopy
equivalence between M and N .

Example 3. For any manifold M , we always have the trivial
h-cobordism M × [0, 1], since the inclusion M ↪−→ M × [0, 1]
is a homotopy equivalence.

As an abrupt change of pace which will become clear in a minute, we will shift gears and
talk about K-theory.
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5.1. K1 and The Whitehead Group

The algebraic K-groups are a series of functors Kn : Ring→ Grp, which have ties to many
fields of mathematics, including number theory, intersection theory, and motivic homotopy
theory. Algebraic K-theory is intimately related to topological K-theory, which is used to
classify vector bundles over spaces.

The algebraic K-groups are typically exceedingly difficult to compute. Even Kn(Z) is not
know for all n ∈ N , and the statement that K4n(Z) = 0 for all n is equivalent to the
Vandiver conjecture about the class number of the maximal real subfield of a cyclotomic
field.

The first K-group K1 is surprisingly easy to describe. For a ring R, we have inclusions
GLn(R) ↪−→ GLn+1(R) via

A 7−→
[
A 0
0 1

]
.

Taking the union (really the colimit) over all n, we obtain the infinite general linear group
GL(R). Dividing out by its commutator, we obtain the first K-group:

K1(R) :=
GL(R)

[GL(R),GL(R)]
.

In the case where R is a Euclidean domain (in particular a field), we have that K1(R) = R×.
For a proof of this, see Chapter III of Weibel’s K-book.

Given a group G, and group ring Z[G], we obtain a canonical inclusion

G× {±1} → K1(Z[G])

(g,±1) 7→ (±g) ∈ GL1(Z[G]) ⊆ K1(Z[G]).

The cokernel of this map is defined to be the Whitehead group of G

Wh(G) := coker (G× {±1} → K1(Z[G]) .

Example 4. The Whitehead group of the trivial group {e} is the cokernel of the map

{e} × {±1} → K1(Z[{e}]) = K1(Z) = Z× = {±1},

which is trivial. So Wh({e}) = {e}.

Any other examples involve extremely difficult computations, but luckily, this will be the
only Whitehead group we need.
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5.2. The s-Cobordism Theorem

Here is where our digression will make sense.

Theorem 5. (The s-cobordism theorem) For n ≥ 4, let M be a connected, closed n-
manifold. Then there is a bijection

Wh(π1(G))←→ {isomorphism classes of h-cobordisms over M}.

We will conclude by proving the Poincaré conjecture in high dimensions.

Theorem 6. (The Generalized Poincaré Conjecture in Dimension ≥ 5) Let M be a closed
manifold of dimension n ≥ 5, such that M is homotopy equivalent to Sn. Then M is
homeomorphic to Sn.

Proof. Since M is a manifold, we may pick two distinct points contained in closed n-
dimensional disjoint disks D0 and D1, respectively. We define W = M r int(D0 ∪ D1).
This is a closed n-manifold with boundary given by

∂W = ∂D0 ∪ ∂D1 = Sn−1
0 ∪ Sn−1

1 ,

which is the disjoint union of two (n − 1)-spheres. Thus W defines a cobordism between
Sn−1
0 and Sn−1

1 .

Since M and Sn are homotopy equivalent, we see that W is homotopy equivalent to Sn r
int(D0 ∪D1) ∼= Sn−1 × [0, 1].

Therefore the inclusion maps Sn−1
0 ↪−→W and Sn−1

1 ↪−→W are homotopy equivalences, and
we may see that W is an h-cobordism over Sn−1.

Since n is large enough, we have that π1(S
n−1) = {e}, and thus that Wh(π1(S

n−1)) =
Wh({e}) = {e}. By the h-cobordism theorem, there is one isomorphism class of h-
cobordisms over Sn−1, namely the class given by the cylinder Sn−1 × [0, 1].

We then have that there exists a homeomorphism f : Sn−1 × [0, 1] → W such that

f
∣∣∣
Sn−1×{0}

= idSn−1 .

By the Alexander trick, any homeomorphism on Sn−1 can be extended to a homeomor-
phism Dn → Dn. So we may glue back the top and bottom of the cylinder, to obtain a

homeomorphism Sn
∼=−→M .

Thus we have proven the generalized Poincaré conjecture in dimensions n ≥ 4.
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6. Other categories to consider

Instead of working in Top, we can also consider the categories PL1, the category whose
objects are piecewise linear manifolds (the transition maps are piecewise linear), or Diff,
whose objects are differentiable manifolds.

We then can ask: if M is a homotopy n-sphere in PL (resp. Diff), is it PL-isomorphic
(resp. diffeomorphic) to Sn?

We then obtain the following status of the generalized Poincaré Conjecture:

Dimension Top PL Diff

n = 1, 2, 32 True True True
n = 4 True ? ?
n = 5, 6 True True True
n = 7 True True False
n ≥ 8 True True generally false but sometimes true

This last case, for differentiable manifolds, is particularly strange. Let’s combine our results
to see what’s going on.

Let M be a differentiable n-manifold which is homotopy equivalent to Sn. The generalized
conjecture in Diff asks whether M is diffeomorphic to Sn. But by the conjecture in Top,
we can see that M is homeomorphic to Sn. So our question refines to the following:

Do there exist non-standard differential structures on Sn?

In general, these are called exotic spheres. In the case n = 7, there are in fact 28 differ-
ent smooth structures. As we can see, it is still an open question whether non-standard
differential structures on S4, and in fact the PL case in n = 4 is equivalent to this question.

1By a theorem of Whitehead, each smooth manifold admits a canonical PL structure.
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