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1. Intro on orientations

Recall that an orientation of an n-manifold M is a class ρ ∈ Hn(M) so that, for any point
x ∈M , the induced map

Hn(M)→ Hn(M,M − x) ' Hn(Dn, Sn−1) ' H0(∗) ∼= Z.

sends ρ to a generator. We think about a generator of Hn(Dn, Sn−1) as a way to assign a
normal vector to the disk Dn around each point x in a continuous way, so that the normal
vectors don’t flip suddenly. This aligns with our intuition of what an orientation should
mean.

More generally, let V → M be a vector bundle. Then for each point p ∈ M , we want to
orient a small disk sitting over p in V . Suppose we have a Riemannian metric, and let
D(V ) denote the disk bundle:

D(V ) := {v ∈ V : |v| ≤ 1} .

Then we are asking for a normal vector out of every disk over every point in M in a
continuous way. In an analogous way to what we did above, taking Dn/Sn−1, we define
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S(V ) to be the sphere bundle

S(V ) := {v ∈ V : |v| = 1} ,
and we consider the quotient bundle, also called the Thom space:

Th(V ) := D(V )/S(V ).

For every point x ∈ M , we have a disk and its neighborhood sitting in V over x, which
gives an inclusion

ix : (Dn, Sn−1)→ Th(V ).

If V is a rank n bundle over M , then an orientation of V will be a class µ ∈ Hn(Th(V ))
so that its restriction along ix is a generator of Hn(Dn, Sn−1) ∼= Z.

Remark 1.1. Remarks about Thom spaces:

(1) The Thom space of the pullback is the pullback of the Thom space
(2) If εn → X is the trivial rank n bundle, then Th(εn) = Sn∧X+ is the trivial sphere

bundle, but where all the points at ∞ in each sphere are glued together.
(3) We have that Th(Rn ⊕ V ) ' Sn ∧ Th(V ) = ΣnV .

Recall that a ring spectrum is a monoid in the stable homotopy category, that is, it has a
multiplication map

E ∧ E → E

which is unital and associative up to homotopy. We say a ring map is a morhpism of
spectra f : E → F so that the diagram commutes

E ∧ E E

F ∧ F F.

f∧f f

We remark that S is initial among ring spectra.

Notation 1.2. We remark that the unique map S !−→ E defines a class in

Hom
(
Σ∞S0, E

)
= E0(∗).

We denote this class by 1 ∈ E0(∗). By abuse of notation, we can also call 1 ∈ E2(S2)
under the suspension isomorphisms.

2. Complex orientable ring spectra

For any base X and any vector bundle V , there is a vector bundle morphism in the diagram

V V ⊕ ε0

X X ×X.
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Applying Th(−) on the top, we obtain a map Th(V )
∆−→ Th(V ) ∧X+, which we call the

Thom diagonal.

Definition 2.1. Analogous to above, let V → X be any rank n bundle, and E any ring
spectrum. Then we say that V is E-oriented if there is a morphism

µV : Th(V )→ ΣnE,

(that is, a class in En(Th(V ))) so that for any x ∈ X, the inclusion of its fiber Sn ↪−→ Th(V )
has the property that µV pulls back to a generator of π∗E.

Given such a Thom class, the following composite is an E-module isomorphism

E ∧ Th(V ) E ∧ ΣnX+

E ∧ Th(V ) ∧X+ E ∧ ΣnE ∧X+ E ∧ E ∧ ΣnX+

∼

E∧∆

id∧µ∧id ∼

id∧µ∧id

We call this the Thom isomorphism. This agrees with the normal Thom isomorphism in
two ways

(1) Applying π∗ we get an isomorphism E∗(Th(V ))
∼−→ E∗(Σ

nX+).
(2) Since everything is a morphism of E-modules, we can apply HomModE (−, E), and

recall that HomModE (E∧Y,E) ' HomSp(Y,E) to get that [ΣnX+, E]
∼−→ [Th(V ), E],

so there is an isomorphism E∗−n(X+) ∼= E∗(Th(V )).

Definition 2.2. We say that a ring spectrum E is complex orientable if for every complex
vector bundle V → X of real rank n, there is a Thom class µV : Th(V )→ ΣnE satisfying
some compatibility conditions:

(1) For f : Y → X and V → X, we have that µf∗V = f∗µV .
(2) We have that µV⊕V ′ = µV · µV ′ (here we are using that E is a ring spectrum to

have this multiplication).

Exercise 2.3. Let E be a complex oriented ring spectrum, and let f : E → F be a ring
map. Then F is complex oriented.

Now let E be complex oriented, and let u ∈ Ẽ2(CP∞) be a cohomology class which is
mapped to 1 under the composite

Ẽ2(CP∞)→ Ẽ2(CP1) = E0(∗).
Then for each n, there is a map

E∗[u]→ E∗(CPn),

sending u to the pullback of u under the natural inclusion CPn ⊆ CP∞.

Proposition 2.4. (Hopkins p.3) In the function above, un+1 is mapped to 0.
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Proof. Since u is a reduced cohomology class, when it is restricted to a contractible sub-
space, it becomes zero. We remark that CPn can be covered by n+1 contractible open sets
under its standard charts, call them each Ui. We recall that the cup product in relative
cohomology works like

E∗(X,A)× E∗(X,B) 7→ E∗(X,A ∪B).

Thus by writing u ∈ E∗(CPn, Ui) for each i, we have that

un+1 ∈ E∗ (CPn, U1 ∪ · · · ∪ Un+1) = E∗(CPn,CPn) = 0.

�

Lemma 2.5. We have that the map

E∗[u]/un+1 → E∗ (CPn)

is a ring isomorphism.

Proof idea. Induct on n using the Atiyah–Hirzebruch spectral sequence

Ep,q2 = Hp (CPn, Eq(∗))⇒ Ep+q(CPn),

to get the group isomorphism, and remark that the AHSS is multiplicative to get the ring
isomorphism. �

Corollary 2.6. We have that

E∗(CP∞) ∼= E∗[[u]].

Moreover as E is multiplicative, we can prove that

E∗

(
n∏
i=1

CP∞

)
∼= E∗[[u1, . . . , un]].

Theorem 2.7. (Chua, 3.7) There is a natural bijection between

(1) Complex orientations of E
(2) Classes u ∈ E2(CP∞) that restrict to an E∗-module generator of E2(CP1) ∼= E0.

Proof idea. Given any complex orientation, the Thom class of the tautological bundle
O(−1) → CP∞ gives a map Th(O(−1)) → E, defining a class in E2(Th(O(−1))) '
E2(CP∞) which maps to 1 by hypothesis. Conversely, suppose we have a Thom class
u ∈ E2(CP∞). We want to use this to generate Thom classes for each complex bundle.
Since rank n complex bundles are classified by maps X → BU(n), it will suffice to generate
Thom classes for the universal bundles over BU(n) for all n. We will come back to this. �
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Remark 2.8. A complex orientation is equivalently a commutative diagram of the form

S2 Ω∞E

CP∞

Proposition 2.9. Let R be any ring. Then the EM spectrum HR is complex orientable.

Proof. We have that H2(S2, R) ∼= R is non-empty. Moreover, since S2 ↪−→ CP∞ is the
inclusion of a 2-skeleton, we have an induced isomorphism

H2(S2, R)
∼−→ H2(CP∞, R).

Therefore any choice of generator of H2(S2, R) is a complex orientation. �

Thus if we have a map S2 → Ω∞E, we can check stage by stage whether it lifts along the
inclusions S2 = CP1 ⊆ CP2 ⊆ CP3 ⊆ · · · ⊆ CP∞. The obstruction to a lift of the form

CPn Ω∞E

CPn+1

is determined by a class in π2n+1Ω∞E = π2n+1E.

Corollary 2.10. If E is concentrated in even degrees, then any choice of map S2 → Ω∞E
is a complex orientation (i.e. it is always complex orientable).

Remark 2.11. We have that KU is complex orientable by Bott periodicity.

3. Chern classes and FGLs

We recall that a complex line bundle over a space X is classified by a homotopy class of
maps X → CP∞.

Definition 3.1. If E is a cohomology theory, complex oriented by a class u ∈ E2(CP∞),
then for any line bundle L→ X, defined by a map

f : X → CP∞

we define c1(L) ∈ E2(X) by c1(L) := f∗(u).

In particular, the tautological line bundle over CP∞ gives a map CP∞ → CP∞. Taking
the tensor product of this bundle with itself defines an element of

[CP∞,CP∞]× [CP∞,CP∞] ∼= [CP∞ × CP∞,CP∞] .
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We denote by g this resulting map. Then g∗ induces a map on cohomology

g∗ : E∗(CP∞)→ E∗ (CP∞ × CP∞) .

If E is complex orientable, this is a map of the form

E∗[[u]]→ E∗[[x, y]].

Thus the image of u is some formal power series, and actually is a formal group law.

Remark 3.2. Every complex orientation of a multiplicative cohomology theory defines a
formal group law in E∗[[x, y]].

Just as we can tensor line bundles, we can add them. The map L1, . . . , Ln 7→ ⊕ni=1Li is
classified by a map

θ : BU(1)× · · · × BU(1)→ BU(n),

which is homotopy equivariant. Applying [−, HZ] we get a map

H∗(BU(n);Z)→ H∗(BU(1)n;Z) ∼= (HZ)∗[[t1, . . . , tn]] ∼= Z[t1, . . . , tn],

which factors through the subspace Z[t1, . . . , tn]Σn ⊆ Z[t1, . . . , tn] consisting of the equivari-
ant polynomials under permutation of the ti’s. Let ci denote the ith symmetric polynomial
on the ti’s:

c1 = t1 + . . .+ tn

c2 =
∑
i 6=j

titj

...

cn = t1 · · · tn.

Then our construction above defines a function (which is really an isomorphism)

θ∗ : H∗(BU(n);Z)
∼−→ Z[c1, . . . , cn].

By abuse of notation, let ci := (θ∗)−1(ci). Now let X be any space, and consider a rank
n vector bundle on it given by X → BU(n). Then ci maps to a class in H∗(X;Z) under
restriction. This is the ith Chern class.

Remark 3.3. An analogous discussion says that for any complex oriented cohomology
theory there is an isomorphism

E∗(BU(n)) ∼= E∗[[c1, . . . , cn]].

Again, for any X → BU(n) we get Chern classes in E∗(X).

We can now wrap up the proof of the theorem above.
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Since E∗(BU(n − 1)) ∼= E∗[[c1, . . . , cn−1]], and E∗(BU(n)) ∼= E∗[[c1, . . . , cn]], under the
natural inclusion BU(n− 1) ↪−→ BU(n), we can view cn as a relative cohomology class

cn ∈ E∗ (BU(n),BU(n− 1)) .

Let ζ : EU(n)→ BU(n) denote the universal bundle. This comes with an action by U(n)
whose quotient is BU(n). Since the unit disk bundle contracts to a zero section, we have
that BU(n) ' D(ζ). Since U(n − 1) ⊆ U(n), it also induces an action on EU(n). This
gives a fiber sequence

U(n)/U(n− 1) EU(n)/U(n− 1) EU(n)/U(n)

S2n−1 BU(n− 1) BU(n).

∼ ∼ ∼

Therefore BU(n − 1) → BU(n) is a sphere bundle, and is actually isomorphic to the unit
sphere bundle S(ζ) sitting inside of EU(n)→ BU(n). Thus we have that

cn ∈ E∗(BU(n),BU(n− 1)) ' E∗(D(ζ), S(ζ)) ' E∗(Th(ζ)).

Proposition 3.4. We have that cn defines a Thom class for the universal bundle over
BU(n).

Thus from our complex orientation u we can define cn, which gives us a Thom class for the
universal rank n bundle, which will give Thom classes for all rank n bundles.

4. Representability of complex orientations

We just used the Thom space of the universal bundle over BU(n) to construct universal
Thom classes. This construction turns out to be more general, providing another charac-
terization of complex orientations.

Definition 4.1. We define MU(n) := Th (EU(n)→ BU(n)). By what we have seen above,
we have that MU(n) ' BU(n)/BU(n− 1).

In particular since the nth Chern class was an element cn ∈ En(BU(n),BU(n−1)), we can
rephrase the nth Chern class as a map

Σ∞MU(n)
cn−→ E.

As n varies, we can form MU(n) into a spectrum, though there is an indexing issue. The
structure maps come from the observation that

Σ2MU(n) = Σ2Th(EU(n)) = Th (C⊕ EU(n)) = Th (EU(n+ 1)) = MU(n+ 1).



Thomas Brazelton Complex orientations February 19th, 2021

So we define a spectrum MU by

MU2n := MU(n)

MU2n+1 := ΣMU(n).

Remark 4.2. We have that

(1) MU(0) ' S
(2) MU(1) ' Σ−2Σ∞CP∞.

We also have that MU is multiplicative. Since there is a map

BU(n)× BU(m)→ BU(n+m)

which classifies direct sums, this induces a map MU(n) ∧ MU(m) → MU(n + m). To
bootstrap this up to a multiplication on spectra, we define

(MU ∧MU)2n = MUn ∧MUn

(MU ∧MU)2n+1 = MUn+1 ∧MUn,

and check that these multiplications define a morphism µ : MU ∧MU→ MU (see Carrick
2.4). This is homotopy associative and unital, and moreover is homotopy commutative, so
MU is an E∞-ring spectrum.

Proposition 4.3. We have that MU is complex oriented.

Proof. For any complex bundle V → X of complex rank n, it is classified by some map f
so that

V EU(n)

X BU(n).

y
ζn

f

Applying Th, this gives us a map Th(ζn) → Th(V ), that is, MU(n) → Th(V ). We may
check that pulling back cn along this map gives a Thom class in H2n(Th(V )). We see
that such Thom classes are functorial along pullbacks, induce Thom isomorphisms, and
are multiplicative (since MU is a ring spectrum). �

If E is complex oriented, we said that every Thom class was pulled back from some Chern
class

cn ∈ E∗(BU(n),BU(n− 1)) ' E∗(D(ζn), S(ζn)) ' E∗(MU(n)).

That is, the Chern class for E is given by some map φn : MU(n)→ Σ2nE. Since MU(n) is
concentrated in degree 0 here, this is the same as asking for a space map MU(n) → E2n.
We can ask to what extent the φn’s agree levelwise.
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Proposition 4.4. We have that the diagram commutes up to homotopy

Σ2MU(n) Σ2E2n

MU(n+ 1) E2n+2.

Σ2φn

φn+1

Proof. We can induct on n. Beginning with n = 0, we have a map

φ0 : MU(0) ' S0 → E0,

representing c0 := 1. Suppose that we have maps φk for k ≤ n yielding the Chern classes,
which commute in the sense above. By definition (or by base case), c1 commutes with the
classes 1, that is, we have a diagram

S2

MU(1) E2.φ1

This is because MU(1) is just CP∞. Smashing φ1 with φn, we get a homotopy commutative
diagram

S2 ∧MU(n) S2 ∧ En

MU(1) ∧MU(n) E2 ∧ E2n.

φn

1×id 1×id

φ1∧φn

Since c1 · cn = cn+1 (as universal bundles), we have that the bottom square on the diagram
commutes up to homotopy

S2 ∧MU(n) S2 ∧ En

MU(1) ∧MU(n) E2 ∧ E2n

MU(n+ 1) E2n+2.

φn

1×id 1×id

φ1∧φn

φn+1

�

Thus the Chern classes correspond to a general map of spectra

c : MU→ E.

Proposition 4.5. The map described above is a unital ring spectra homomorphism.
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Proof. For unitality, we are asking that

S MU

E

c

commutes up to homotopy. Levelwise, we have asking for the composite S2n → MU(n)
cn−→

E2n to be equivalent to 1, meaning that cn restricts to a unit of E2n on the fiber, which is
precisely the statement that cn is a Thom class.

For multiplicativity, we want to see that the diagram commutes

MU ∧MU E ∧ E

MU E.

c∧c

c

Up to some magic about smash products of spectra, this is the same as asking for diagrams
of the form

MU(n) ∧MU(m) E2n ∧ E2m

MU(n+m) E2(n+m).

cn∧cm

cn+m

But this follows from the Whitney product formula. �

Theorem 4.6. The following are in natural bijection

(1) Ring maps MU→ E.
(2) Complex orientations on E

Proof. We remark that the inclusion

Σ−2CP∞ ' MU(1)→ MU

gives a class t ∈ MU2(CP∞) which is a complex orientation. Moreover this is a universal
one. We therefore have a map

HomRing(MU, E)→ {complex orientations on E}
φ 7→ φ(t).

We can check that this is inverse to the construction above. �

Thus MU is the “universal complex oriented cohomology theory,” and its distinguished
class t ∈ MU2(CP∞) is the “universal complex orientation.”
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Recall that for any complex oriented spectrum E, there was a map g : CP∞×CP∞ → CP∞

which classified tensoring line bundles by the Yoneda lemma. If u ∈ E2(CP∞) was the
complex orientation, then we had an induced map

g∗ : E∗[[u]] ' E∗(CP∞)→ E∗(CP∞ × CP∞) ' E∗[[x, y]].

The image g∗(u) was some formal group law in E∗[[x, y]], providing a connection between
complex orientations and formal group laws.

Now let t ∈ MU2(CP∞) be the universal group law. Then g induces a map

g∗ : MU∗[[t]]→ MU∗[[x, y]],

sending t to some formal group law in x and y over the ring MU∗ = π∗MU. We are curious
what formal group law this is.

In order to understand what this is, we invoke Lazard’s Theorem, and we see that the
universal group law is represented by some particular ring map

L→ π∗MU.

Theorem 4.7. (Milnor—Quillen) The map above is a ring isomorphism.

We will spend the next few lectures (lectures 7—10 of Lurie) proving this statement. This
result completely tells us what the homotopy of MU looks like. Moreover, this aligns with
something we already knew: if E is complex orientable, it produces some formal group
law. The complex orientation on E comes from some ring map MU→ E, inducing a ring
homomorphism π∗MU → π∗E. After roving this theorem, this is a map L → E∗, which
determines the formal group law associated to the complex orientation on E. The goal for
this direction will be as follows:

(1) (Lecture 7) Compute H∗(MU;Z) first.
(2) (Lecture 8) Determine a method for passing from integral homology to homotopy.

This is given by the Adams spectral sequence.
(3) (Lecture 9) Apply the Adams spectral sequence for MU to try to understand the

E2-page
(4) (Lecture 10) Use this to prove the Milnor—Quillen theorem.

We will study MU in a bit more detail then take a crack at the first step of this. Before
doing so, we want to advertize some ideas that are coming up.

4.1. What is to come. Roughly speaking, there was a map

{complex orientations} → {FGLs} .
We can ask to what extent this is surjective. That is, given a ring R and an FGL in R[[x, y]],
does it arise from a complex orientation on some ring spectrum E? That is, does there
exist a ring spectrum E so that π∗(E) = R, and a ring spectrum map f : MU→ E so that
π∗(f) : L → R classifies our given FGL? By Brown representability, this is equivalent to
asking about the existence of a generalized homology theory satisfying certain axioms. This
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problem is understood by Landweber exact functor theorem which provides necessary and
sufficient conditions to understand the spectra that arise in this fashion, and an algebraic
interpretation of the associated FGLs.

Another direction of study comes from the Adams—Novikov spectral sequence. Under cer-
tain conditions, for a spectrum X, we will have a spectral sequence converging to πp−q(X).
The terms on the E2-page are group cohomology groups, with coefficients in MU∗(X), the
MU-homology of X:

E∗,q2 is group cohomology with coefficients in the L-module MU∗(X).

Passing into the world of algebraic geometry, we can view MU∗(X) as a quasi-coherent
sheaf over the moduli stack Mfg = SpecL/G, where G is a group scheme which we could
think of as acting via reparametrizing formal group laws. The E2-pages then turn into

E∗,q2 is stack cohomology of Mfg with coefficients in the quasi-coherent sheaf MU∗(X).

This passage from L to Mfg carries some information in how it relates to other objects.
Let A be any ring:

We have that: ...correspond to:
Ring homomorphisms L→ A FGLs over A
Scheme morphisms SpecA→ SpecL FGLs over A
Stack morphisms SpecA→Mfg “equivalence classes” of FGLs over A.

Understanding Mfg is equivalent (by Yoneda) to understanding all maps into Mfg, which
is equivalent to understanding formal group laws. So we will be really interested in the
structure ofMfg as a stack. We observe thatMfg is not an algebraic stack since it doesn’t
admit a presentation by a locally of finite type scheme (since there are too many generators
on L). It is, however, a filtered colimit of algebraic stacks

Mfg = colimnMn
fg.

We could very roughly envision Mn
fg as some stacky analogue of the n-skeleton of a CW

structure onMn
fg. The A-points ofMn

fg correspond to formal group laws of “height” n. So
studying this stratification by algebraic stacks corresponds to studying formal group laws
by their height.
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