BUNDLES

THOMAS BRAZELTON

ABSTRACT. Personal notes on vector bundles typed in preparation for an oral exam in
algebraic topology.

1. FIBER BUNDLES

Theorem 1.1. Let 7 : E — B be a fiber bundle. If B is paracompact, then 7 is a Hurewicz
fibration.

2. VECTOR BUNDLES

Recall that a vector bundle is a fiber bundle for which the fibers have the structure of a real
or complex vector space, compatible with local trivializations. This definition encourages
us to consider the study of vector bundles as lying somewhere in the intersection of linear
algebra and topology, and Hatcher has stated that we could call this theory Linear Algebraic
Topology [Hat03].

Example 2.1. (Clutching functions) If we want to cook up vector bundles over a sphere
Sk one way that we could do this is to take trivial bundles on the (closed) northern and
southern hemispheres and then find a way to glue them together along the equator which
retains the vector bundle structure but twists it in some way.

We should glue each point on the equator to the other in a linear way, so for each point
x lying on the equator S*~1, we need a function f which assigns to z the transformation
it undergoes passing from north to south. Explicitly, assuming that we are working with
complex vector bundles, this means that f(x) € GL,(C). Moreover as we fluctuate z
along the equator, we should not undergo severe changes in the assigned matrices, hence
we should want f to be continuous. Finally it is easy to check that a homotopy of f does
not change the isomorphism class of the bundle, thus we get a map

[S%71 GL,(C)] — Vect(S¥).

This map is in fact an isomorphism. This is great, and it looks similar to things we recognize
from algebraic topology, like the representability of certain functors. The problem is that
the left side is not a functor of S*.
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Recall that, for a topological group G we have that QBG ~ G, so let’s rewrite the above
isomorphism as follows:

[S¥71, GL,(C)] = [S*~ 1, QBGL,(C)]
= [2S8%1 BGL,(C)]
= [S*, BGL,(C)].
Thus the set of n-dimensional complex vector bundles on any sphere is represented by
homotopy classes of maps into BGL,,(C).

In the real case, we note that GL,,(R) is not path-connected, and if k£ > 1, then the equator
Sk=1 is path-connected, and its image via a clutching function will lie in one of the path
components of GL,(R) (which are determined by the sign of the determinant). To this
end we define Vect’} (B) to denote the space of oriented rank n vector bundles over a base
space B, and we get an isomorphism

[S¥1 GLI(R)] — Vectf‘r(Sk) = Vect™(S").

This in fact means that every real vector bundle over S* (with k& > 1) is oriented and has
two choices of orientation [Hat03, p. 25]. Recall that the Gram-Schmidt orthogonalization
procedure gives a deformation retraction

GL,(R) = O(n).
In particular, it gives a deformation retraction GL}(R) = SO(n) reducing matrices of
positive nonzero determinant to matrices of determinant +1. Hence we get a bijection
[S¥71.SO(n)] — [S*71, GLI(R)] = Vect' (S%).

And as above, we see that Vect; (S*) = [S¥, BSO(n)]. A similar argument shows that
Gram-Schmidt gives a deformation retract GL,,(C) — U(n) to unitary matrices.

At this stage we should be asking two questions:

(1) What are these spaces BGL,,(R), BSO(n), BGL,(C), BU(n)?
(2) Can we say that Vectg(—) = [, BGL,(C)] etc for spaces other than spheres?

2.1. Universal bundles.

Definition 2.2. The Grassmannian Gri(R™) is the moduli space of k-planes in R™. If we
want no constraints on where the k-planes are permitted to live, we could just think of
Gry(R*°) as the moduli space of k-planes, allowed to move freely around in any number of
dimensions.

A rank n vector bundle on a space X assigns to each x € X an n-dimensional vector space,
and does so in a continuous way. Seeing this definition, we might imagine that a vector
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bundle could be determined by a map of X into a Grassmannian. That is, we might want
to describe a vector bundle as a map

X — Gr,(R™).
Indeed, this is the case, and moreover, homotopic maps give isomorphic vector bundles.
Thus we obtain the following theorem.
Theorem 2.3. Let X be paracompact. Then we obtain an isomorphism
[X, Gr,, (R*)] = VectR(X).

The way this theorem is usually expressed is as follows: let E,(R*°) denote the moduli
space of marked n-planes, that is, planes with a point in them:

E,(R*®) ={(L,v) € Grp,(R*®) xR" : ve L}.
This comes equipped with a natural projection down to the Grassmannian
T @ En(R*) = Gry, (R™)
(L,v) — L,

obtained by forgetting the marked point. Moreover, it is clear that this is a rank n vector
bundle.

Now for any homotopy class of map f : X — Gr,(R*) we can construct a rank n bundle
on X by taking the pullback:

f*E, —— E,(R*>)
i N l’Yn
The map f ~ f*(E,) is precisely the bijection [X,Gr,(R®)] = Vect®(X). This is a
natural isomorphism of functors.

Theorem 2.4. Similarly for complex vector bundles, for paracompact X we have

Vect™(X) = [X, Gr, (C™)].

For oriented vector bundles, we have an oriented @n(RC’o), which comes equipped with a
map Gr,(R>) — Gr,(R*). Moreover, this is a universal cover of the Grassmannian, since
it is simply connected. We can see this since 71 (Gr,,(R*®)) = [S!, Gr,,(R®)] = Vect (S!) =
0.
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Finally, we will align this with our discussion of vector bundles from earlier. The following
are homotopy equivalent:

12

BGL,(R) ~ BO(n) ~ Gr,(R>),
BGL,(C) ~ BU(n) ~ Gr,(C>),
BGL; (R) ~ BSO(n) ~ Gr, (R™).
In particular, we can see
BO(1)
BU(1)

Gr1(R®) = RP® = K(Z/2,1),
Gri(C®) = CP™ = K(Z,2).

Hence for any paracompact base space X we have that
Vectg(X) = [X,BO(n)],
Vectp " (X) = [X,BSO(n)],
Vectg(X) — [X,BU(n)].

In particular, we have that rank 1 bundles (that is, line bundles) on X are given by
Vectp(X) = [X, K(Z/2,1)] = H'(X;Z/2),
Vect:(X) = [X, K(Z,2)] = H*(X; Z).

Remark 2.5. For BSU it is not quite as simple. As any complex plane comes equipped
with a canonical orientation, we end up with a principal S'-bundle

S < BSU(n) — Gr,(C™).

Proposition 2.6. Let M be a real n-manifold without boundary. Then its tangent bundle
corresponds to a map f : M — BO(n), and we have that M is parallelizable if and only if
f is null-homotopic.

3. CHARACTERISTIC CLASSES

Example 3.1. In order to check if £ — B is orientable, we can check the following:
supposing that B is path-connected, we can lift every loop in B to E, which induces a
transformation of the fiber, and we can see whether this transformation is orientation-
preserving. Explicitly, lifting a loop gives an element of GL,,(R) and we can check whether
its determinant is positive or negative. Hence we get a composite group homomorphism

m1(B) — GLa(R) — Z/2.

By the universal property of abelianization, this map factors through 7¢°(B) = H1(B;Z).
Applying UC, we see that

0 — Ext(Ho(B;Z),Z/2) — H'(B;Z/2) — Hom(H;(B;Z); Z/2),
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and since Ext(Z,Z/2) = (ﬂ, we have that H'(B;Z/2) = Hom(H,(B;Z),7/2). Thus the
procedure above (of lifting loops to see if they preserve the orientation of the fiber and
then abelianizing) corresponds to an element of H'(B;Z/2). This element is denoted by
w1 (F), called the first Stiefel Whitney class [Hat03| p.78]. We have that

E — B is orientable <= w1 (E) € H'(B;Z/2) vanishes.

A categorical description of vector bundles may be taken as follows: for any cohomology
theory h*(—), a characteristic class of degree q for rank n bundles is a map (for every base
space B)

c:Vecty,(B) — k%(B)
& c(§) € kYB).

For real vector bundles it sends [B,BO(n)] — k9(B). More explicitly, it is a natural
transformation

c:[=,BO(n)] = k().
By the Yoneda lemma, we therefore get a bijection

{characteristic classes of n-plane bundles} «+— k*(BO(n))
c— (V).

So determining characteristic classes should reduce to the computation of cohomology
theories of Grassmannians. Before we do this, let’s motivate why we might care about
characteristic classes.

Let p: E — B be a rank n vector bundle, and let ¢ be a characteristic class in degree g of
n-plane bundles. Recall by the classification of vector bundles, we have that p: F — B is
determined by pulling back the universal bundle via a map f : B — Gr,, that is,

Then by the naturality of the characteristic class ¢, we see that the induced map of coho-
mology sends one characteristic class to another, that is,

£ kI(E) — k1(B)
c(yn) = fre(m) = c(p) = e(f* ).

ISince Z is free and hence projective.
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This last equality is the important property of characteristic classes:

c(f*'Yn) = f*c('yn)‘

Since every bundle is a pullback of the universal bundle, we see that characteristic classes
on all base spaces are just pulled back from characteristic classes evaluated on the universal
bundle. So now we know how to find characteristic classes, and how to evaluate them on
arbitrary spaces.

The main type of bundles are as follows:

Symbol ‘ Name ‘ Type of bundle ‘ Degree and coefficients
w; Stiefel-Whitney classes | real vector bundle w;(E) € H'(B;Z/2)

Ci Chern classes complex vector bundle | ¢;(E) € H*(B;Z)

Di Pontryagin classes real vector bundle pi(E) € HY(B;7)

e Euler class oriented rank n bundle | e(E) € H"(B;Z).

We now would like to compute the cohomology of the infinite Grassmannians. Let E,
denote the universal cover of the infinite Grassmannian, when the field is already specified.
We have that the cohomology of the Grassmannian is given by

H*(Grn(R®); Z/2) = Z/2[wy(Ep), - . ., wa(En)],
H*(Grn(C®): Z) = Zley(Ey), . . ., en(En)]-

3.1. Stiefel-Whitney Classes. The four axioms:
(1) For each £ vector bundle the Stiefel-Whitney classes are
wi(€) € H(B;Z/2), i=0,1,...

Moreover we have that wy(¢) = 1 € HY(B;Z/2), and if £ is an n-plane bundle then
w;(§) =0 for all i > n.

(2) (naturality) For f : & — n we have that w;(§) = f*w;(n).

(3) (Whitney Product Theorem) if £ and n are both bundles over B then

k

we(§@n) = wi(€) Uwi—(n).

i=0
(4) For 7] canonical bundle over RP!, we have that wy(7{) # 0.
Proposition 3.2. If ¢ is trivial, then w;(¢) = 0 for all i > 0.

Proposition 3.3. We have that wq(§) = 0 if and only if £ is orientable. In particular for
a manifold M we have that M is orientable if and only if w,(T'M) = 0.

Let w := ), w; € H*(B;7Z/2) denote the total Stiefel-Whitney class. Let w denote its
inverse, so that ww =1 € H*(B;Z/2).
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Proposition 3.4. (Whitney Product Theorem) We can restate it as:

w(€ ®n) =w(Ew(n).

Theorem 3.5. (Whitney Duality Theorem) Let M be a manifold in Euclidean space, and
let 7p; denote its tangent bundle and vj; its normal bundle. Then

wi(var) = wi(Tar)-

Example 3.6. We have that w; : Vecth(X) — HY(X : Z/2) is an isomorphism if X has
the homotopy type of a CW complex [Hat03, p. 3.10].

Proposition 3.7. A vector bundle £ — X is orientable if and only if wq(E) = 0.

Proof. Supposing X is path-connected, there are natural isomorphisms
HY(X;Z/2) = Hom(H,(X);Z/2) = Hom(m(X); Z/2).

The first comes by UC (since Z/2 is a field) and the second by the universal property of
abelianization. O

Definition 3.8. Let M be an n-manifold, and let ry,...,7, > 0 so that Y ,_, k-ry = n.
Then we define the Stiefel-Whitney number in Z/2 as

Tn

(wi(rar)™ -~ walTar)™, [pu]) = wi' - wy [M].

Proposition 3.9. Two smooth closed manifolds have the same Stiefel-Whitney numbers
if and only if they lie in the same cobordism class [MS74} p. 53].

Theorem 3.10. (Thom) All the Stiefel-Whitney numbers (not classes) of an n-manifold
M are zero if and only if M = 0B is the boundary of a smooth compact (n + 1)-manifold.

3.2. Euler class and Thom spaces. Let £ : E — B be a k-plane bundle equipped
with a Euclidean metric (that is, a principal O(n)-bundle). We can define the Thom
space of this bundle as follows: let D(E) = {v € E : |v| < 1} be the disk subbundle, and
S(E)={v € FE : |v]| =1} be the sphere subbundle. Then

Th(¢) = Th(E) := D(E)/S(E).

The entire sphere bundle is collapsed to single point, which we will denote by 3. We might
think about this as a closed unit disk bundle, compactified at every point in the fiber in
a coherent way. Moreover, since S(E) — D(FE) is an inclusion of cell complexes, we can
think of Th(E) as a homotopy cofiber.

Let Ey denote the space of nonzero vectors in E. Then if £ has a Euclidean metric, we can
deformation retract E to D(E) and Ep to S(E). Hence we might think of Th(E) again as
hocofib(Ey — E).

Definition 3.11. We define the fundamental class of the Thom space Th(E) of an n-plane
bundle as the unique cohomology class u € H"(Th(E);Z/2) = H"(E, Ey;Z/2) so that its
restriction to H"(F, Fy;Z/2) is nonzero for every fiber.
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Theorem 3.12. Again for an n-plane bundle £ : £ — B, one has the Thom isomorphism
with Z/2 coefficients, which is the composition of the two isomorphisms

H*(B;7/2) = H*(B;2/2) =2 H™(E, By, 7/2) = H*™(Th(E): Z/2).
This can be found in [MS74, p. 8.2].
Theorem 3.13. (Thom’s Isomorphism Theorem) The correspondence
HI(E;R) — H/*"(Th(E); R)
y—yUu,
is an isomorphism for each j € Z and for any coefficient ring R [MS74, pp. 10.2, 10.4].
Corollary 3.14. Taking j < 0 we see that
H'(Th(E); R) =0, i<n.

Via the cap product, we get an analogous statement for homology.

Proposition 3.15. The correspondence
H,.i(Th(E): R) — Hy(E; R)
n—unn,

is an isomorphism for all 7 and for all R [MS74, p. 10.7]. If furthermore we have that
¢ . F — B is oriented, then for integral coefficients we have

H;(B;Z) = Hpti(Th(E); Z)
for all 7 [MS74} p. 18.2]F]

Returning to the isomorphism on cohomology, in the case where we are taking integral

coefficients, we have a Thom isomorphism:
—Uu

H*(B;Z) = H*(E;7) =2 H*"(Th(E); Z).
Definition 3.16. The Fuler class of an oriented n-plane bundle £ : E — B is the coho-
mology class
e(§) € H"(B; Z),

corresponding to the fundamental class |, under the canonical isomorphism 7* : H"(B;Z) —
H"(E;Z).

Properties of the Euler class

(1) If the orientation of ¢ is reversed then e(£) changes sign

2In [MST74] they refer to the homology relative a point, but we can recall from Hatcher, say, that

Hi(X) = H;(X,z0). The proof of the isomorphism H;(B;Z) = H,.:(Th(E);Z) can be seen via an easy
excision argument.
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(2) We have that e(§ @ &) = e(§) Ue(&’) and that e(§ x ') = e(§) x e(£').
(3) We have that the natural homomorphism sends the Euler class to the top Stiefel-
Whitney class:

H™(B;Z) — H"(B;7,/2)
e(§) = wn(§).
(4) If an oriented vector bundle £ has a nowhere zero cross-section, then e(£) = 0.

Fun fact 3.17. The FEuler characteristic of a smooth manifold M is its Fuler number,
that is, the Euler class evaluated on the fundamental class:

X(M) = e(TM)([M]).

Example 3.18. The tangent bundle 7.5 — S admits no proper oriented sub-bundles.

Proof. Since S8 is a smooth manifold, it can be embedded by Whitney (TODO) which
gives it a metric, and induces a metric on the tangent space. Hence we can talk about
orthogonality of sub-bundles.

Say E were a proper sub-bundle of T'S® of dimension k < 6. Then we have that e(E) €
H*(S%,7) = 0, hence e(E) = 0. However we note that
0=c(E)Ue(Et) =e(E®E*) =e(TS°).
However this would imply that x(S%) = 0, since we have that x(S¢) =1+ (-1)% = 2.
O

Finally, one should discuss the Gysin sequence, an important long exact sequence in ho-
mology:

Definition 3.19. Let £ : E — B be an oriented n-plane bundle. Let mg : Eg — B be the
subbundle of nonzero vectors in E, and let e = e(§) € H™(B;Z) denote the Euler class.
Then we have a long exact sequence, called the Gysin sequence

—Ue —Ue

oo HY(B;Z) =% H"™(B;7Z) 2% H™"™"™(Ey; Z) — HTY(B;Z) =5 . ..

This is obtained via the long exact sequence of the pair (E, Fy) and the Thom isomorphism
IMS74, p. 12.2].

3.3. Digression: Tubular neighborhoods.

Theorem 3.20. (Tubular neighborhood theorem) Let M™ — A"** be a smooth manifold
which is smoothly embedded in a Riemannian manifold. Then there is an open neighbor-
hood U D M in A, which is diffeomorphic to the total space E of the normal bundle v/* of
M in A [MS74} p. 11.1].
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If M C A is closed, then we can equate the cohomology of the Thom space of the normal
bundle with the local cohomology of M in A [MS74, p. 11.2]:

H*(Th(v/*); R) = H*(A|M; R).
Moreover this isomorphism does not depend upon a choice of Riemannian metric for A.

Let v/ € H¥(A|M;Z/2) denote the image of the fundamental cohomology class u €
HF(Th(v*); Z/2) under the isomorphism above. We call this the dual cohomology class
to M in codimension k. Then we have a number of interesting results:

Theorem 3.21. If M C A is closed and embedded, then the composition
H*(A|M;Z)2) — H*(A;2)2) — H*(M;Z/2)
u — wk(Vk),

sends u/ to the top Stiefel-Whitney class of the normal bundle. If * is oriented, then ' is
mapped to the Euler class [MS74} p. 11.3]

H*(A|M;Z) — H*(A;Z) — H*(M; Z)
u' — e(VF).
Hence if /|, = 0 then wy(v*) or e(v*) must be zero (depending on the existence of an
orientation). As an interesting corollary, we see

Corollary 3.22. If M" — R"* is smoothly embedded, then u/|g,.+r € H¥(R") = 0,
and then wy,(v*) = 0. In the oriented case, we have e(v*) = 0 [MS74, p. 11.4].

Invoking Whitney duality, we have wy(vF) = Wy, (7as), hence if Wy, (Tar) # 0 then M cannot
be smoothly embedded as a closed subset in R™"T¥.
This statement has deep impacts, which we may see in the following examples.

Example 3.23 (Immersing real projective space). Recall that

H*(RP™,Z,/2) = W, la| = 1.

It is a theorem [MS74, Theorem 4.5] that w(rgpn) = (1 + a)"™! where a is the generator
of H*(RP™;Z/2) as above.
Suppose RP™ < R"** is an immersion. Then by Whitney duality, we have that
w;(vrpr) = Wi(TRP")-
Consider the example of RP?. Then since we are in characteristic 2, we compute
w(tgpe) = (14 a)'% = (1 +a)* (1 + a)? = (1 + a®)(1 + a?)
=1+a®+ds
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We compute the normal bundle as:

w(vgps) = W(Tps) = 1+ a® + a* + d°.

Thus if RP? < R%** is an immersion, then we must have k& > 6.
Corollary 3.24. If RP?" — R?"*t* ig an immersion, then k > 2" — 1.

Example 3.25 (Embedding real projective space). By |[MS74, Corollary 11.4] if M™ —
R™** is an embedding, then wy(v*) = 0. In the oriented case, e(v*) = 0.

Corollary 3.26. We cannot have a smooth embedding RP? < R?,
Proof. Suppose towards a contradiction this is true. Then we compute its Stiefel-Whitney
class as

w(tgp2) = (14+a)® = (1+a®)(1+a)=1+a+a>

Its inverse Stiefel Whitney class is then

1 14 a3

w(vgp2) = W(Tpp2) = Tt 1taxad =(1+a).

But by [MS74, p. 11.4], we have that wy(v') = 0 if RP? — RP? is a smooth embedding.
However this contradicts the computation above, since we saw wq(v) = a # 0. g

We additionally get a relative version of Poincaré, where we can see what happens to the
dual cohomology class of a compact, smoothly embedded oriented submanifold.

Theorem 3.27. (Relative Poincaré) Let i : M™ — A"*P be a smooth embedding of com-
pact, oriented manifolds. Then the Poincaré duality isomorphism sends u’| , to (—1)"*4,([M]):

—N[A4] : H*(4) S H,(A)
W], = (D)™, M.

This may be found in [MS74} pp. 11-C].

As a result of relative Poincaré, we have the following example.

Example 3.28. Let M be a closed orientable n-manifold. Then every codimension 1
homology class in M is represented by a submanifold of codimension 1.

Proof. Recall for Brown representability, the isomorphism [X, K(A,n)] = H"(X;A) is
obtained via f — f*u, where u € H"(K(A,n);n) is the fundamental class, corresponding
toid € [K(A,n), K(A,n)].
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Let v € H'(S';Z) be the fundamental class. Then by Poincaré duality, we have a string
of isomorphisms

[M,S') - H'(M;Z) — H,_1(M;Z)
fe ffo=[M]Nff.
For such an f, we might homotope it to be smooth, and then apply Sard’s Theorem and

the preimage theorem to find a regular value z € S! so that Z := f~1(z) is a codimension
1 submanifold.

Let i : Z < M be the inclusion of the submanifold. Then we would like to send f € [M, S!]
toi.[Z] € Hp—1(M;Z) and to see that this is an isomorphism. In order to do this, it suffices
to establish the equality

i[f 7 (@) = [M] N (v).

By Theorem it will suffice to see that f*(v) is the dual cohomology class of Z C M.
Now let v be a generator for H'(S';Z). Then our string of isomorphisms sends
[M,SY — HY(M;Z) — H,_1(M;7Z)
[ £ (0) = M0 ().

Now let’s recall the following

Relative Poincaré: Let M™ C AP be compact oriented manifolds, with a smooth em-
bedding i : M — A. Let u € H*(Th(v*);Z/2) denote the fundamental cohomology class
for the Thom space of the normal bundle of M in A, and let v/ denote the corresponding
element in H*(A|M;Z/2) under the isomorphism. Then the Poincaré duality map sends

H*(A) — H,(A)
o], = (1), M.

[MST74, pp. 11-C].

Now let Z = f~!(z) denote our submanifold. By naturality of the Thom space, one has
that Th(vz) = f*Th(vy,,) is the pullback of the Thom space of the normal bundle of z in
St which is (SOMEHOW) the generator of H!(S%).

Thus under Poincaré duality, one has that i, f~!(x) corresponds to the map f in [M, S].

O
3.4. Chern classes. For a complex vector bundle E'— X, we have sequence of character-
istic classes c;(E) € H*(B;Z) satisfying the following axioms:

(1) co(E) =1
(2) naturality
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(3) Whitney sum formula, we have ¢(E @ F') = ¢(E) U c(F), that is,

k
Ck(E@F) = CZ‘(E)UC]{,Z‘(F).
i=0
(4) for the canonical bundle E — CP>, one has that ¢; (E) is a generator for H?(CP>;Z).

Constructing the Chern classes: Consider the embedding map
[Tv@) = U,
i=1

whose image is n x n diagonal complex matrices. Since diagonal matrices lie in the center
This induces a map on classifying spaces
n n
B (H U(1)> = [[cP> — BU().
i=1 i=1
By the Kiinneth theorem, one has that
n n
" (H CPOO;Z) ~ @ H'(CP™:2) = Z[py. .. B,
i=1 i=1

with |3;| = 2. This comes with an action of the symmetric group by permuting the
variables. Letting o; denote the jth symmetric polynomial in the ;’s, one has that

H*((CP®), Z)5 = Z[By, ..., Bul™" = Zlo1, ..., 00|

We claim that there is a factorization

H*(BU(n);Z) —— H*((CP*)™;Z)

Finally, we define ¢; := f*0;. Then one has
H*(Grn(C%); Z) = Z[er(7"), - - -, en(7")]-
Proposition 3.29. We have the following additional properties:
(1) additivity: for an exact sequence of vector bundles
0—-FE —-FE—E"—0,

we have ¢(F) = ¢(E') Uc(E").
(2) If E is a rank n complex bundle, then ¢,(E) = e(F) is the Euler class of the
underlying real bundle.c
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(3) if €¥ is a trivial complex k-plane bundle, then one has
c(w @ eb) = e(w).
(4) we have
c(repn) = (1+a)"*,

where a is a generator of H2(CP";Z).

4. PRINCIPAL BUNDLES

Let G be a topological group, and let p : Y — B be a vector bundle with fiber G. We say
this is a principal G-bundle if we have a right action of G on Y which preserves fibers and
acts freely and transitively on the ﬁbersﬂ In this case, we will have that Y/G = B.

Definition 4.1. A wuniversal principal G-bundle is one of the form Y — Y /G where Y is
contractible.

Any equivariant morphism between the total spaces is a principal bundle morphism.

As above, we have a representability result. Let PG(B) denote the set of equivalence
classes of principal G-bundles over a base space B. Then for any universal principal G-
bundle Y — Y/G there is a natural isomorphism

-, Y/G] = PG(—).

5. ASSOCIATED BUNDLES

Let p : E — B be a principal G, bundle, and suppose that G acts on a space F' via
p: G — Aut(F). Then we can define the balanced product

ExgF:=EXF/~,

where (e,gf) ~ (ge, f). This is equipped with a projection map np : E xg F — B. This
defines a fiber bundle with fiber F'. We call this the associated fiber bundle to the principal
bundle. The fibers of this bundle have structure group Aut(F).

Conversely, given any fiber bundle F' — E — B with structure group Aut(F'), there exists
a principal Aut(F')-bundle P so that F = P xg F. We call this principal bundle the frame
bundle. read more here, p.9

Example 5.1. Classify all associated S2-bundles over S2.

3Recall free means the only group element fixing an element y is the identity element (y-g =y = g = e).
Transitive means that for all y, 3’ there exists a (unique) g so that y-g = y'. This is unique since the action
is free.
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Proof. Given a fiber bundle S? — E —» S2, its associated bundle is a principal Aut(S?)-
bundle over S2. We may check that Aut(S?) is a subgroup of GL3(R) which preserves
length, i.e. it is O(3). Hence it suffices to classify principal O(3)-bundles over S?. This is
done by noting that O(3) = SO(3) I1 SO(3), and hence we have:

[$%,BO(3)] = [S", @BO(3)] = m1(0(3)) = m(SO(3)) = Z/2.

Hence we have the trivial bundle S? x S? and we have one more bundle, which turns out
to be the connected sum CP?#CP? = BlyP2. O

6. REDUCING THE STRUCTURE GROUP

We have the following table of reduction:

Real Vector Bundles:
Group reduction ‘ Structure on total space

GL,(R) ~ GL; (R) | Orientation
GL; (R) ~ SL,(R) | No obstruction (just need orientability)
GL,(R) ~ O(n) Riemannian metric

For complex bundles the story is similar:

Complex Vector Bundles:
Group reduction ‘ Structure on total space
GL,(C) ~» U(n) | Hermitian metric
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