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1. Introduction

1.1. Goal. We want to show how to compute colimits in quasi-categories using homotopy
colimits in simplicial categories.

1.2. The homotopy coherent nerve, again. Recall that we defined a functor

C : ∆→ Cat∆

∆n → C[∆n],

where C[∆n] was the simplicial category with

obC[∆n] = ob[n]

MapC[∆n](i, j) =

{
∅ j < i

N(Pi,j) i ≤ j.

The simplicial nerve of a simplicial category C was characterized by

HomsSet(∆
n, N(C )) ∼= HomCat∆(C[∆n],C ).

This functor extended to a functor

C : sSet→ Cat∆

S 7→ C[S],

and fit into an adjunction with the simplicial nerve

C : sSet � Cat∆ : N.
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1.3. Mapping spaces in quasi-categories. In quasi-categories, and in simplicial sets
more generally, we want more than just a set of morphisms between two objects, we want
a space (e.g. a Kan complex) or more generally speaking, a homotopy type.

Given a simplicial set S, we define its homotopy category to be the homotopy category
hC[S] of the simplicial category C[S] [Lur09, p. 1.1.5.14]. This is enriched over H, the
homotopy category of spaces. In particular, for any x, y ∈ S, we have that MaphS(x, y) is
the homotopy type of the mapping space MapC[S](x, y).

In general, we define the mapping space for any simplicial set S and objects x, y ∈ S to be

MapS(x, y) := MaphS(x, y).

The problem is that for arbitrary simplicial sets, this is not a Kan complex (this problem
is rectified by defining “right morphisms” — the study of relating possible definitions of
mapping spaces comes after the topic of (un)straightening). However, if S = C is a quasi-
category, then it will be [Lur09, §2.2].

In general, given any fibrant simplicial category D, its fibrancy means that it is enriched
over Kan, so MapD(x, y) ∈ Kan for all x, y ∈ D. A general strategy for getting a Kan

complex as a mapping space in an arbitrary simplicial set is

(1) take x, y ∈ S ∈ sSet

(2) take S 7→ C[S], and then fibrantly replace C[S] by some fibrant simplicial category
D

(3) take the nerve of D , so the entire process produces S → N(D).

This map produced is a Joyal equivalence, so we can kind of think of MapS(x, y) as
MapN(D)(x, y).

1.4. Colimits in 1-category theory. Let p : J → C be a functor of 1-categories. Then
recall that a colimit of p is the nadir of an initial cone under the diagram. Explicitly, we
can append an extra object ∗ to J , and a morphism j → ∗ for every j ∈ J to make a new
category, which we denote by

J ? [0] = J..

Functors out of J. are exactly cones under J-shaped diagrams.

What should the “category of cones under p” look like? Clearly it should be somehow
related to Fun(J.,C ), but this category yields all possible cones under all possible J-
shaped diagrams in C , and we only want cones under p.



Thomas Brazelton Colimits in quasi-categories August 30th, 2020

We can see there is an inclusion J → J., so the category of cones under p is exactly the
functors fitting into a commutative diagram

J

J. C .

p

This motivates the following definition.

Definition 1.1. The category of cones under p is the functor category

FunJ/Cat (J.,C ) ,

where J.,C ∈ Fun(J/Cat) are understood as (J ↪−→ J.) and J
p−→ C , respectively.

Then we say that a functor p : J. → C is a colimit cone if it is initial in FunJ/Cat (J.,C ).
If such a functor exists, then we have p : J ? [0] → C , and we have that p(0) =: colimp is
an object in C , called the colimit of p.

There is another roundabout way to describe this category, which relates more to the
notation used in HTT. Leave p : J → C alone, but now instead of taking a join with a
point, allow the flexibility to take a join with any category. In particular, for any Y , there
is a canonical inclusion p : J → J ? Y , so you can ask about the functor

FunJ/Cat(J ?−,C ) : Catop → Set.

This functor turns out to be representable! That is, there is a category Cp/, which the
property that there is an isomorphism

FunCat(Y,Cp/) ∼= FunJ/Cat(J ? Y,C ),

which is natural in Y . Returning our attention to the case Y = [0], we can see that Cp/ is
exactly equal to FunJ/Cat(J

.,C ) — that is, it is the category of cones under p.

1.5. Colimits in quasi-categories. Let’s take this whole discussion and bump it up to
the world of quasi-categories.

There is a “join” of simplicial sets which can be thought of as follows — given X,Y ∈ sSet,
we have that X ? Y is a “cone under X with vertex Y .” This is compatible with the join
of categories in the following sense.

Exercise 1.2. Given categories A,B ∈ Cat, we have that N(A ?B) ∼= N(A) ? N(B) is an
isomorphism of simplicial sets.

We also have “slice” categories — given the fact that the nerve is fully faithful, we can
consider it as inducing a functor J/Cat→ NJ/sSet for any J ∈ Cat.
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In particular, let’s consider the situation where p : J → C is a functor from a simplicial
set J into a quasi-category C . Then we claim that the functor

HomJ/sSet(J ?−,C ) : sSetop → Set

is representable, by a simplicial set Cp/.

Proposition 1.3. If C is a quasi-category, then so is Cp/.

Analogous to above, a colimit cone of p should be an initial object in Cp/. But remember
that Cp/ is now a quasi-category, so asking for an initial object is a more involved procedure.

Proposition 1.4. An object a ∈ A in a locally small 1-category is initial if we have that
HomA(a, a′) is terminal in Set for all a′ ∈ A.

Let’s bump this up to quasi-categories.

Proposition 1.5. An object d ∈ D in a quasi-category is initial if and only if any of the
equivalent conditions hold

• it is initial in hD (this is how Lurie defines initial, see [Lur09, p. 1.2.12.1])
• as hD is enriched over H, this is equivalent to asking that MaphD(d, d′) is terminal

in H for every d′ ∈ D
• MaphD(d, d′) ' ∗ is contractible for all d′ ∈ D .

Thus an element morphism p ∈ Cp/ is initial if and only if

HomC /p(p, q) ' ∗
for any other q ∈ Cp/. By the universal property of Cp/, we see that

Cp/ ' HomsSet([0],Cp/) ' HomJ/sSet(J
.,C ).

Thus we can view p ∈ HomJ/sSet(J
.,C ). The statement that p is initial in this category is

the same as the statement that, for any other cone q under p, the mapping space of natural
transformations [p, q] is weakly contractible.

Somehow we want to relate this space of cones with a space of maps between the nadirs of
the cones. This is accomplished by the following lemma.

Lemma 1.6 (4.2.4.3). Let C be a qcat, K a simplicial set, p : K → C a diagram, and
p : K. → C a cone under the diagram. Then the following are equivalent

(1) p is a colimit cone
(2) if X ∈ C is the image of the cone point under p, then p determines a natural

transformation α : p⇒ constX , where constX : K → C is the constant diagram at
X. Then for every Y ∈ C , there is a homotopy equivalence

φY : MapC (X,Y )→ MapFun(K,C )(p, constY ),

given by sending X → Y to a diagram p
α−→ constX → constY .

This is exactly the analog of the “universal property of the colimit” in quasi-categories.
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2. Homotopy Colimits in Simplicial Cats

2.1. Kan extensions. (Riehl: Categorical Homotopy Theory)

Let C,D,E be categories, and consider a diagram of the form

C D

E

F

K

A general lifting problem we might be interested in is as follows: does there exist a functor
E → D making the diagram commute?

In general no, however we can ask a slightly different question. Is there a functor E → D
which commutes up to natural isomorphism, and is initial/terminal among all such pairs
of functors and natural isomorphisms? This is called a Kan extension.

Definition 2.1. A left Kan extension of F along K is a functor LanKF : D → E with a
natural transformation η : F ⇒ LanKF ◦K such that, for any other pair (G, γ) we have
that γ factors uniquely through η.

Dually a right Kan extension is a functor RanKF : D → E with the 2-cell going in the
opposite direction. In general Kan extensions may or may not exist.

Examples 2.2.

(1) If F : ∆ → Top is the functor sending [n] to the topological n-simplex ∆n, then
the left Kan extension along the Yoneda embedding exists, and is called geometric
realization.

∆ Top

sSet

F

y

|−|

Moreover we can replace Top with any cocomplete category E , and some categorical
trickery shows that geometric realization is always a left adjoint to some functor
E → sSet.

(2) If K is fixed, and LanKF and RanKF exist for any F , then they assemble into
functors

LanK(−),RanK(−) : Fun(C,E)→ Fun(D,E).

Let K∗ : Fun(D,E) → Fun(C,E) denote precomposition with K. Then there are
adjunctions

LanK(−) a K∗ a RanK(−).



Thomas Brazelton Colimits in quasi-categories August 30th, 2020

This generates tons of examples.
(3) Let f : R→ S be a ring homomorphism. Viewing it as a functor between one-object

abelian categories, then the left Kan extension along a functor R → EndAb(M) is
extension of scalars, which is left adjoint to restriction of scalars.

(4) Let ∆≤n be the subcategory of ∆ with objects {[0], . . . , [n]}. Then the inclusion
in : ∆≤n ↪−→ ∆ induces a functor i∗n : sSet → Fun(∆op

≤n, Set), called n-truncation.
By the example above, this admits left and right adjoints, called the n-skeleton and
n-coskeleton (abuse of notation).

(5) The inclusion of a subgroup H ⊆ G induces restriction of representations VectG →
VectH . This admits left and right adjoints, called induction and coinduction.

2.2. Derived functors. Let F : C → D be a functor between model categories. Consider
the following diagram

C D

hC hD.

QC

F

QD

The definition of a derived functor in the model category setting is a suitable morphism
hC → hD, as in the diagram above. It is often too strict to ask for such a morphism to
exist making the diagram strictly commute, but we can ask for the diagram to commute
up to some 2-cell.

Definition 2.3. The left derived functor LF is the right Kan extension

LF := LanQC
(QD ◦ F ).

The right derived functor RF is the left Kan extension

RF := LanQC
(QD ◦ F ).

These may or may not exist. The following theorem provides sufficient conditions for
the existence of functors. Recall a Quillen adjunction between model categories is an
adjunction F : C � D : G such that F preserves cofibrations and trivial cofibrations, or,
equivalently, G preserves fibrations and trivial fibrations.

Theorem 2.4. If F : C � D : G is a Quillen adjunction, then the derived functors LF
and RG exist and form an adjoint pair [Rie, p. 4.2].

Example 2.5. Let J be a small indexing diagram, which we will use to index diagrams of
spaces. There is a constant functor

Top
∆−→ Fun(J, Top),

given by sending a space X to the constant diagram at X (all objects j ∈ J are sent to
X, and all morphisms in J are sent to idX). Since Top is complete and cocomplete, this
functor admits left and right adjoints, which are the colimit and limit functors, respectively

colim a ∆ a lim .
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We claim that, if they exist, the homotopy colimit and homotopy limit can be defined to
be

hocolim := Lcolim

holim := R lim .

But first we need to see they exist.

Q: Are colim a ∆ and ∆ a lim Quillen adjunctions?

A: Yes — but you need to be careful which model structure you pick on Fun(J, Top).
For colim a ∆, you want the projective model structure, and for ∆ a lim, you want the
injective model structure.

2.3. Homotopy Kan extensions. In order to understand colimits in quasi-categories,
we would like to related them to homotopy colimits in simplicial categories. In order to
do this, we need to understand what a “homotopy colimit” means in a simplicial category.
Via the discussion above, we can understand homotopy colimits as Kan extensions along
colimits.

The way to understand homotopy colimits in simplicial categories is by viewing the theory
of Kan extensions as “Set-enriched Kan extensions” and then asking what sSet-enriched
Kan extensions should be.

Let f : C → C ′ be a functor of small simplicially enriched categories, and let A be a
combinatorial simplicial model category. Then the enriched functor category Fun(C,A)
can be endowed with a projective or an injective model structure. Let

f∗ : Fun(C ′,A)→ Fun(C,A)

denote precomposition with f . Then f∗ admits both right and left adjoints

f! a f∗ a f∗.
As in the colimit/limit situation, each of these will be a Quillen adjunction if we pick the
suitable injective or projective model structure.

Definition 2.6. The right derived functor

Rf∗ : (Fun(C,A)inj)
◦ →

(
Fun(C ′,A)inj

)◦
is called the homotopy right Kan extension.

The left derived functor

Lf! : (Fun(C,A)proj)
◦ →

(
Fun(C ′, A)proj

)◦
is called the homotopy left Kan extension.

If C ′ = ∗, then Fun(C ′, A) = Fun(∗, A) = A, so f∗ is precisely precomposition with a
collapse map C → ∗, that is, it is a functor

f∗ : A→ Fun(C,A).
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It is easy to see this is the constant functor, that is, ∆. In this case, we see that f! = colim
and f∗ = lim, so we have that the homotopy colimit functor is

hocolim = Lf! : Fun(C,A)◦proj → A◦,

and the homotopy limit functor is

holim = Rf∗ : Fun(C,A)◦inj → A◦.

This is the definition of homotopy (co)limit in a simplicial model category.

2.4. Coherent and commutative diagrams. Suppose you have a model category M
and a diagram p : K → M. Then we can take a homotopy colimit of p just like we do
in spaces. Since a homotopy colimit is invariant under natural weak equivalence of the
diagram, we should really think about p as a diagram p : K → Ho(M) valued in the
homotopy category. By taking its homotopy colimit, we have some type of cone diagram
that looks like

p : K. → Ho(M).

If we tried to lift this back to M, it might not make sense — that is, by picking repre-
sentatives for all the morphisms in the image of p, we would get a diagram in M which
commutes only up to coherent homotopy. Phrased differently, homotopy colimits give ho-
motopy coherent diagrams.

The question of when a homotopy coherent diagram is equivalent to a genuine commutative
one is a subtle question. In the context of model categories, this is easy, just cofibrantly
replace everything in sight and take an honest colimit. However in simplicial categories,
this is a much harder question.

If A is a combinatorial simplicial model category, then every homotopy coherent diagram
can be replaced (straightened) by a genuine commutative one.

Given an arbitrary simplicial category C , and a diagram valued in it, how could we
straighten it? There is a result that the functor category Fun(C op, sSet) is a combinatorial
simplicial model category,1 and that there is an enriched Yoneda embedding which is fully
faithful y : C ↪−→ Fun(C op, sSet). We can exploit this embedding, and the straightening in
combinatorial simplicial model categories, to prove the upcoming theorem.

3. Comparison theorem

The goal in this section is to understand the following slogan:

“Homotopy colimits in a simplicial category are colimits in a quasicategory.”

1And a fun fact is that all combinatorial simplicial model categories arise as localizations of categories
of this form (see Dugger’s theorem)
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Theorem 3.1. [Lur09, p. 4.2.4.1] Let C and J be fibrant simplicial categories, and F :
J → C a simplicial functor. Suppose we are given an object C ∈ C and a compatible
family of maps {ηi : F (i)→ C}i∈J . The following conditions are equivalent:

(1) the maps ηi exhibit C as a homotopy colimit of F
(2) letting f := N(F ) : N(J ) → N(C ) and f : N(J ). → N(C ) the extension of f

determined by {ηi}, then f is a colimit diagram in N(C ).

Proof idea. (1) Embed C ↪−→ Fun(C op, sSet) via the enriched Yoneda lemma.
(2) Straighten the diagram out in that context, so it is an honest commutative diagram,

but restrict your attention to objects in Fun(C op, sSet) which are equal (or at least
isomorphic to) representable objects.

(3) This colimit has a universal property described in terms of mapping spaces on these
simplicial presheaf categories. By some categorical trickery, we can relate these
mapping spaces (up to weak equivalence) to the mapping spaces on the genuine
categories themselves.

(4) Since the mapping spaces in the simplicial categories J and C are, by definition, the
mapping spaces of the associated quasi-categories N(J ) and N(C ), this gives a uni-
versal property up to weak equivalence on the mapping spaces in quasi-categories.
This characterizes the colimit.

�

4. Computing limits and colimits

This follows [Lur09, §4.4.1].

Corollary 4.1. Let D ∈ Cat∆ be any simplicial category, and let p : J → D be a diagram
which admits a colimit. Then colim(p) = colimN(p) : N(J)→ N(D).

In general, let A be a simplicial set, and C a quasi-category. Then to take a colimit
of p : A → C , we need to first view C as the nerve of a simplicial category. Since
C
∼−→ N(C[C ]), we have a diagram

A

C N(C[C ]).

p̃p

∼

Then it suffices to understand the colimit of p̃. In particular, we may always assume a
quasi-category is the homotopy coherent nerve of a simplicial category.

4.1. Coproducts. Let C ∈ qCat be a quasi-category which is the nerve of a simplicial
category D , and let A be an indexing set that we want to take a coproduct over. Then we
can view A as a discrete category, and take its nerve so that it lies in sSet. We could also
view it as lying in Cat∆ by being trivially enriched over [0] or ∅.
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Then any morphism p : A → D picks out a collection of objects {Xa}a∈A in D . An
associated cocone A. → D picks out a point X ∈ D , along with morphisms Xα → X. This
will be a homotopy colimit if and only if, for every Y ∈ C we have that

MapD(X,Y )→
∏
a∈A

MapD(Xα, Y )

is a weak equivalence. Thus, the associated morphism A. → N(D) ' C picking out the
points Xα and X will be a colimit if and only if

MapC (X,Y )→
∏
α∈A

MapC (Xα, Y )

is a weak equivalence for every Y ∈ C .

We denote by qα∈AXα such an X above, and called it the coproduct in the quasi-category
C . We remark this is only defined up to weak equivalence.

Example 4.2. (Pushouts) A square in a quasi-category is a map of the form

(Λ2
0). = ∆1 ×∆1 → C .

A commutative diagram of the form

X ′ X

Y ′ Y

in a quasi-category C is then a pushout square if and only if it is a homotopy pushout
square in C[C ]. That is, if and only if the associated diagram

MapC (Y,Z) MapC (Y ′, Z)

MapC (X,Z) MapC (X ′, Z)

is a homotopy pullback square in Kan for every Z ∈ C .

Takeaway: A colimit in a quasi-category is characterized by a universal property on
mapping spaces in Kan up to weak equivalence.
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