DWYER-KAN LOCALIZATION

THOMAS BRAZELTON

ABSTRACT. Notes from an expository talk on Dwyer—Kan localization, given in the
UPenn infinity-categories seminar in fall 2020.

References:

e nlLab — simplicial localization
e Dongryul Kim : Dwyer—Kan localization

Goals/motivating questions:

Why is ordinary localization M[W ~!] bad?

How can we localize oco-categories?

Does localization translate across the homotopy coherent nerve adjunction?
Morally, why does it make sense to look at the oco-category underlying a model
category?

1. INTRODUCTION

Let M be a model category. Then its homotopy category, denoted Ho(M), is defined to
be M[W~1]. Beyond the problems we have previously discussed, there is another severe
issue with the homotopy category.

Problem: We have that Ho(M) does not capture “higher order structure.”

Quillen |Qui67] referred to the failure of Ho(M) to capture “higher order structure,” by
which we was referring to work of Spanier [Spa63] and others. Spanier’s Higher order
operations (1963) laid out the ideas of mapping cones and Puppe exact sequences which
would functorially induce exact sequences. Spanier neglected to develop these in an abstract
context, but instead remarked that they should hold for based spaces, quasi-topological
spaces, and chain complexes.

We want a notion of localizing at weak equivalences that doesn’t forget this structure.
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2. HAMMOCK LOCALIZATION

Let (¢,W) be a category with weak equivalences, not assumed to be small, and let X,Y €
% be any two objects. For any n > 0, define H,(X,Y") to be the category whose objects
are length n zig-zags of morphisms in € of the form

X(lK1—>K2<:K3—>‘--—>K

and whose morphisms are “hammocks” of the form

K, Ky ¢—n-
X ~ ~ Y
L Ly ¢— -

where each of the vertical maps are in W. Define a simplicial set by taking the coproduct
over all the nerves of these categories, and quotient by an equivalence relatio

LPG(X,Y) = >N (Hp(X,Y))/ ~

Then there is a composition map
LA¢(X,Y)x LE¢(Y,2) —» L"¢6(X, Z),
given by concatenating hammocks.

Definition 2.1. The above construction gives a simplicially enriched category L%, called
the hammock localization of (€, W).

Proposition 2.2. [DK80a, p. 3.1] We have an equivalence of categories

Ho (L7¢) ~¢[W 1.
So the hammock localization is a nice way to get a tractable description of the localization of
a category. It is this description that we will bump up into the world of infinity-categories.
Proposition 2.3. [DK80b] The hammock localization L M of an arbitrary model cate-
gory captures this “higher order information.”
2.1. Hammock localization for simplicial categories.
Q: What if ¥ and W are already simplicial categories?
If ,W € Cata, and W C % is a subcategory, then LY (%,W) is the same as takmg cofi-

brant replacements € — € and W — W, and considering the naive localization ‘K[W o

1Inselrting identities, removing them, composing them
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levelwise. We provide another characterization of Dwyer—Kan localization in the setting of
simplicial categories. We can define a naive localization as a functor

L :Cata X 1 — Cata
W = C)—CWw 1,
where C[W™1] € Catn is defined by inverting levelwise.

This is not completely correct, since it might fail to preserve weak equivalences. The
correct version of this statement is that Dwyer—Kan localization is a derived version of this
localization above.

Proposition 2.4. Dwyer—Kan localization in Cata is obtained by first applying a cofibrant
replacement, and then the localization L as above.

Explicitly, suppose we have a map W — % in Cata we want to localize. Then if there is a
diagram of the form

WL w

i |

%7>T>%,

where both p and ¢ are cofibrant replacements, and 7 is a cofibration, then L (€, W) ~
‘w1

3. 00-LOCALIZATION

Recall that the inclusion Kan < qCat is a fully faithful embedding, and moreover, that it
admits both left and right adjoints

L
e

Kan — ' qCat

N_
K

Since L has a fully faithful right adjoint, it is a localization [Lur09, p. 5.2.7.2], while K is
the functor assigning to a quasicategory its maximal Kan subcomplex. By formal nonsense
we have an adjunction

L:=14L:qCat & qCat : iK = K.
We call £ an oo-localization functor, assigning to a quasicategory a Kan fibrant replacement.
The idea is that it inverts edges in your quasi-category.

Question: Given a quasi-category, how should we define a class of weak equivalences that
we’d like to invert?
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Answer: We define them as a quasi-category %, equipped with a set of arrows in %,
meaning a subset W C Fun(A!,%). This is called a marked oo-category.

Denote by Fun"V (%, 2) the full subcategory of functors ¥ — 2 sending edges in W to
equivalences in 9.

Definition 3.1. Let 4 € qCat be a quasi-category and W C Homgget (A, %) a set of
edges. Then the oo-localization of € with respect to W is a quasi-category € [W 1], and a
functor f : ¢ — €[W 1], satisfying a universal property that for any other 2 € qCat, we
have that

f*:Fun(¢W1,2) = Fun" (¢, 2)
is an equivalence.

Definition 3.2. We say a marked pair (¢, W) is saturated if there is a map f : € — 9
of co-categories so that W is precisely the preimage of the equivalences in Z.

Suppose we have a marked pair (¢, W), defined by a map f: W — % and another quasi-
category X. We denote the localization of (¢’,W) as L(f). Then the functors € — X
for which W is sent to equivalences should factor through £(f). Phrased differently, if we
have ¥ — X so that W — % — X factors through the maximal Kan subcomplex K(X),
then such a map should factor through the localization.

Consider the functor in X defined by the fiber product
Map(%’, X) Xnap(w,x) Map(W, K(X)).

By our discussion above, this functor sends X to the mapping space Map(L(f), X). So a
good candidate for what the localization should be is any quasicategory corepresenting the
functor above.

Proposition 3.3. We have that
L(f) :=LW)w ¢
corepresents the functor Map(%’, —) Xnpap(w,—) Map(W, K(—)).

Proposition 3.4. The total localization £(W) is the fibrant replacement of (W, W) in
the category sSet™ of marked simplicial sets.

Corollary 3.5. The localization L£(f) of f: W — € is the fibrant replacement of (¢, W)
in sSet™.

Proposition 3.6. For any quasi-category 4 and any collection of edges W, the localization
E W1 exists.

We should see that this is “the same” as Dwyer—Kan localization. Explicitly, given a model
category M, we can do two things

(1) take its nerve, take W to be the marking of edges on the quasi-category N (M),
and then take it oco-localization N(M)[W 1]
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(2) take its hammock localization L (.#, W), which is a simplicial category, then take
its homotopy coherent nerve .

These should (ideally) yield the same thing.

4. UNIFYING DWYER—KAN LOCALIZATION AND 00-LOCALIZATION

Definition 4.1. Let & be a category, and consider the Dwyer—Kan localization 4 —
L7(2,2) obtained by inverting everything. This is called the total Dwyer-Kan localiza-
tion.

Recall we referred to total localization of co-categories as the functor £ = iL : qCat — gCat,
where L was left adjoint to the inclusion functor ¢ : Kan < qCat. We had that £ was some
Kan fibrant replacement for a quasi-category.

We first compare total localization in each of these settings.

Lemma 4.2. [DK80c, p. 9.1] Let & be a simplicial category. Then the total Dwyer—Kan
localization

92— LH(92,9)

has the property that if you first apply a fibrant replacement Catap — Cata, and then the
homotopy coherent nerve, the resulting map of quasi-categories is a total localization of
oo-categories.

Proposition 4.3. We have that the left adjoint €[—] to the homotopy coherent nerve
preserves localization.

Proof sketch. Let f : W — % be a map in qCat given by a saturated marking on %, and let
L(f) be its localization. Everything is cofibrant in the Joyal model structure on simplicial
sets, so W and % are cofibrant, and we may see that f is a monomorphism, and hence a
cofibration. Consider the pushout diagram in qCat

w—71 ¢

|-

LW) —— L(f).

Apply € : gCat — Cata to this diagram. Since € is a left adjoint, it preserves colimits, so
we have a pushout diagram of simplicial categories
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Moreover, € is a Quillen adjunction, so it preserves cofibrations, so €[W] — €[¢] is a
cofibration. By Lemmal4.2)we know that €[W] — €[L(W)] is a total localization. Therefore
we conclude that €[L(f)] is a Dwyer—Kan localization of €[%] with respect to €[W]. O

We want to see the homotopy coherent nerve A preserves localizations.

Recall: If S € qCat, then if we take
S Q:[ S] fibrant replacement, D s N( @),

then there is an induced map S — N(Z2) which is an equivalence.

Proposition 4.4. If ¥,V are fibrant simplicial categories, and W C % a subcategory
with obW = ob%’, then we have that the localization of N'(%) by N (W) is computed by

e taking the hammock localization LY (%, W)
e fibrantly replacing it
e taking its homotopy coherent nerve.

5. 00-CATEGORIES UNDERLYING MODEL CATEGORIES

Let M be an arbitrary model category, with weak equivalences W. By what we have said
above, M[W 1] is poorly behaved and doesn’t contain higher structures we might want.
As we have seen, the workaround for this is given by Dwyer—Kan in the 80’s, which is
that we define the hammock localization L (M, W) which is a simplicial category whose
mapping spaces are now simplicial sets, and contain this extra structure. Under the Quillen
equivalence

¢ :gCat = Catp : N,

we have that localization of co-categories on the left, and Dwyer—Kan localization on the
right, are morally the same. Explicitly, if we take L (M, W) on the right, fibrantly replace
it, then take its nerve, we get an oo-category which contains all the structure we would
want, and is an excellent place to study the model category.

Definition 5.1. For a model category M with weak equivalences W, we define the oco-
category underlying M to be RN (LH (M, W)).
How does this compare to other definitions we may have seen:
Proposition 5.2. [DK80bl pp. 4.7, 4.8] We have that
M° ~ LH M
are connected by an equivalence of (oo, 1)-categories.
If M is a simplicial model category, then as we have discussed, we have that M°, the subcat-

egory of fibrant-cofibrant objects, is equivalent to the Dwyer-Kan localization L (M, W).
Moreover, since M° is already enriched over Kan, it is already fibrant in the Bergner model
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structure; meaning we don’t have to fibrantly replace it. So the co-category underlying any
simplicial model category is N'(M°).

6. COMBINATORIAL MODEL CATEGORIES AND PRESENTABLE 00-CATEGORIES

Proposition 6.1. [Lurl7, p. 1.3.4.22] If A is a combinatorial model category, then the
underlying oo-category of A is presentable.

Proof. By Dugger’s Theorem, every combinatorial model category is equivalent to a com-
binatorial simplicial model category. Then we use the fact that, for any combinatorial
simplicial model category A, we have N (A°) is presentable [Lur09, A.3.7.6] O

This has interesting applications for computing colimits.

Proposition 6.2. |[Lurl7, p. 1.3.4.24] Let A be a combinatorial model category, and I an
indexing category. Let f : I — A° be a diagram valued in the full subcategory of cofibrant
objects. Let « : colim; F'(i) = X be an arrow in A. Then the following are equivalent

(1) « exhibits X as hocolim(f)
(2) the associated cocone from N (J)” to the underlying oco-category of A is an oo-
colimit.

The same is true for limits. Remember that all presentable co-categories are the underlying
oo-category of some combinatorial (simplicial) model category. This gives us the following
slogan.

Slogan 6.3. Homotopy (co)limits in combinatorial model categories are (co)limits in pre-
sentable oo-categories.
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