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1. Introduction

The following question has motivated a large body of research in the 20th century. János
Kollár refers to this problem as the recognition problem [Kol01]. Let X be a real algebraic
variety (that is, the vanishing locus of some number of real polynomials in Euclidean space)

The recognition problem 1.1. What topological properties of X(R) can be determined
from the algebraic geometry of X? That is, can topological data about the topological
space X(R) be read off from the defining polynomials of X?

In general this should be an immensely difficult problem. An understanding of the homo-
topy type of X(R) would encapsulate, for example, the homotopy type of varieties of the
form

{
(x1, . . . , xn) :

∑
i x

2
i = 1

}
, that is, the homotopy groups of spheres. Understanding

singular cohomology should be difficult in general as well. However this is a fascinating
question to ask, and it would seem magical for any topological properties to be detectable
via completely algebraic methods. Today we’ll talk about a specific example, building off of
work of Szafraniec and others in the 1990’s, which demonstrates how to compute the Euler
characteristic of a smooth real algebraic manifold in terms of its defining polynomials.

2. Warmup: root counting

Let f(x) ∈ R[x] be a polynomial of degree n. Let X = V (f) be the vanishing locus of f ,
and consider the following topological spaces:

X(C) := {z ∈ C : f(z) = 0}
X(R) := {x ∈ R : f(x) = 0} .

Q: What is χ (X(C))?
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A: It depends on whether f has repeated roots! The Euler characteristic won’t pick up mul-
tiplicity. So we should throw out any repeated roots that we see. Algebrao-geometrically,
this is saying that χ (X) = χ (Xred) for any topological variety.

Working under the assumption that f has no repeated roots, we have that χ (X(C)) = n,
by the fundamental theorem of algebra.

Q: What is χ (X(R))?

A: It is not obvious! We would have to factor f , see how many degree one and degree two
irreducible factors there are. This is not terribly difficult, since univariate polynomials can
be factored in polynomial complexity (it’s not quite as hard as factoring integers). However
before the age of computers this was a daunting task.

In 1853, Hermite came up with a way to approach this problem. He developed a (non-
degenerate) symmetric bilinear form over R, whose signature recovered the number of real
roots of f . Let’s explain what these terms mean.

Any symmetric bilinear form β : V ×V → R, where V is a finite-dimensional vector space,
has the property that V can be given a basis so that the Gram matrix of β in that basis is
a diagonal matrix, with +1’s and −1’s along the diagonal. This is called Sylvester’s law of
intertia. The signature of this form is the sum over the diagonal elements of such a form.
It is a classical fact that isomorphism classes of symmetric bilinear forms are classified over
R by their rank and signature.

What is this form? We build the algebra Q := R[x]/f(x), which is finite-dimensional over

R. Given any element g ∈ Q, multiplication by g induces an R-linear map Q
mg−−→ Q.

Taking the trace of this map gives us an element in R, so we have an R-linear form:

Q→ R
g 7→ Tr (mg) .

This gives us a symmetric bilinear form, which we might call the Hermite bilinear form

Her(f) : Q×Q→ R
(g, h) 7→ Tr (mg·h) .

Theorem 2.1. (Hermite) The signature of Her(f) is the number of real roots of f (that
is, the Euler characteristic of X(R)).

Example 2.2. Consider f(x) = (x2 + 1)(x− 3) = x3 − 3x2 + x− 3. Then Q = R[x]/f(x)
has an R-basis given by

{
1, x, x2

}
. So the Gram matrix of Her(f) is the matrix whose

(i, j)th entry is given by taking the trace of multiplication by βiβj . Explicitly,

Her(f) =

1 x x2

1 Tr(m1·1) Tr(m1·x) Tr(m1·x2)
x Tr(mx·1) Tr(mx·x) Tr(mx·x2)
x2 Tr(mx2·1) Tr(mx2·x) Tr(mx2·x2) .
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Multiplication by 1 is the identity, so it has trace 1. Multiplication by x is of the form

mx =

0 0 3
1 0 −1
0 1 3

 ,

which has trace 3. This is going to get annoying to compute traces of multiplication by
higher elements, so maybe we can use a trick? However we can remember that the trace
of a matrix is a sum of its eigenvalues! The eigenvalues here are 3, i,−i. So we see that

Tr (mxj ) = Tr
(
mj
x

)
= 3j + ij + (−i)j

= 3j +


0 j odd

2 j ≡ 0 (mod 4)

−2 j ≡ 2 (mod 4)

So our Hermite form is

Her(f) =

1 x x2

1 1 3 7
x 3 7 27
x2 7 27 83 .

Diagonalizing this form, we obtain the matrix1 0 0
0 −1 0
0 0 1

 .

This has signature equal to 1, which is the number of real roots.

Takeaway: What did we have to do in this?

• Compute an R-basis for Q
• Express mx : Q→ Q in this basis and take its trace
• Find the eigenvalues of mx, use these to get Tr (mxj )
• Diagonalize the form Her(f) and recover its signature.

No step here is computationally costly! This can all be done in polynomial time.

Complaint: But wait, you can factor a univariate polynomial in polynomial time also, so
why would you ever use this method?

Q: Given f1(x1, . . . , xn), . . . , fn(x1, . . . , xn) ∈ R[x1, . . . , xn] so that their common zero locus
is a loose collection of points, how many real points lie in V (f)?

Big issue: There is no reasonable algorithm for locating all the common roots of (f1, . . . , fn)
when n � 2. Nothing is that much better than throwing a dart at Euclidean space and
trying to Newton’s method wherever it lands.
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Theorem 2.3. (Pedersen, Roy, Szpirglas, 1993, [PRS93]) The signature of the Hermite
form

Her(f) :
R[x1, . . . , xn]

(f1, . . . , fn)
× R[x1, . . . , xn]

(f1, . . . , fn)
→ R

yields the number of real roots. In particular the Euler characteristic of X(R), when
X = V (f1, . . . , fn). This computation can be done in polynomial time.

Idea: If you only care about counting the roots (i.e. the Euler characteristic) and you
don’t much care what they are, then symmetric bilinear form methods are a good way to
move forward.

Big rough philosophy: Topological things over the reals that are communicated through
algebraic data should often be signatures of symmetric bilinear forms.

3. Euler characteristics of smooth algebraic manifolds

The following section is based off [Sza89]. Let F1, . . . , Fk ∈ R[x1, . . . , xn] define a smooth
algebraic manifold in Rn (that is, the rank of the differential matrix DF is k at every point
in V (F )). Let ω : Rn → R be given by

ω(x1, . . . , xn) =
1

2

(
x21 + . . .+ x2n

)
.

Then we can understand the manifold W := V (F ) by using ω as a Morse function. In
particular, the critical values of ω along W provide us an understanding fo the topology of
W . By Lagrange multipliers, this happens exactly when

xj =
∂ω

∂xj
=

k∑
i=1

(−λi)
∂Fi
∂xj

,

for each 1 ≤ j ≤ n. Recall that at such a critical point, we could take a coordinate system
nearby, and look at the sign of the Hessian of ω. This will be (−1)s, where s is the Morse
index of ω at this point. In particular the Euler characteristic can be given by

χ(W ) =
∑

p∈Crit(ω)

(−1)indpω.

This sum requires us to solve for the critical points though, which is something we’d like
to avoid doing if possible. The insight of Szafraniec is as follows — rather than solving for
the Lagrange multipliers, we should treat them as variables in their own right!

So instead of W ⊆ Rn, we are instead going to move over to a bigger space:

Rn+k = {(x1, . . . , xn, λ1, . . . , λk)} .
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Lemma 3.1. The restricted Morse function ω|W will have a critical point at (x1, . . . , xn)
if and only if there is a uniquely determined point (λ1, . . . , λk) so that

gradω(x) +

k∑
i=1

λigradFi = 0.

So what points do we care about in Rn+k? We care about the points (x1, . . . , xn, λ1, . . . , λk)
where

x1 =
k∑
i=1

λi
∂Fi
∂x1

...

xn =

k∑
i=1

λi
∂Fi
∂xn

,

and we also want to be on W , so we want F1(x1, . . . , xn), . . . , Fk(x1, . . . , xn) to be equal to
zero. Another way of phrasing all this is that we are looking for zeros of the map

H : Rn+k → Rn+k

(x1, . . . , xn, λ1, . . . , λk) 7→

(
x+

k∑
i=1

∂Fi
∂x

, F (x)

)
.

What is shocking and not at all obvious is that how H vanishes at a point (x1, . . . , xn, λ1, . . . , λk)
encodes the Morse index of ω at this point!

Lemma 3.2. Assume ω has a critical point at x ∈ Rn, and let λ ∈ Rk be the uniquely
determined Lagrange multipliers at this point. Then

deg(x,λ)H = sgn det [DH(x, λ)] = (−1)s+k,

where s is the Morse index at x.

Proof idea. Take local coordinates, do some calculus magic, remember Cramer’s rule from
lin alg. �

This lemma is the real technical heart of the paper. From this we get the main theorem.

Theorem 3.3. We have that

χ(W ) = (−1)k deg(H).

That is, the Euler characteristic of a smooth real algebraic manifold can be computed as
a global Brouwer degree of a polynomial function.

Brouwer degrees over the reals are always signatures of symmetric bilinear forms. Szafraniec
provides a brief discussion of how you might compute such forms, and recent work of myself,
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Stephen McKean and Sabrina Pauli [BMP21] provides some rapid code for such things. So
let’s work through some examples — let’s see how the algebra can detect the topological
difference between two planar curves.

Figure 1. y2 = x(x2 + 1)

In this first example, we have F (x, y) = y2−x3−x. Adjoining a single Lagrange multiplier
λ, we have that

H(x, y, λ) =

(
x+ λ

∂F

∂x
, y + λ

∂F

∂y
, F (x, y)

)
=
(
x+ λ

(
−3x2 − 1

)
, y + 2λy, y2 − x3 − x

)
.

We see that sgn deg(H) = −1, so that (−1)ksgn deg(H) = 1 = χ(W ), since the curve is
contractible.

Figure 2. y2 + (x− 1)2 = 1

For this second example, we have F (x, y) = y2 + x2 − 2x. This gives

H(x, y, λ) =
(
x+ λ (2x− 2) , y + λ2y, y2 + x2 − 2x

)
.
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We can see that

sgn deg(H) = 0 = χ(W ).

While these two examples are easy to visualize, if you are given the vanishing of 17 functions
in 90 variables, this strategy above gives you a feasible way to ascertain what the Euler
characteristic of their vanishing locus is.

References

[BMP21] Thomas Brazelton, Stephen McKean, and Sabrina Pauli. Bézoutians and the
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