
DIAGONALIZING SYMMETRIC BILINEAR FORMS

THOMAS BRAZELTON

Abstract. In these notes we record some of the basic maneuvers for manipulating
symmetric bilinear forms and quickly recognizing their isomorphism class in GW(k).

1. Introduction

In the world of A1-homotopy theory, symmetric bilinear forms occupy a beautiful space,
arising as elements of the 0th stable stem, and thus as Brouwer degrees of maps of
varieties, A1-Euler characteristics, etc. When working through computations, we often
need to quickly recognize the class of a symmetric matrix in the Grothendieck–Witt ring,
without resorting to such extreme means as typing a 7×7-matrix into Sage or Macaulay2
and diagonalizing it there.

Sparse matrices and certain matrices with a lot of symmetry can be understood rather
painlessly if one knows what to look for. In these notes we record some basic properties
enjoyed by Gram matrices defining classes in the Grothendieck–Witt ring GW(k), and
some tips and tricks for quickly recognizing patterns in these matrices.

2. Row and column operations

We recall that diagonalizing a symmetric bilinear form is not the same as diagonalizing a
matrix. While matrices are diagonalized using matrix similarity, we have that symmetric
bilinear forms are diagonalized via matrix congruence. Congruence preserves symmetry,
while similarity does not.

Proposition 2.1. By performing the same row operation and the same column operation
on a Gram matrix, we do not change its class in GW(k).

Example 2.2. This tells us that we can perform row operations and then the same
column operations in order to diagonalize forms. Consider for example the form(

2 3
3 −1

)
.

Performing the row operation R1 → 3 ·R2 +R1 yields(
11 0
3 −1

)
,

after which we must perform the identical column operation C1 → 3 ·C2 +C1 to obtain(
11 0
0 −1

)
.

1

2 THOMAS BRAZELTON

Thus we have successfully diagonalized.

3. Block anti-diagonal forms

Some forms we might encounter are zero near the top left and bottom right, leaving
blocks along the main anti-diagonal. We claim that such forms admit nice reduction
properties.

Proposition 3.1. Consider the block Gram matrix given by

β =

 0 0 A
0 B 0
AT 0 0

 ,

where A is any invertible n× n matrix, and B is a k× k symmetric block matrix. Then
we have that

β ∼= nH+B

in GW(k) (where here we are conflating the notation of the symmetric matrix B with
its associated isomorphism class in GW).

Proof. Let’s name some basis elements:

a1 a2 · · · an b1 b2 · · · bk α1 α2 · · · αn

a1 0 0 · · · 0 0 0 · · · 0 a11 a12 · · · a1n
a2 0 0 · · · 0 0 0 · · · 0 a21 a22 · · · a2n
...

...
...

...
...

...
...

an 0 0 · · · 0 0 0 · · · 0 an1 an2 · · · ann
b1 0 0 · · · 0 b11 b12 · · · b1k 0 0 · · · 0
b2 0 0 · · · 0 b21 b22 · · · b2k 0 0 · · · 0
...

...
...

...
...

...
...

bk 0 0 · · · 0 bk1 bk2 · · · bkk 0 0 · · · 0
α1 a11 a21 · · · an1 0 0 · · · 0 0 0 · · · 0
α2 a12 a22 · · · an2 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

αn a1n a2n · · · ann 0 0 · · · 0 0 0 · · · 0

Then the form is given by

β =
∑

1≤i,j≤n

aij(aiαj + αiaj) +
∑

1≤i,j≤k

bijbibj.

We can define ψi =
∑n

j=1 aijαj. Then the form can be rewritten as
n∑

i=1

(ψiai + aiψi) +
∑

1≤i,j≤k

bijbibj.

DIAGONALIZING SYMMETRIC BILINEAR FORMS 3

Then in the basis {a1, . . . , an, ψ1, . . . , ψn, b1, . . . , bk}, we have that β is expressible as n
copies of the hyperbolic element plus the class of B. To verify this is indeed a basis, we
check that the change-of-basis matrix is given by

(⃗a ψ⃗ b⃗) =

In 0 0
0 A 0
0 0 In

 ·

a⃗
α⃗

b⃗

 ,

which has determinant det(A) ̸= 0. □

Example 3.2. Observe that Proposition 3.1 allows us to “pick off” elements along an
antidiagonal, extracting symmetric matrices out of the center. Consider for example the
following form:

0 0 0 1
0 4 5 0
0 5 8 0
1 0 0 0

 .

By the result above, this is the same as H+

(
4 5
5 8

)
, which is much easier to diagonalize.

Example 3.3. When there is “no block” in the center, we can rapidly recognize a form
as being hyperbolic:

0 0 0 1 2 3
0 0 0 4 5 6
0 0 0 7 8 9
1 4 7 0 0 0
2 5 8 0 0 0
3 6 9 0 0 0

 .

This is of the form
(

0 A
AT 0

)
, and is therefore hyperbolic, i.e. it is isomorphic to 3H.

This subdividing into blocks works particularly well with block upper triangular forms,
which appear very naturally as local residue forms of univariate functions.

4. Upper triangular forms

Definition 4.1. We say a Gram matrix defines an upper triangular form if all the entries
below the main anti-diagonal vanish.

4 THOMAS BRAZELTON

Example 4.2. The following form, with the main anti-diagonal labeled in blue, is upper
triangular:

β =

6 −1 5 0 3
−1 −7 2 7 0
5 2 1 0 0
0 7 0 0 0
3 0 0 0 0

 .

Shockingly, nothing above the main anti-diagonal matters for the isomorphism class of
the form.

Proposition 4.3. Given an n × n symmetric bilinear form β = (aij) which is upper
triangular, we have that

β ∼=

{
n
2
H n even

n−1
2
H+

〈
an+1

2
,n+1

2

〉
n odd.

Proof. A citable reference is [KW20, Lemma 6]. The authors there assume that the
form β is Hankel, meaning that it is constant along the anti-diagonals. Their proof does
not exploit this symmetry however, and it extends to the more general upper triangular
setting, as we remark in [BM21, A.2, 4.3]. □

Example 4.4. The following form is hyperbolic, since it is upper triangular and even
rank:

5 7 −1 3
7 −2 6 0
−1 6 0 0
3 0 0 0

 ∼= 2H.

Example 4.5. We have that
6 −1 5 0 3
−1 −7 2 7 0
5 2 1 0 0
0 7 0 0 0
3 0 0 0 0

 ∼= 2H+ ⟨1⟩ ,

where the ⟨1⟩ is coming from the (3, 3) entry right in the middle of the matrix.

DIAGONALIZING SYMMETRIC BILINEAR FORMS 5

5. Block upper triangular forms

Given a bilinear form β, suppose that it can be decomposed into blocks β = (Aij), so
that β is upper triangular as a block matrix. For example consider the matrix:

β =

1 0 1 0 1 2
0 1 −1 2 3 4
1 −1 5 6 0 0
2 0 6 4 0 0
1 3 0 0 0 0
2 4 0 0 0 0

 .

This matrix is not upper triangular, since every time we see a “4,” it occurs below the
main anti-diagonal. Considering it as a 3×3 block matrix, it is what we might call block
upper triangular. It turns out that β can be rewritten as follows:

β ∼= 2H+

(
5 6
6 4

)
.

That is, we can “pick out” the middle block, just like we did with the middle element in
Proposition 4.3. This is true in general.

Remark 5.1. A block symmetric bilinear form β = (Ai,j) necessarily has the property
that Ai,j = AT

j,i, since β is a symmetric matrix. In particular, we see that Ai,i = AT
i,i for

each i, so every block appearing on the main diagonal is itself a symmetric matrix.

Proposition 5.2. Let β = (Ai,j) be a block upper triangular matrix, with k blocks in
each row and column, and so that each Ai,j is an n× n matrix. Then we have that

β ∼=

{
nk
2
H k even

n(k−1)
2

H+ A k+1
2

, k+1
2

k odd,

where in this last case we are conflating A k+1
2

, k+1
2

with the class that it represents in
GW(k). We note that it will define a symmetric matrix by Remark 5.1.

Proof. A proof may be found in [BM21, Lemma 4.5], with intuition in [BM21, Appen-
dix A]. The lemma there states this in the setting of some Hankel-type symmetries, how-
ever the proof works in the absence of these symmetries, as remarked in [BM21, A.2]. □

This leads us to the following very rough philosophy.

Slogan 5.3. One can treat blocks like elements when diagonalizing symmetric bilinear
forms.

6. Code

If all else fails, the following snippet of code, extracted from [BMP], will diagonalize a
symmetric matrix M over Q in Sage.

6 THOMAS BRAZELTON

Turn a diagonal matrix into a list of its diagonal entries
def diagonal_matrix_to_list(M):

list_of_entries = []
for i in range(0,M.nrows()):

list_of_entries.append(M[i,i])
return(list_of_entries)

Find the squarefree part of an integer
def strip_squares_integer(n):

factorization = list(factor(n))
reduced_factorization = []
for pair in factorization:

newpower = pair[1] % 2
reduced_factorization.append([pair[0],newpower])

m = factor(n).unit()
for pair in reduced_factorization:

m = m*(pair[0]**pair[1])
return(m)

Find a rational number modulo squares
def strip_squares_rational(q):

a = q.numerator()
b = q.denominator()
n = a*b
return strip_squares_integer(n)

Match elements with their negatives into hyperbolic forms
def hyp_list(list_of_diagonal_entries):

how_many_hyperbolics = 0
leftover_stuff = []
while list_of_diagonal_entries:

x = list_of_diagonal_entries[0]
y = -x
if y in list_of_diagonal_entries:

how_many_hyperbolics = how_many_hyperbolics + 1

Remove y from list
del list_of_diagonal_entries[list_of_diagonal_entries.index(y)]

else:
leftover_stuff.append(x)

Remove x from list
del list_of_diagonal_entries[0]

if how_many_hyperbolics > 0 and len(leftover_stuff) > 0:

DIAGONALIZING SYMMETRIC BILINEAR FORMS 7

return(’Rational reduction: ’ +str(how_many_hyperbolics) + #
’H + < ’ + ’, ’.join(map(str,leftover_stuff)) + ’ >’)

elif how_many_hyperbolics == 0 and len(leftover_stuff) > 0:
return(’Rational reduction: < ’ + ’, ’.join(map(str,leftover_stuff)) + ’ >’)

elif how_many_hyperbolics > 0 and len(leftover_stuff) == 0:
return(’Rational reduction: ’ +str(how_many_hyperbolics) + ’H’)

else:
return(’0’)

Take a diagonal matrix over Q and output its hyperbolic parts
def reduce_matrix(M):

list_of_entries = diagonal_matrix_to_list(M)
reduced_list_of_entries = []
for q in list_of_entries:

w = strip_squares_rational(q)
reduced_list_of_entries.append(w)

return(hyp_list(reduced_list_of_entries))

References

[BM21] Thomas Brazelton and Stephen McKean, Lifts, transfers, and degrees of univariate maps, 2021.
[BMP] Thomas Brazelton, Stephen McKean, and Sabrina Pauli, a1-degree.sage.
[KW20] Jesse Leo Kass and Kirsten Wickelgren, A classical proof that the algebraic homotopy class of a

rational function is the residue pairing, Linear Algebra Appl. 595 (2020), 157–181. MR 4073493

Department of Mathematics, University of Pennsylvania

Email address: tbraz@math.upenn.edu

URL: https://www2.math.upenn.edu/~tbraz/

	1. Introduction
	2. Row and column operations
	3. Block anti-diagonal forms
	4. Upper triangular forms
	5. Block upper triangular forms
	6. Code
	References

