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References:

• Section 4 of [HL], starting at p.90ish Hopkins, Lurie: Ambidexterity in K(n)-local
stable homotopy theory
• Lurie’s lectures on this paper

1. Local systems

A local system is, very roughly speaking, anything you might want to take cohomology in.
Classically speaking, a local system of abelian groups on a space X is a locally constant
sheaf L on X.

Example 1.1. Local systems subsume singular cohomology — this is because for any
abelian group A, we can take the constant sheaf A considered as a local system.

If X is path-connected, and L is a local system on X, then we can take any two points x
and y, and a path γ : [0, 1] → X between them (that is, γ(0) = x and γ(1) = y). We see
that γ∗L is constant, giving an isomorphism between the fibers Lx and Ly. We can check

that homotoping γ will not affect the isomorphism Lx
∼−→ Ly. That is, we can restate L as

the assignment of the data:

• an abelian group Lx for every x ∈ X
• an isomorphism Lx

∼−→ Ly for every homotopy class of paths x→ y,

subject to some extra coherence data. From this we can get a new definition of a local
system.

Definition 1.2. A local system on X valued in a 1-category C is a functor

L : Π1(X)→ C .

Suppose now we want something a little stronger. If γ, γ′ are homotopic maps from x to
y in X, they provide isomorphisms Cx

∼−→ Cy in C . If C is a 2-category, we might ask for
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a witness of the homotopy γ ⇒ γ′ to be witnessed by a 2-cell in C , and for a different
witness to be witnessed by a different 2-cell. Similarly if we have a 3-cell between these,
we might ask for a 3-cell witnessing a higher homotopy in C , provided C has this higher
categorical structure.

This leads us to a higher-categorical definition of local systems.

Definition 1.3. A local system on X valued in an ∞-category C is an ∞-functor

L : Π∞(X)→ C ,

where Π∞(X) is the fundamental ∞-groupoid of X.

Viewing X as a Kan complex, we might just say a local system is an ∞-functor

L : X → C .

2. Pullback and adjoints

Let f : X → Y be any map of spaces. Then given a local system L : Y → C on Y , we
can pull it back to a local system f∗L on X, by pre-composing with f . For any fixed
∞-category C , this defines a functor

f∗ : Fun(Y,C )→ Fun(X,C ).

If C admits small colimits, then we may left Kan extend to define a left adjoint to f∗

(Higher Topos Theory, 4.3.3). We denote this by f!:

f! : Fun(X,C )� Fun(Y,C ) : f∗.

Dually when C admits small limits, we may right Kan extend to define a right adjoint to
f∗, which we denote by f∗. This gives

f! a f∗ a f∗.

Example 2.1. Let S be a set, viewed as a discrete space, and consider the map f : S → ∗.
Pullback is then the diagonal map f∗ : C → Fun(S,C ). We see that any functor S → C
picks out a collection {Cs} of objects in C for each s ∈ S. Assume that C has all products
and coproducts. Then we can see that

f! : Fun(S,C )→ C

{Cs} 7→
∐
s∈S

Cs,

and that

f∗ : Fun(S,C )→ C

{Cs} 7→
∏
s∈S

Cs.
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There is always a natural transformation from products to coproducts here, given by f! →
f∗. In particular when products and coproducts agree, e.g. in Ab, we will have that this is
a natural isomorphism f! ' f∗.

Example 2.2. Consider f : BG → ∗. In this case, since Fun(∗,C ) ' C , we have that
pullback is of the form

f∗ : C → Fun(BG,C ),

assigning to every object in C the trivial G-action.

In this case, the adjoints yield, for every G-equivariant object C ∈ C , the coinvariants
f!C = CG and the invariants f∗C = CG. Denoting by CtG = cofib

(
CG → CG

)
, we have

that a canonical equivalence f! ' f∗ would imply that the Tate construction vanishes for
every G-equivariant object of C .

Associated to these types of adjunction we have the so-called “calculus of mates,” which
allows us to take commutative squares of spaces and discuss how the induced functors
relate to one another.

Another example of where the calculus of mates appears is in the types of natural isomor-
phisms of restriction and extension of scalars for modules that come out of commutative
diagrams of rings.

Proposition 2.3. If f and g are composable, then there is a canonical equivalence (gf)∗ '
f∗g∗. This induces a canonical equivalence (gf)! ' g!f! by the formalism of adjunctions.

Definition 2.4. Consider a commutative diagram of spaces

A X

B Y.

j

i f

g

Then there is a Beck–Chevalley exchange transformation (think about this as top-left to
bottom-right), denoted by

Ex∗! : j!i
∗ → f∗g!.

This is defined by first starting with j!i
∗, and tacking on the counit idB → g∗g! on the end

of it. We then get j!i
∗g∗g!. Since the diagram commutes, there is a canonical equivalence

i∗g∗ ' j∗f∗, getting us to j!j
∗f∗g!. Finally, we may apply the counit j!j

∗ → id to conclude.
The entire composite gives us:

j!i
∗idB → j!i

∗g∗g! ' j!j∗f∗g! → f∗g!.

Proposition 2.5. If we have a pullback square, the Beck–Chevalley exchange transforma-
tion is an equivalence.
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Q: Let f : X → Y , and consider the adjunction f! a f∗. When will f! also be a right
adjoint to f∗?

Given a fixed category C admitting finite limits and colimits, we will define a class of
C -ambidextrous maps f : X → Y . These will have the property that if f : X → Y is
C -ambidextrous, then there is a canonical equivalence f! ' f∗.

3. Ambidextrous morphisms

Example 3.1. Suppose that f : X
∼−→ Y is a homotopy equivalence. Then f∗ : Fun(Y,C )→

Fun(X,C ) is an equivalence of categories, and it can be easily promoted to an adjoint
equivalence, so that f! ' f∗ canonically. In particular, there is a unit map µf : id→ f!f

∗,
exhibiting f! as a right adjoint to f∗.

Homotopy equivalences provide our first class of morphisms which we call ambidextrous.
Somehow these are the “most” ambidextrous, in the sense that they have the strongest
structure. However as we might expect, there exist morphisms which are C -ambidextrous
without being homotopy equivalences.

We will define ambidexterity inductively, with homotopy equivalences being the base case.
For indexing reasons that will become clear later, we would like to start at n = −2. So we
will define, for each n ≥ −2:

• A collection of n-ambidextrous morphisms in Top

• For each n-ambidextrous morphism f : X → Y , a natural transformation µ
(n)
f :

id→ f!f
∗, well-defined up to homotopy, exhibiting f! as a right adjoint to f∗.

Base case n = −2: We say f is (−2)-ambidextrous if and only if f is an equivalence. In

this case, we define µ
(−2)
f to be any homotopy inverse to the counit f!f

∗ → id.

Inductive step: Suppose that we have defined n-ambidextrous morphisms for some n.
We will define (n + 1)-ambidextrous maps in two steps: first we define weakly (n + 1)-
ambidextrous maps, and then (n+ 1)-ambidextrous maps.

Let f : X → Y be arbitrary, and consider the diagram

X

X ×Y X X

X Y.

δ

π1

π2
y

f

f

By Beck–Chevalley, there is an exchange isomorphism (π1)!π
∗
2 ' f∗f!. We say that f is

weakly (n + 1)-ambidextrous if δ is n-ambidextrous. In this context, we define a counit
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ν
(n+1)
f to be the composite

f∗f!
(Ex∗! )

−1

−−−−−→ (π1)! π
∗
2

µ
(n)
δ−−→ (π1)! δ!δ

∗π∗2 = (idX)! id
∗
X = idFun(X,C )

We say f is (n+ 1)-ambidextrous if the following conditions hold:

(1) The transformation ν
(n+1)
f : f∗f! → id is the counit for an adjunction f∗ a f!, with

some unit µ
(n+1)
f

(2) Weak (n + 1)-ambidexterity is closed under pullback along f . That is, for every
pullback square

A B

X Y,

g

y

f

we have that g is weakly ambidextrous, with counit ν
(n+1)
g : g∗g! → id defined in

the Beck–Chevalley process above
(3) Property (1) is closed under pullback along f . That is, for any pullback square as

above, we have that ν
(n+1)
g is the counit of an adjunction g∗ a g!.

From this definition, the following are immediate.

Proposition 3.2. (Weak) n-ambidexterity is closed under pullback.

Moreover from our inductive definitions, we have the following:

Proposition 3.3. Let −2 ≤ m ≤ n.

(1) If f is weakly m-ambidextrous,1 then f is weakly n-ambidextrous, and ν
(m)
f and

ν
(n)
f agree up to homotopy.

(2) If f is m-ambidextrous, then f is n-ambidextrous, and µ
(m)
f and µ

(n)
f agree up to

homotopy.

Proof idea. It suffices to let n = m+ 1, and induct. The inductive step is basically imme-
diate from definitions, and the base case is very direct. �

Definition 3.4. We say that f is weakly ambidextrous if it is weakly ambidextrous for
some n ≥ −1, and we say that f is ambidextrous if it is ambidextrous for some n. We
let νf : f∗f! → id denote the counit and µf : id → f!f

∗ denote the unit. This notation is
well-defined up to homotopy by the previous proposition.

1Weak ambidexterity isn’t defined for m = −2 but that’s ok
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· · ·
{
n-ambidextrous

maps

} {
(n+1)-ambidextrous

maps

}
· · · {ambidextrous maps}

· · ·
{

weakly
n-ambidextrous

maps

} {
weakly

(n+1)-ambidextrous
maps

}
· · ·

{
weakly

ambidextrous maps

}
4. Norms

Suppose C is an∞-category with small limits and colimits. Let f : X → Y be a continuous
map of spaces, and let f! a f∗ a f∗ be the associated left and right adjoints to pullback
provided by Kan extensions. Suppose that f is weakly ambidextrous but not necessarily
ambidextrous (recall this means inductively that the diagonal is weakly ambidextrous
of one degree lower, and crucially that there is a natural transformation νf : f∗f! → id).
Then by adjunction we have a natural homotopy equivalence of mapping spaces

Map (f∗f!, id) ' Map (f!, f∗) .

In particular νf maps to a natural transformation, which by definition is the composite

f!
η·f!−−→ f∗f

∗f!
f∗·νf−−−→ f∗.

We call this the norm of f and denote it by Nmf : f! → f∗.

Proposition 4.1. Let f be weakly ambidextrous as above. Then it is ambidextrous if and
only if

(1) Weak ambidexterity is preserved under pullback along f
(2) The norm map Nm : f! → f∗ is an equivalence
(3) The norm map for any map obtained by pullback along f is an equivalence.

Example 4.2. We can rephrase our example from earlier to say that the following are
equivalent for f : BG→ ∗:

(1) BG is C -ambidextrous
(2) The norm Nmf is an equivalence
(3) For every G-equivariant object of C , the Tate construction vanishes.

Proposition 4.3. Weak ambidexterity is closed under composition — that is, if f and g
are composable and weakly ambidextrous, we can take µgf to be the composite

(gf)∗(gf)! ' f∗g∗g!f!
µg−→ f∗f!

µf−→ id.
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