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Abstract

These notes are from the mini-courses at PIMS workshop on arithmetic topology,
held at UBC in summer of 2019. Any errors or typos in these notes should be attributed
to myself, not the lecturer. Thank you to both the organizers and the lecturers for this
conference.

Disclaimer: These notes were tex’d live during the lectures and not edited after-
wards. There are likely typos and incorrect statements, so please reach out to me with
any edits.
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Opening Remarks

Melanie Wood

Number Theory — arithmetic statistics: asks questions about number theoretic
objects, for example number fields K/Q and other objects like elliptic curves E/Q.
How many are there (in an asymptotic sense) and how many have various properties
(e.g. trivial class group, rank 0 elliptic curve)?

Minicourse: Wei Ho

The field Q is a lot like Fq(t), called global fields (these and their finite extensions).
Much of number theory can be done uniformly over global fields. The fields Fq(t) and
its finite extensions are also function fields of geometric objects. We think of Fq(t)
as functions on P1

Fq
and we think of K/Fq(t) as functions on some curve C, where C

is a smooth projective irreducible curve over Fq. Thus we can study their algebraic
geometry over Fq.

A curve C → P1
Fq

is a lot like X → P1
C, i.e. a Riemann surface. Thus algebraic

geometry can sometimes relate the study of varieties over Fq and over C (we’ll see that
we can relate cohomology, intersection theory, etc. on both sides).

[Arithmetic Statistics of number fields]
analogy←−−−→ [Arithmetic Statistics over finite fields]

Theorems←−−−−−→ [Topology of Moduli Spaces] .

Minicourses: Jordan Ellenberg, Benson Farb

Topology — homological stability : given spacesX1, X2, . . . the question of homological
stability is studying Hi(Xn;Z) (or coefficients in Q, etc) as n→∞. For nice sequences,
we could ask:

1. Does Hi stabilize in its isomorphism class? Does its dimension stabilize?

2. Are there maps Xn → Xn+1 that induce the stabilization?

3. What does it stabilize to? And if it doesn’t stabilize, is there some higher stabi-
lization occurring (e.g. representation stability)?

Examples.

• ConfnX where X = R2 (Arnol’d, 69), and for more general X (McDuff, Segal
70’s, Church ‘12).

• Mg, the moduli space of elliptic curves (Harer ‘85)

• BSLn(Z) (Borel, ‘77 with Q coefficients)
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• Map(C,X) of increasing degree for a curve C (Segal, ‘79)

We will also talk about E2-algebras, taking X =
∐
nXn with a multiplication Xn ×

Xm → Xn+m. The E2-algebra is a structure on X so that one can present X “as an
algebra.” This is a powerful way to study stability in n.

Minicourse: Søren Galatius

Additionally, we will discuss A1-homotopy theory. The model is to do homotopy theory
by replacing the interval with A1. This machinery connects the study of any variety
X/k with X/C, especially as it relates to intersection theory. This can be used to prove
“enriched counts.”

Minicourse: Kirsten Wickelgren

Finally, we will study the Grothendieck ring of varieties, which is a place where one
can consider the pieces of which algebraic varieties are built. As P1 is built of A1 and
a point, we have that [P1] = [A1] + [pt]. This has connections to the cohomology of
the varieties over C, and also connections to the cohomology of the varieties over Fq
(étale cohomology over Fq with action of Frobenius). This is very related to the count
of Fq-points of varieties over Fq, which is related via the Grothendieck-Lefschetz trace
formula.

Minicourse: Ravi Vakil.

Geometric aspects of arithmetic statistics: Part 1

Jordan Ellenberg

Question 1: How many squarefree integers are there (in [N, 2N ])?

This is a question over Q. We will replace this by Fq(t). (We could replace this by any
number field and any rational function field).

Question 2: How many squarefree polynomials in Fq[t] are there?

The first problem we encounter is that polynomials don’t come in any order, so we
don’t have an analogy of the interval. We can replace these via

1. How many positive squarefree integers are there with |n| ∈ [N, 2N ]?

2. How many monic squarefree polynomials f ∈ Fq[t] exist with |f | ∈ [N, 2N ]?

This makes sense for a multiplicative function | − | : Fq[t] → Z, but the one we care
about is |f | = qdeg(f). This valuation only takes values which are powers of q, so let’s
think about counting f with |f | = qn; that is, deg f = n.

Answer 1: ∼ 6
π2N .

Answer 2: ∼ qn − qn−1 =
(

1− 1
q

)
qn.
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These are the same answer although they cosmetically don’t look the same. In the
philosophy that N = qn, we have that

6

π2
N = ζ(2)−1N

qn − qn−1 = ζFq [t](2)−1N.

Geometric version: How many monic squarefree polynomials in C[z] with degree n?
This is a space, and we want to study its topology. What is the cohomology of the
space of monic squarefree polynomials in C[z] of degree n?1

This is worked out by Arnold, 1969: the space of squarefree monic polynomials of
degree n over C is ConfnC, the space of unordered distinct n-tuples of elements of C.
This correspondence is given by:

p(t) 7→ {roots of p(t)}
n∏
i=1

(t− zi) 7→{z1, . . . , zn} .

It turns out that ConfnC is a K(π, 1). Loops in ConfnC turn out to be braids, so π is
the Artin braid group Brn for braids on n strands. So we have that

Hi(ConfnC,Q) = Hi(Brn,Q) =


Q i = 0

Q i = 1, n > 0

0 i > 1.

That is, Br1 = {e}, which has the correct cohomology above. The group Br2 = Z,
since two braids can only wrap around each other, which has the cohomology of a
circle. Thus the above computation of Arnold tells us that rational cohomology of Brn
stays a circle S1.

We claim that this is the same as answers 1 and 2. Why is this the same?

Grothendieck Lefschetz Trace Formula: If X is a smooth variety over Fq, then

|X(Fq)| =
∑

(−1)iTr(Frobq|Hi
ét,c(X/Fq,Q`)),

the trace of the action on the operator on the compactly supported étale cohomology.
Under favorable circumstances, i.e. when X is a variety over Z (or some extension of
Z), then

Hi(X(C),Q)⊗Q Q` ∼= Hi
ét(XFq

,Q`).

Frobenius is the map which sends x 7→ xq, thus the fixed points are X(Fq), the Fq-
rational points of X. Now take X = Confn, the moduli space of monic squarefree

1So we are taking “cardinality” and “set” and swapping them out for “cohomology” and “space.”



PIMS Arithmetic Topology: Jordan Ellenberg June 10th, 2019

polynomials of degree n. Scheme-theoretically, we think about this as the scheme
giving monic squarefree polynomials of degree n for any field. That is, its Fq points
are

Confn(Fq) = {monic squarefree degree n polynomials in Fq[t]} .

Thus we get the following formula:

|Confn(Fq)| =
1∑
i=0

(−1)iTr(Frob|Hi
ét,c(Confn(Fq),Q`))

= Tr(Frob|H0(ConfnFq
,Q`))− Tr(Frob|H1(ConfnFq

,Q`)).

The action of Frob on H0 is qn and the action on H1 is qn−1. In fact, Answer 2 is
equal to qn − qn−1 unless n = 1, in which case it is just q.

Overall philosophy :

• analogies between counting over Z and counting over Fq[t]
• topology over C[z] can sometimes be used to prove thinks about counting over

Fq[t].

What if we didn’t know the cohomology of the braid group Hi(Confn,C)? We would
still know that H0(ConfnC,Q) = Q since the space is connected for all n.

As q →∞, everything except H0 becomes negligible (compared to the contribution of
H0). Thus as q →∞, the probability that a given polynomial is squarefree becomes:

lim
q→∞

# {monic sqfree polys of degree n}
# {monic polys of degree n}

= 1.

Question: What happened if we chose something else that Fq[t] ⊆ Fq(t)?

Answer: If we take a Riemann surface and chop out some identified point at ∞, then
we could take the configuration space of points with the condition that they can’t be
infinity. That is, we could think of the configuration space as

ConfnC = ConfnA1(C)

= Confn(P1(C)− {∞}).

Question: For a topologist, all pts on Riemann surface are the same, but algebraically
they could be different.

Answer: On P1 they really are the same. Over a larger curve, the topology will be
the same, but the action of Frobenius on the space may depend upon the point which
was deleted. In these situations, we have to determine what the action is, or we might
have to bound it.

Question: Why do we only delete one point?
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Answer: Exercise for the grad students: what if I deleted two points? What is
ConfnGm a moduli space of?

Question: In the function field case, we get to choose which point is the point at
infinity. Over Q, is there freedom to pick a prime at infinity? Is there some non-
archimedean place? Could we set it up so that the p-adic valuation plays the role the
classical valuation plays?

Answer: We get powers of p in the denominator,

Z = {x ∈ Q : |x|v ≤ 1∀v 6∈ ∞} .

We could make this something like

{x ∈ Q : |x|v ≤ 1∀v 6∈ 17} ,

which is not closed anymore.

Geometric aspects of arithmetic statistics: Part 2

Jordan Ellenberg

Two main parts:

1. Cohen-Lenstra heuristics

2. statistics of factorizations of polynomials.

Question: Let ` be an odd prime. What is the average value of |ClQ(
√
−d)[`]| for

squarefree d ∈ [N, 2N ]?

Cohen-Lenstra heuristics tell us that this average should be 2. What is the Fq(t)-
analog? Instead of Q(

√
−d) for squarefree d ∈ [N, 2N ], we take N = qn and then look

at Fq(t)(
√
f) for f a monic squarefree polynomial of degree n. This is exactly Fq(C)

for C a hyperelliptic curve of genus n−1
2 . The analog of the class group is the Fq-points

of its Jacobian variety Jac(C)(Fq), and so we are now asking: what is the average size
of Jac(C)(Fq)[`] as C ranges over hyperelliptic curves C = Cf : y2 = f(x), where f is
monic squarefree of degree n.

What is the moduli space in this setting? We can define Confn(`) to be the moduli
space of pairs (f, P ) where f is monic and squarefree of degree n, and P is a point
of order ` on Jac(Cf ).2 We would call this a “moduli space of hyperelliptic Jacobians
with `-level structure.” We claim counting points on this space is tantamount to the
question abovei.

Question: What is the expected value, for a random C:

EC [# {P ∈ Jac(C)(Fq)[`]}] =

∑
f #(f, P )∑

f 1
=
|Confn(`)(Fq)
|Confn(Fq)|

.

2This looks like the moduli space of elliptic curves with level structure.
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We hope that limn→∞
|Confn(`)(Fq)
|Confn(Fq)| = 1 (since we are taking out the point 0, as we are

counting points of exact order `). We have that Confn(`), like Confn, is a scheme over
SpecZ. What are its complex points? We note that there is always a map Confn(`)→
Confn given by forgetting the point P , which is finite of degree `2g − 1 = `2 deg(C) − 1.

So Confn(`)(C) → Confn(C) = K(π, 1) corresponds to the action of π1(Confn) = Brn
on some set of size `2g − 1. We recall that the braid group has a representation to
Sp2g(Z) which is the action of the double cover branched at the 2n points (this is a
specialization of a Burau representation to t = −1). And then π1(Confn(`)) is a finite-
index subgroup, which is the stabilizer in this action of a nonzero point of (Z/`Z)2g.
This is known as a “congruence subgroup” of the braid group.

What can we say about the cohomology of Confn(`)? For instance, H0(Confn(`)) =
#orbits of the braid group Brn acting on (Z/`Z)2g − {0}, which is exactly 1 since
Brn � Sp2g(Z/`Z) when ` is an odd prime3 (A Compu, J-K Yu, Achter-Pries, Holl).

Thus

lim
n→∞

lim
q→∞

|Confn(`)(Fq)
|Confn(Fq)|

= 1.

Theorem (Ellenberg, Venkatesh, Westerland).

• (homological stability) there exists α > 0 (depending on `) so that, for all i < αn,
we have

Hi
ét(Confn(`),Q`′) ∼= Hi+1

ét (Confn+1(`,Q`′)).

• (Betti bound) we have that dimHi
ét(Confn(`),Q`′) < Ci

Given these two facts, they imply the following statement towards Cohen-Lenstra:

1− g(q) < lim inf
|Confn(`)(Fq))|
|Confn(Fq)|

, lim sup
|Confn(`)(Fq))|
|Confn(Fq)|

< 1 + f(q)

for f(q), g(q)→ 0 as q →∞.

Further notions: What is the average number of linear factors of a squarefree poly-
nomial? One way to set this up: define LF (f) to be the number of linear factors,
which is a Z-valued function on Confn(Fq). Grothendieck-Lefschetz is more general
than counting points on a space X; if F is a local system on X, we can relate the
cohomology of F to the stalks of F .

In the above example, when X = Confn, we should think about F as a representation
of the braid group Brn, so let F be Vn, the permutation representation on the strands.
So Grothendieck-Lefschetz gives∑

(−1)iTr(Frob|Hi
c(X,F )) =

∑
x∈X(Fq)

Tr(Frob|Fx).

3This is a “big monodromy statement” which means image of π1 is big, so the action is transitive, so
the number of orbits is small.
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For the permutation representation V , the action of Frobenius on Fx = Ff (where f
is squarefree polynomial of dimension n) is just the permutation action on the roots
of f . Then the trace of a permutation representation is the number of one’s on the
diagonal— in this setting, Tr(Frob|Ff ) is the number of roots fixed by Frobenius, i.e.
the number of linear factors:

Tr(Frob|Ff ) = LF (f).

Thus computing
∑
f∈Confn(Fq) LF (f) amounts to computing Hi(Confn, Vn). We should

anticipate some kind of homological stability in this latter term. Since V factors
through the map Brn → Sn, we can take larger coefficients (say, the group ring of Sn)
and then tensor down to get, by Shapiro’s Lemma:

Hi(Confn(Fq),C[Sn])⊗C[Sn] Vn = H1(PConfn,C)⊗C[Sn] Vn.

The representation stability of Hi(Confn(Fq),C[Sn]) will be discussed more by Benson
Fab.

Question: What error terms do you get with this method?

Answer: Any time we have a range of stabilization for cohomology which is linear in
degree, we get a power-saving error term. This doesn’t give better error terms than
analytic number theory.

Question: Can we work backwards from better error terms in analytic number theory?
Should it infer something about cohomology?

Answer: Usually not — for the variety P1 − {0,∞} over Fq we get q − 1 points. We
can’t, however, prove that the cohomology is concentrated in degree 0.

A1-enumerative geometry: Part 1

Kirsten Wickelgren

Original work joint with Jesse Kass.

Intro to A1-homotopy theory via A1-degree

We can consider a sphere as

Sn =
{

(x0, . . . , xn) ∈ Rn+1 :
∑

x2
i = 1

}
= Pn(R)/Pn−1(R).

There is a degree map deg : [Sn, Sn]→ Z. If we have f : Sn → Sn, then deg f can be
computed as a sum indexed by preimages over a point

deg f =
∑

q∈f−1(p)

degq f,
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where we have chosen p so that it has finitely many preimages f−1(p) = {q1, . . . , qN}.
The local degree is defined as follows: let V 3 p and U 3 qi be small balls around these
points so that f−1(p) ∩ U = {qi}. Then we have induced maps

Sn ' U/∂U ' U/(U − {qi})
f−→ V/(V − {p}) ' Sn.

Note. We have to be careful about the orientation when we identify Sn ' U/∂U .

Then we define degqi f = deg f ∈ Z.

We additionally have a formula from differential topology: let y1, . . . , yn be coordinates
around p and x1, . . . , xn be coordinates around qi, which both respect an orientation.

Then we can represent f = (f1, . . . , fn) : Rn → Rn. Let Jf =
(
∂fi
∂xj

)
, and we can write

degqi f =

{
+1 Jf(qi) > 0

−1 Jf(qi) < 0.

We have that f is an algebraic function over C, so degree counts preimages.

By Lannes/Morel, let k be a field, and consider f : P1
k → P1

k. This is a map of
spheres in A1-topology. Then we can consider a degree deg f ∈ GW(k) valued in the
Grothendieck-Witt ring, which is the group completion of isomorphism classes of non-
degenerate symmetric bilinear forms β : V × V → k for V ∈ Vectk finite-dimensional.

The Grothendieck-Witt ring has a presentation as follows: it is generated by

〈a〉 : k × k → k

(x, y) 7→ axy,

for a ∈ (k×)/(k×)2. This is subject to the following relations

1. 〈a〉 =
〈
ab2
〉

2. 〈a〉 〈b〉 = 〈ab〉
3. 〈a〉+ 〈b〉 = 〈a+ b〉+ 〈ab(a+ b)〉 if a+ b 6= 0

4. 〈a〉+ 〈−a〉 = 〈1〉+ 〈−1〉 = H, called the hyperbolic form.

Example. Over C, every two nonzero complex numbers differ by a square, so we get
an isomorphism

rank : GW(C)→ Z
β 7→ dimV.

Example. By Sylvester’s formula, we can diagonalize any form, so we get a map

(signature, rank) : GW(R)→ Z× Z,

and indeed GW(R) ∼= Z× Z is isomorphic to a subgroup.
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Example. By taking discriminant and rank, we get

(signature, rank) : GW(Fq)
∼=−→ F×q /(F×q )2 × Z.

These invariants show up in A1-homotopy theory. Consider the kernel of the rank map:

0→ I → GW(k)
rank−−−→ Z→ 0.

We call I the fundamental ideal. Then we have a filtration

In/In+1 ∼= KM
n (k)⊗ Z/2 ∼= Hn

ét(k,Z/2).

This is the Milnor conjecture, proven by Voevodsky. This gives us a sequence of
invariants on quadratic forms: rank, discriminant, Hasse-Witt invariant, Aaronson
invariant, etc.

Back to Lannes/Morel: we define the degree of f : P1
k → P1

k as

deg f =
∑

q∈f−1(p)

〈Jf(q)〉 .

If q is not k-rational, then 〈Jf(q)〉 may lie in GW(k(q)). Thus we apply a transfer
map — if k ⊆ L is a finite separable extension, then we have a trace

TrL/k : GW(L)→ GW(k)

β 7→ (V × V β−→ L
TrL/k−−−−→ k),

and since the extension is separable, the form remains non-degenerate.

So in defining the global degree, we pick p so that f−1(p) is finite and Jf(q) 6= 0. We
note that the global degree does not depend on p.

Examples.

1. deg(z 7→ az) = 〈a〉
2. deg(z 7→ z2) = 〈1〉+ 〈−1〉.

Theme: We’ll use the degree to count algebro-geometric objects, where the count
will be valued in GW(k). This will record arithmetic and geometric properties of the
objects. Applying invariants, we get more traditional counts.

Example. Let X ⊆ P3
k be a smooth cubic surface. Then Xk has 27 lines. A line L on

X is defined over k(L).

Theorem (Kass-Wickelgren). When char(k) 6= 2. Then∑
lines L on X

Trk(L)/kType(L) = 15 〈1〉+ 12 〈−1〉 .
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As we travel along a line, paying attention to the orientation of its tangent space, we
can see whether the plane rotates around the line L.

We define Type(L) via a map p 7→ TpX for p ∈ L. This map has two pause points
(where the tangent plane momentarily stops rotating) over L(k). These are defined
over some quadratic extension k(L)[

√
D]. Then the type of L is Type(L) = 〈D〉 ∈

GW(k(L)).

Sabrina Pauli will discuss results relating to lines on a quintic 3-fold.

Morel defined deg : [Pn/Pn−1,Pn/Pn−1]A1 → GW(k). To make sense of this, we need
Pn/Pn−1 as an object somewhere, since it is not a scheme, and we need to understand
A1-homotopy classes of maps [−,−]A1 .

We can view Pn/Pn−1 as the colimit

colim(∗ ← Pn → Pn−1).

We will have a notion of weak equivalence, and as a result we will want to replace
colimits by homotopy colimits. We can do this via a simplicial model category or an
∞-category. These have a notion of weak equivalence and have an associated homotopy
category. Taking sPre(Smk) allows us to freely adjoin colimits. We can think of this
as containing Smk via the Yoneda embedding

y : Smk → sSetSm
op
k

X 7→ Map(−, X).

Similarly, for any T ∈ sSet we can view it in the category sPre(Smk) as the constant
sheaf at T .

Another example of a colimit is given as follows: if U, V ⊆ X are open subschemes of
a common scheme, then we can build their union as a colimit

U ∩ V U

V U ∪ V
p

After freely adding colimits, we want the colimits we had in Smk like the one above to
remain colimits. This is done via Bousfield localization, which will force the open covers
in a given topology to give colimits. We force cosk0qUα

∼−→ X to be a weak equivalence,
for qαUα an open cover of X. Thus we get a category of sheaves, and finally we perform
one last Bousfield localization LA1 to force maps of the form X ×A1 → X to be weak
equivalences.

Finally, we obtain a category Spc which we call the unstable motivic homotopy category.

Remark. We can define a local degree degq f ∈ GW(k) because for q a smooth point
of X, then U/(U − {q}) ' Pn/Pn−1 ∧ Speck(q)+. Morel then constructs, for k a field,
the degree map to π0(§k) ∼= GW(k), which he shows is an isomorphism for n ≥ 2.
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Remark. For Z ⊆ X of codimension i, and irreducible, we can form C̃H
i
(X) oriented

Chow, where cycles are formal sums (Z, β ∈ GW(k)). This gives us intersection theory.

Next up: degrees between maps of smooth schemes for counting rational curves.

Point counting in topology: Part 1

Benson Farb

Let X be a variety over Z.

Theme: Understand the relationship between X(C) and arithmetic statistics of X(Fq).

We will talk about smooth hypersurfaces in Pn. This will be today’s main example.
Let F ∈ C[x0, . . . , xn](d) a degree d homogeneous polynomial, and let ZF ⊆ Pn be the
associated hypersurface. We define

Ud,n : = {smooth, degree d hypersurfaces X ⊆ Pn}

= P(d+n
n )−1 − Σd,n,

where we are subtracting out the singular ones. To be singular means there exists a
point where F vanishes and all the partials with respect to xi’s are zero. This is a
resultant of polynomials.

Everything we say today is related to Ud,n/PGLn+1(C), but for simplicity we will
ignore that.

Basic questions:

Understand the topology (e.g. co-
homology) of

Arithmetic statistics

Single variety ZF (C) |ZF (Fq)| =? what is the expected
value? What are the higher mo-
ments? etc.

Moduli space Ud,n(C) count |Ud,n(Fq)| =?
Varieties with extra data count these over Fq.

For example, we have the “universal degree d hypersurface in Pn,” denoted Ed,n :=
{(ZF , P ) : F (P ) = 0} where P is a point on ZF , we get Ed,n → Ud,n. We see that
Ud,n is connected, and since Ed,n is a fiber bundle, all the fibers are diffeomorphic. So
it only depends upon the degree of the polynomial.

A paradigm: smooth cubic surfaces: let U3,3 = P19 r Σ3,3.

Theorem (Cayley-Salmon, 1849). Every smooth cubic surface X ⊆ P3 contains pre-
cisely 27 lines.

This is the first instance where we can use topology to show the existence of solutions
without actually solving them.
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Proof. Form U3,3(L) = {(S,L) : L ⊆ S is a line} ⊆ U3,3 × Gr(1, 3). We take a pro-
jection

π : U3,3(L)→ U3,3

(S,L) 7→ S.

This is a covering space. Since U3,3 is connected, we have that π−1(x) does not depend
on the choice of x. That is, all smooth cubic surfaces have the same number of lines.
Finally, we can just look at the Fermat cubic x3 + y3 + z3 +w3 = 0 which has 27 lines,
e.g.

{x = −y} ∩ {z = −w} .

Since we can permute the variables and multiply each one by a cube root of unity, we
get 27 solutions.

Since we have a 27-sheeted cover, its fiber gives a representation from a loop in the
base to the fiber of a chosen basepoint, i.e.

ρ : π1(U3,3)→ Perm(π−1(x0)) ∼= S27.

Theorem (Jordan). We have that im(ρ) ∼= W (E6)4, and is also isomorphic to an
automorphism group of the intersection graph of the 17 lines, which has a line between
Li and Lj iff Li ∩ Lj = ∅.

We have that |W (E6)| = 51, 840.

We can see a sequence of covers

U3,3(27) U3,3(27)/(S6 × Z/2) ∼= {(S, double six)}

...

U3,3(L1, L2)

U3,3(L)

U3,3

W (E6)

Open Problem 1: Compute H∗(−, R) for all these spaces. For R = Q, all these
computations follow from H∗(U3,3;Q) with an action of W (E6). For example, by
transfer, we have that

H∗(U3,3;Q) ∼= H∗(U3,3(27);Q)W (E6).

4The Weil group of type E6.
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So we just have to figure out Res
W (E6)
G .

Theorem (2019, Vassiliev, Das, Das-O’Connor, Bergvall-Gonnellas).

H∗(U3,3(27);Q) ∼= ⊕specific W (E6) irreps.

For example, H2(U3,3(27);Q) is the unique 81-dimensional irreducible representation
of W (E6).

Open Problem 2: Compute H∗ of families of smooth cubic surfaces. E.g. the
universal family.

Theorem (Das, 2018). LetX → E3,3 → U3,3 be the universal family. ThenH∗(E3,3;Q) =
Q[α3,α5,α7,η]
(α2

3,α
2
5,α

2
7,η

3)
.

Method: Vassiliev spectral sequence. By Alexander duality Pn → H∗(Σ3,3), we can
look at a poset of strata (of all the ways that smooth cubics can be stratified). Then
we consider the associated spectral sequence.

For U3,3(L) it already becomes much more complicated.

The arithmetic story

Let X/Fq, then Frobq acts on X(Fq). Let X(Fq) = Fix(Frobq), then we have that étale
cohomology H∗ét,c(X/Fq;Q`) comes equipped with an action of Frobenius. We have the
G-L trace formula, which says

|X(Fq)| =
2 dimRX∑
i=0

(−1)iTi,

where Ti = Tr(Frobq|Hi
ét,c) is the trace of the action of Frobenius on étale cohomology.

How to compute the right hand side? We need the number of eigenvalues, as well as
their size. Under good circumstances, comparison and basechange tell us that

Hi
ét,c(X/Fq;Q`) = Hi(X(C);Q)⊗Q`.

Theorem (Deligne). 5 If λ is any eigenvalue of Frobq on Hi
ét,c we have that

1. λ is an algebraic integer

2. |λ| ≤ q1/2

3. |λ| = qi/2 when X is smooth and projective (Riemann hypothesis over finite
fields)

4. Tri =

{
1 i = 0

qd i = 2d.

5Resolution of Weil conjectures, also Riemann hypothesis over finite fields.
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Given a cycle (cohom class) in a variety, and its dual is represented by algebraic cycles,
we get an actual number

Corollary. Suppose dimX = d and the number of components of X is r. Then

lim sup
q→∞

|X(Fq)|
qd

= r.

Proof. We have that |X(Fq)| = rqd +
∑2 dimX−1
i=0 (−1)iTi, where each Ti has absolute

value ≤ q1/2bi, where bi is the ith Betti number.

Corollary. If X is a smooth projective surface for which π1X = 0 (e.g. degree d ≥ 3
smooth hypersurface in P3), then

|X(Fq)| = q2 + 1 + Tr2,

where all eigenvalues have |λ| = q.

Read Andre Weil’s 1954 ICM Talk.

Theorem (Manin, 86). If X is a smooth cubic surface. Then

|X(Fq)| = q2 + (1 + a)q + 1,

where a ∈ {−3,−2,−1, 0, 1, 2, 3, 4, 6}.

Proof. We have the cycle class map, i.e. the Z-span of the set of algebraic cycles in
H2 tensored over Q`(−1) mapping isomorphically to H2

ét,c.

The 27 lines are algebraic cycles, so Frobenius has to permute stuff around. Then the
automorphism group of the lines is W (E6). If we fix a line, then Frobenius is acting
on P1, and the eigenvalue is just q. Thus

Tr2 = q · χH2 ,

where the character on H2 is χH2 = χVstd⊕Vtriv
= (a + 1). Looking at the character

table of W (E6), the characters can only take the values in the set above.

Work of Swinnerton-Dyer shows that all these values can exist. So we can ask how
many exist for each d.

Theorem (Das, 2015). 1. The expected number of X(Fq) is q2 + q + 1

2. We get the exact distribution of the eigenvalues of Frobenius. As q → ∞, the
distribution is exactly the conjugacy class of W (E6).

This corresponds to the problem of the cohomology H∗(E3,3). That is,
|E3,3(Fq)|
|U3,3(Fq)| .

Other counts (e.g. about lines):

Theorem (Das, 2018). The expected number of lines on a smooth cubic surface over
Fq is 1.
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In general: Tomassi, Peters-Steenbrink computed homological stability forHi(Ud,n(C);Q)
as d→∞.

Question: Why E6?

Answer: There is a paper of Manivel that explains this.

E2-algebras in spaces: Part 1

Søren Galatius

Joint with Kupers, Randal-Williams.

Let D be an operad equivalent to the little disks operad. That is, a sequence of spaces
D(n) equipped with an action of the symmetric group Sn and some other conditions,
where D(n) ' Confn(C). Then we can think of this as a functor

D(X) = qn≥0(D(n)×Xn)/Sn,

We may think of D(n) as a space of n-ary operations Xn → X.

An E2-algebra is (X,µ) with a structure map µ : D(X)→ X satisfying some properties.
We say a non-unital E2 algebra is one that satisfies D(0) = ∅.

An E1-algebra is similar but with Confn(R).

We have a similar notion in based spaces by taking
∧

(D(n)+∧X∧n)/Sn, and on chain
complexes by C∗(D)⊗ C⊗n/Sn.

Types of examples:

• found in nature

• ones that you build yourself.

For E2, a good source is braided monoidal categories, e.g. a category C with a functor
⊕C × C → C, and a natural transformation (− ⊕ −) ⊕ − ⇒ − ⊕ (− ⊕ −) from
functors C × C × C → C, called the associator, and a commutator which is a natural
transformation whose components are x ⊕ y → y ⊕ x, which we call the braiding.
This satisfies some axioms, including pentagon and hexagon. If σ2 = id, we call it a
symmetric monoidal category.

For example, VectF , the category of vector spaces of dimension 1 ≤ dim < ∞ is a
non-unital braided monoidal category, with ⊕ from a direct sum. We will mostly care
about non-unital E2-algebras.

For such a category C, the classifying space BC has the structure of a (non-unital)
E2-algebra. We can write BC ' qxBAutC(x), where we are taking one x in each
isomorphism class.

In the vector space example, we can take BVectF = qn≥1BGLn(F ) is an E∞ algebra,
which gives algebraic K-theory.
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Example. Surfaces (Miller, Fiedorowicz-Song) we have a category Γ whose objects
are surfaces (compact connected oriented 2-manifold) Σ with ∂Σ = S1 a specified
diffeomorphism. The morphisms are isotopy classes of diffeomorphisms rel boundary.
We call the automorphisms of a surface of genus g as Γg,1 = Modg,1. This has a braided
monoidal structure obtained by gluing along the boundaries. This gives the direct sum
operation. The braiding comes from taking a half-Dehn twist from gluing Σ then Σ′

and extending it to a diffeomorphism to get the space which was obtained from gluing
Σ′ and then Σ. This is not symmetric monoidal, since the half Dehn twist squares to
a full Dehn twist, which is not isotopic to the identity.

Then BΓ = qBΓg,1, which becomes an E2-algebra.6

“Built examples”: if Z is a space, then D(Z) = qn≥0D(n)× Zn/Sn is called the free
E2-algebra on Z.

Cell attachment let (X,µ) be an E2-algebra, and take e : ∂Dk → X to be an attaching
map, and we can take

D(∂Dk) X

D(Dk) X ′,

e

p

which is a pushout in E2-algebras. Iterating this procedure, we get “cellular” E2-
algebras obtained from ∅ by iterating cell attachment.

Question: Given an E2-algebra C encountered in nature, how can we build a cellular

E2-algebra A and an E2 map A
'−→ X which shows that it is weakly equivalent to the

one we encountered?

This is always possible, but we can ask the question: how many cells do we need?

If A is built by cell attachment, then it has a filtration given by the order in which
we attached cells, so that the associated graded space gr(A) is isomorphic to D(Z) =
∨D(n)+ ∧ Z∧n/Sn, which is a free E2-algebra in based spaces. Even more than this,
it is a free E2-algebra on a wedge of spheres. We get a spectral sequence

E1 = H∗(D(∨αSnα); k)⇒ H∗(A; k) ∼= H∗(X; k).

By F. Cohen, H∗(D(Z); k) is known to be a functor of H∗(Z; k) whenever k is a field.

Derived indecomposables: If D is an operad equivalent to the little disks operad
and (X,µ : D(X) → X) is an E2-algebra, then the decomposables are Dec(X) =
im (qn≥2D(n)×Xn/Sn → X). Then we define the indecomposables as

QE2
(X) = Indec(X) = X/Dec(X),

which is a pointed space.

Goal: (assuming D(1) = {∗}, show that Indec(Free(Z)) = Z q {∗} and pushouts are
sent to pushouts). Then the built algebra is sent to a CW one with one ordinary cell

6BΓg,1 is the surface bundle over Mg,1.
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for each step. The problem is that X
∼−→ X ′ is not sent to a weak equivalence. So we

take a derived functor QL
E2

. Then in our setting above, we have

Indec(A)
∼← QL

E2
(A)

∼−→ QL
E2

(X).

This gives us a lower bound on the number of cells needed.

Calculation: (Getter-Jones 92, Basterra-Mandell, J. Francis, Lurie) gives a simplicial
model for QL

E1
and QL

E2
. If X = BC then

DecLE1
(X) ' hocolimx∈C |TE1x|,

where TE1(x) is a certain simplicial complex. If we take the example VectF or projective
modules over a ring, we get something called the “split building” (Charney) for C =
VectF .

The Grothendieck ring of varieties, and stabilization in the
algebro-geometric setting: Part 1

Ravi Vakil

References you should check out: Margaret Bilu’s thesis, Sean Howd and Margaret
Bilu (upcoming article on arxiv).

The space we are considering tend to be moduli spaces, and come in families which
stabilize (in some sense, usually homological) as a parameter tends to infinity. In
smaller parameters of the moduli spaces, we often get accidents of small numbers,
usually occurring in 3, 4, and 5. For example, the reason we can solve cubics are
accidents about S3. On the geometric side, if we are counting covers of CP1, e.g.
double covers which are elliptic curves, the moduli space of degree d covers, when d is
up to 5, is unirational, meaning that we can map onto it from some high dimensional
affine space AD which hits all degree d covers. If we are looking at Mg when g is small,
then it is also unirational, meaning we can describe curves of small genus; however for
instance if g ≥ 24 then Mg is not unirational so we can’t describe a typical curve of
this genus.

To motivate this we will do some computations. Let S = {p, q, r} be a finite set of
three elements. How many ways can we have n objects among this set? We have
a generating function, where the coefficient on tj tells us how many ways to have j
objects:

1 + (p+ q + r)t+ (p2 + q2 + r2 + pq + pr + qr)t2 + . . .

= (1 + pt+ p2t2 + . . .)(1 + qt+ q2t2 + . . .)(1 + rt+ r2tr + . . .)

=
1

(1− pt)
1

(1− qt)
1

(1− rt)
.
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In general the generating function of complete symmetric functions is

1

1− e1t+ e2t2 + . . . omemtm
=
∑
p∈Z

hpt
p.

The binomial theorem tells us

(1 + t)v = 1 + vt+

(
v

2

)
t2 + . . . ,

and we can prove things like

(1 + t)v(1 + t)w = (1 + t)v+w,

by counting things.

If V is a (say, finite-dimensional) vector space, we might think of
(
V
k

)
as ∧kV , and then

we could write

1

(1− t)V
= 1 + V t+ Sym2(V )t2 + Sym3(V )t3 + . . .

By this logic, we might write 1
(1−pt) from before as 1

(1−t)p and the generating function

of elements from S as 1
(1−t)p+q+r .

If we let V = Cn and take a representation of (C×)n we get an analog of the generating
function from before. These polynomials should have coefficients living in K0(G−reps).

Then we can think about what this means for varieties:

1

(1− t)A1 =
∑
n≥0

SymnA1tn.

If we have n unordered numbers in A1, this is a polynomial, i.e. an element of An so
we can think of the generating function above as∑

Antn =
∑

(A1t)n =
1

1− A1t
.

For P1, we have ∑
SymnP1tn =

∑
Pntn,

and P1 is A1 with a point, so we can write

1

(1− t)P1 =
1

(1− t)A1

1

(1− t)pt
.

We should think about things of this form as zeta functions ζX(t) = 1
(1−t)X .
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Definition. The Grothendieck Ring of Varieties over a field k is generated by [X],
where X is a variety over k modulo isomorphism, and it has an additive relation (cut
and paste/scissor relation) for U ◦↪→ X /←↩ Z with Z = X − U , we have that

[X] = [U ] + [Z].

And we have multiplication by

[X]× [Y ] = [X × Y ],

which has a unit given by a point. If this product is not reduced, we take its reduction
so that it is a variety. Writing L = A1, we can write [P2] = L2 + L+ 1.

We can think about the real numbers as

[R] = [R>0] + [R<0] + [pt],

hence [R] = 2[R] + 1, and [Rk] = (−1)k . . ., which looks like an Euler characteristic.

Theorem (Deligne). Given a smooth proper compact algebraic manifold over C, we
can compute all the Betti numbers, components, Hodge structures, just by its value in
the Grothendieck ring. This is due to the theory of weights on cohomology.

Suppose k = Fq, we get a map which counts points

K0(Vark)
#pts−−−→ Z,

which we note respects the addition and multiplication on the Grothendieck ring
K0(Vark).

We can think of a zeta function (defined by Kapranov)

ζX(t) =
∑
n≥0

[SymnX]tn.

Applying #pts to this, we get an element in Z[[t]], which is the Weil zeta function
ζX(t). Thus the Weil zeta function is just counting points on symmetric powers.

Say we could equate X with an altenating sum of its cohomology, i.e. an Euler char-
acteristic, then we would get

1

(1− t)X
=

1

(1− t)H0−H1+H2+...
=

(1− t)H1+H3+

(1− t)H0+H2+
.

Theorem (Macdonald 1960). We have that∑
χ(SymnX)tn =

1

(1− t)χ(X)
.

We will try to categorify this result. Taking the vector spaces Hi, putting them in an
alternating order, we can view them as vector spaces with representation, and take the
trace to get the Weil function. Then to prove the Weil conjectures, we can just show
étale cohomology satisfies certain properties. So the Weil zeta function being rational
comes from the fact that finitely many étale cohomological groups are nonzero.



PIMS Arithmetic Topology: Wei Ho June 12th, 2019

Hypersurfaces

We would like to count hypersurfaces appropriately. In Jordan’s talk, we asked for a
number of squarefree integers. Over SpecZ this became 1

ζ(2) .

Bjorn Poonen’s work shows that the probability that a given hypersurface is smooth,
as d→∞ is

1

ζ(dimX + 1)
,

where this is the Weil zeta function.

In the case of topology (Vassiliev, Tommasi) consider Cn and all smooth functions on
it. What are the odds of the zero set of a function being smooth?

In K0(Vark), what is the probability that a hypersurface of degree d is smooth? This
makes sense as d→∞, and we get that the limit becomes 1

ζ(dimX+1) , where this is the

zeta function in the Grothendieck ring.

Morally: every time we say something in terms of zeta values, it should have interpre-
tations in topology, arithmetic, and point counting over finite fields.

Question: Can we think about K0 of Galois representations?

Conjectures, heuristics, and theorems in arithmetic statistics:
Part 1

Wei Ho

Question: How many number fields are there?

We can set discrete invariant to start counting, for example degree d, with Galois
group G, etc. We then have to say how we want to order things, for number fields it
is reasonable to order by discriminant, by Hermite’s Theorem (we only have finitely
many number fields of given degree up to a given discriminant). We can then talk
about asymptotics as the discriminant changes.

Conjecture (Malle). Let G be a finite group with an embedding G ↪−→ Sn. Then

lim
x→∞

# {G-number fields of discriminant < x}
x1/a(log(x))b

exists and is nonzero, where n− a is the maximal number of orbits of g ∈ G ⊆ Sn.

This is known for abelian groups, nilpotent groups, S3, D4, S5, etc.

Heuristic for constant (Bhargava) just multiply local factors. If we impose local
conditions, we change the corresponding factor.

Question: What is the distribution of class groups of number fields?



PIMS Arithmetic Topology: Wei Ho June 12th, 2019

Cohen-Lenstra heuristic: (1984) class groups behave as “random” finite abelian
groups (weighting by 1

|Aut(G)| ).

With this idea, we can make a lot of predictions: let h be the class number of an
imaginary quadratic fields, and p 6= 2. Then

P (p|h) = 1−
∏
k≥1

(
1− p−k

)
.

For example:

p = 3 43.987%
p = 5 23.967%
p = 7 16.320%
Cl3 ∼= Z/9 9.335%
Cl3 ∼= (Z/3)2 1.167%.

Cohen-Martinet (1990) worked on other types of number fields.

Friedman-Washington (1987) wanted to determine what happened in the function field
case, by taking the following analogies:

Q Fq(t)
quadratic fields K hyperelliptic curves over Fq
Cl(K)` the `-Sylow subgroup Pic0(C)`
discriminant genus g.

But in the function field case, we now have Frobenius around, and it is a good idea
to use it. They took an action of (id − Frob) on the Tate module T`(C) ∼= Z2g

` .
Thus we have some (2g × 2g)-matrix lying around, and it turns out that its cokernel
coker(id − Frob) = Pic0(C)` is exactly what we care about. Thus we can study the
cokernel of such matrices and see if they are distributed randomly to check if this
matches up with the Cohen-Lenstra heuristic.

Achter (2004) proved that this distribution actually is correct (for q 6≡ 1 (mod `)). We
can think about this as good evidence that the analogy is useful.

Venkatesh-Ellenberg (2010) in the number field case, we actually have a random matrix
around as well— we have that Cl(K) = I(K)/P (K), and we can take a finite set of
primes S which generate the class gorup, and then we can write Cl(K) = IS(K)/O∗S
(where IS(K) is a free abelian group on ideas in S, and O∗S is the S-units). Thus we
can think of Cl(K)` as the cokernel

coker(O∗S ⊗Z Z` → IS(K)⊗Z Z`),

that is, an |S| × |S| matrix over Z`. Then we can think about what happens if these
matrices are behaving randomly.

We will now talk about analogies between number fields and elliptic curves.
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Number fields K elliptic curves E/Q
roots of unity E(Q)tor
unit group u(K) E(Q)
|disc| conductor
Cl(K) X(E)
R(K) R(E)
0→ U(K)/U(K)p → Selp(K)→ Cl(K)[p]→ 0 0→ E(Q)/pE(Q)→ Selp(E)→X(E)[p]→ 0.

Remark. We have maps

E(Q)/nE(Q) H1(Q, E[n])

E(A)/nE(A) H1(A, E[n]),

β

α

where E(A) =
∏
v E(Qv) a,d H1(A, E[n]) =

∏′
vH

1(Qv, E[n]), and we define a Selmer
group by

Seln(E) = β−1(im(α)) ⊆ H1(Q, E[n]).

And we can define

X(E) := ker

(
H1(Q, E)→

∏
v

H1(Qv, E)

)
,

which is a torsion abelian group with alternating pairing.

Delaunay (2001) We can model X via “Cohen-Lenstra philosophy.” And we can model
X[p] as a finite abelian p-group with alternating pairing.

Poonen-Rains (2012) modeled the Selmer group Selp as the intersection of random
maximal isotropic subgroups in 2n-dimensional quadratic spaces over Fp.7 Taking a
limit as n→∞, they can make predictions about how Selmer groups behave.

BKLPR (2015) modeled the entire sequence

0→ E(Q)⊗Qp/Zp → Selp∞(E)→X[p∞]→ 0,

using the ideas of maximal isotropic subgroups.

In terms of rank, most people believe the minimalist conjecture: half of elliptic curves
have rank 0, and half have rank 1.

PPVW (2016) have a random matrix model for ranks of elliptic curves. Ordering by
height H, we have that

# {E : rank = i} =

{
H20/24+o(1) i = 0, 1

H(21−i)/24+o(1) 2 ≤ i ≤ 21.

We can look at data and see how it matches up with rank, and see how some of these
ideas are proved.

7As long as n is prime, this is the intersection of the images of α and β, which are maximal isotropics.
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A1-enumerative geometry: Part 2

Kirsten Wickelgren

Joint w Jesse Kass, Marc Levine, Jake Solomon. We will talk about A1-degree for
counting rational curves.

Last time we talked about degrees of maps between spheres. Now we talk about degrees
of maps between smooth schemes.

In algebraic topology, given f : X → Y a map of smooth compact oriented dimension n
manifolds. Then there is a fundamental class generating the homology Hn(X) ∼= Z[x],
and we can define the degree as the integer multiple of the pushforward in terms of the
fundamental class of Y :

f∗[X] = deg(f)[Y ].

We compute this via local degrees as deg f =
∑
q∈f−1(p) degq f . Back in A1-homotopy

theory, Morel provided a degree map

degA1

: [Pn/Pn−1,Pn/Pn−1]A1 → GW(k).

The degree has coherence with taking real and complex points via:

[Sn, Sn] [Pn/Pn−1,Pn/Pn−1]A1 [S2n, S2n]

Z GW(k) Z.

deg degA1

R-pts C-pts

deg

sig rank

Question: Can we define a GW(k)-valued degree for f : X → Y a map between
smooth schemes? This was thought of by J. Fasel, F. Morel. The perspective is from
KLS: to define deg f =

∑
q∈f−1(p) degq f , we must

1. define a local degree

2. orientation ?

3. finite fibers?

4. independence of the choice of p

For 1) we take a small ball around an isolated point in the fiber, and look at the induced
map on local spheres via purity: Y/(Y − p) ' TpY/(TpY − 0) ' Pn/Pn−1.

We compare this with Jf 6= 0, given by Jf = det
(
∂fj
∂xj

)
∈ k(q). Then we define

degq f = Trk(q)/k 〈Jf(q)〉 .

For 2), we take a map on tangent spaces Tf : TX → TY , and we take the Jacobian
to be

Jf = detTf ∈ Hom(detTX, f∗ detTY )(X),
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and since these schemes were smooth, these are line bundles. In order for the bracket
〈−〉 to make sense, we only need to know the value of Jf up to squares. In otherwords, if
we could make a trivialization of this line bundle which was well-defined up to squares,
this could make sense.

Definition. We say f is relatively oriented if Hom(detTX, f∗ detTY ) ∼= L ⊗2 is iso-
morphic to the square of a line bundle on X.

Definition. Bases of TqX and TpY are compatible with the relative orientation if the
associated element of Hom(detTX, f∗ detTY )(q) is `⊗ ` for some ` ∈ L (q).

This makes 1) well-defined. Alternatively, a trivialization of L identifies Jfq with an
element in OX,q, so we have a well-defined Jfq ∈ OX,q/(OX,q)2 and hence Jf(q) ∈
k(q)/(k(q)×)2. Then we get degq f = Trk(q)/k 〈Jf(q)〉.
Remark. This will work in families.

We can show that 3) can be arranged on a complement of a codimension ≥ 2 subscheme
of Y (i.e. we can chop out a codimension ≤ 2 subscheme and then get finite fibers)
and we need Tf to be invertible at one point.

For 4) is this independent of p? The answer is no— if we let C = C/Z[i] be a smooth
elliptic curve over R, then we can take a multiplication by 2 map to C. This has two
components of real points. Over one component the real degree is 0 and over another
component the real degree is 4, which alters the signature. However, there are great
cases where the answer is yes.

Theorem (Harer). A family of symmetric, non-degenerate bilinear forms on finite-
dimensional vector spaces over A1 is (stably8) constant.

We say that Y is A1-chain connected9 when the following equivalence relation identifies
all points of Y with the same residue field: for any two points y1, y2 ∈ Y with k(y1) =
k(y2), we say y1 ∼ y2 when there exists u : A1 → Y with t1, t2 ∈ A1 so that u(ti) = yi.

Theorem. Let f : X → Y be a map of smooth d-dimensional k-schemes such that Tf
is invertible at a point and f is relatively oriented after possibly removing something
of codimension ≤ 2 from Y and restricting to its complement, and we require that Y
is A1-chain connected with a rational point. Then

deg f =
∑

q∈f−1(p)

degq f ∈ GW(k),

for any closed point with finite fiber. This is well-defined and independent of p.

This is computable, provided Jf 6= 0. We note that Jf 6= 0 is definitely nonzero at
the generic point q, so we could take

deg f = Trk(X)/k(Y ) 〈Jf(q)〉 ∈ GW(k(Y )),

and this actually lives in GW(k) provided the hypotheses above are met.

8We may have to add a direct summand. We can ignore this in characteristic 6= 2.
9Closely related to rationally connected.
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Example. Take C =
{
y2 = p(z)

}
an elliptic curve, and take the projection π : (z, y) 7→

z down to P1. Taking dz
zy 7→ 1, we get a trivialization TC∗ ∼= O, and we can get

(TP1)∗ ∼= O(−1)⊗2 via dz maps to |z| then we can see

π∗(dz) = dy

(
dz

2y

)
,

and we check that Jπ at the generic point is 2y. Finally, taking the trace, we get

Trk(C)/k(z) 〈2y〉 =

(
0 4
4 0

)
= H,

in the basis 1, 1/y. Thus deg(π) = H ∈ GW(k).

Motivating example: Counting rational curves in P2.

A rational curve of degree d is u : P1 → P2 of the form [u0(t), u1(t), u2(t)] where each
ui is homogeneous of degree d. Taking p1, . . . , pn ∈ P2, we can ask how many rational
curves pass through all these points.10 There are finitely many when n = 3d− 1:

d 3d− 1 number of rational curves
1 2 1
2 5 1
3 8 12
4 11 620.

Over a field k, we compare with M. Levine’s “Welschinger invariants.” There is a
Kontsevich moduli space M 0,3d−1(P2, d) parametrizing stable maps u from a genus 0
curve to P2 together with p1, . . . , p3d−1 smooth points. we have an evaluation map

ev : M 0,3d−1(P2, d)→ (P2)3d−1,

which evaluates the maps. For any σ : Gal(k/k) → Σ3d−1, we define descent data on
(P2)3d−1

k
by g ∈ Gal(k/k) acts by gσ(g). Thus we obtain a twist (P2)3d−1

σ which is

really a restriction of scalars of P2 over residue fields k
Stab(i)

. Similarly, we twist the
evaluation map by σ and obtain

evσ : M 0,3d−1(P2, d)σ → (P2)3d−1
σ .

So we obtain curve-counting invariants Nd,σ := deg evσ.

Question: Can we get a degree from cohomology?

Answer: When you are relatively oriented, we can get a pushforward in oriented Chow.
It is maybe untrue that oriented Chow of the base is generated by a fundamental class.

10E.g. if we had two points and d = 1 there is a unique line through any two points.
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Coincidences of homological densities, predicted by arithmetic:
Part 2

Benson Farb

Joint with Jesse Wolfson, Melanie Wood.

A topological coincidence: Consider the two spaces with associated theorems about
homological stability

1. Polyn = {F ∈ C[x]monic squarefree of degree n}.
Theorem (Arnol’d 1969). For all i ≥ 0, we have that

lim
n→∞

Hi(Polyn;Z) = Hi(Ω
2CP1;Z).

2. Let the space of degree n holomorphic maps be Hol∗n =
{
f : Ĉ→ Ĉ : deg f = n, f(∞) = 1

}
.

This is the same as:

=

{
f

g
: f, g ∈ C[x], deg f = deg g = n, monic, no common roots

}
= {disjoint pairs of n-tuples of points in C} .

This last equality is by looking at roots and poles. Given a set of roots and poles,
it determines the rational map purely by this topological information.

Theorem (Segal, 1979). For all i ≥ 0, we have that

lim
n→∞

Hi(Hol∗n;Z) = Hi(Ω
2CP1).

Note. We have that π1(Polyn) = Brn is the braid group on n strands, and π1(Hol∗n) =
Z. So we see they are quite different.

Melanie Wood: “Number theorists could have predicted this.” There is a well-known
analogy going back to André Weil associating Polyn and the set {r ∈ [1, n] : r squarefree}.
Additionally under this analogy, Hol∗n corresponds to

{
(r, s) ∈ [1, n]2 : gcd(r, s) = 1

}
.

Then if we take the limit of probabilities:

lim
n→∞

Prob (r ∈ [1, n] squarefree) ≈
∏
p

(
1− 1

p2

)
= ζ(2)−1 =

6

π2

lim
n→∞

Prob
(
(r, s) ∈ [1, n]2 : gcd(r, s) = 1

)
≈
∏
p

(
1− 1

p
· 1

p

)
= ζ(2)−1.

We note that there are similar counts for number fields, not just Q. Thus in the
analogies above, Ω2CPn−1 corresponds to ζ(n)−1.

Classical example: For all m,n ≥ 1, we have that

lim
d→∞

# {(a1, . . . , am) ∈ [1, d]m : gcd(a1, . . . , am) is n-power free}
#[1, d]m

= ζ(mn)−1.
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Does there exist a topological incarnation of this? These correspond to spaces of 0-
cycles. The setup: X is a connected, smooth, oriented manifold, and dimH∗(X;Q) <

∞. We have m,n ≥ 1 and
−→
d = (d1, . . . , dm) with each di ≥ 0. Then we let

Sym
−→
d (X) =

m∏
i=1

SymdiX.

This has di labeled points (not necessarily distinct) of each color i.

Let Z
−→
d
n (X) ⊆ Sym

−→
dX be the space where we allow points to come together, but we

should not allow ≥ n points of every color to come together at a single point.

• Zd2 (X) = UConfd(X)

• Zd,...,d1 (X) = Hol∗d(CP1,CPm−1) sending [x, y] 7→ [f1(x, y) : . . . : fm(x, y)]

Recall: The Poincaré polynomial of a spaceX is the generating function of the rational
Betti numbers:

PX(t) =
∑
i≥0

dimHi(X;Q)ti ∈ Z[[t]].

We can try the next simplest space X = C− {0}, and we get that

lim
d→∞

PZd
2 (X)(t) = 1 + 2t+ 2t2 + 2t3 + . . .

lim
d→∞

PZd,d
1 (X)(t) = 1 + 3t+ 4t2 + 4t3 + . . .

“Take Weil more seriously:” forgot to divide by the ambient space. Explicitly, we recall
that we had to divide by #[1, d]m in the n-power example, so we need an analogy of
this in the topological context.

Let PSymd(C∗)(t) = 1 + t for all d ≥ 2 and we get

lim
d→∞

PZd
2 (C∗)(t)

PSymd(C∗)(t)
=

1 + 2t+ 2t2 + . . .

1 + t
= 1 + t+ t2 + t3 + . . .

lim
d→∞

PZd,d
1

(t)

PSymd(C∗)×Symd(C∗)(t)
=

1 + 3t+ 4t2 + . . .

(1 + t)2
= 1 + t+ t2 + t3 + . . .

Theorem. Let X be connected, oriented, smooth manifold with dimH∗(X;Q) <∞.
Assume

(∗) the cup product of any k classes in H∗c (X;Q) equals zero.

Then for any m,n ≥ 1 with mn ≥ k, and
−→
d = (d1, . . . , dm) with each di ≥ 0, then

lim−→
d→∞

P
Z
−→
d
n (t)(X)

(t)

P
Sym

−→
d (X)(t)

∈ Z[[t]],

exists and depends only on mn (and of course on dimX and the Betti numbers bi(X)).
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Examples of X satisfying (∗):

1. X a smooth affine variety over C with mn > 2 (this is sharp)

2. If X ⊆ Cr a Zariski open subset of Cr with r ≥ 2

3. X noncompact manifold, mn > dimX.

Remarks:

0. The limit statement comes from (rational) homological stability for lots of exam-
ples

1. For fixed m · n we get many coincidences

2. Meaning of division of Poincaré polynomials: there is an interpretation using
factorization homology (Quoc Ho - factorization homology)

3. We get similar results for Euler characteristic (Hodge-Deligne polynomials).

Open problems:

1. When the statement fails, e.g. for the punctured torus, it is because some dif-
ferential in the Leray SS doesn’t vanish (the hypotheses above are used to make
differentials vanish) thus there should be a correspondence between differentials
and correction terms. What are these correction terms on the number field side?

2. Find other stories starting with other coincidences in arithmetic.

Proof cartoon:

• We go to an ordered case Z̃
−→
d
n (X) which has an action of Sd1 × · · · × Sdm

• Do the “local” case X = Rn (Nir Gadish)

• Leray SS Z̃dn(X) ⊆ X |
−→
d |

• Key ingredient: Björner-Wachs theory of lexicographical shellability.

E2-algebras in spaces: Part 2

Søren Galatius

Setup: C is a monoidal (resp. braided monoidal, resp. symmetric monoidal) category.
Then X = BC is a non-unital E1 (resp. E2, resp. E∞) space.

Reference: Fiedorowicz: “symmetric bar construction.”

We have that σ : x⊕y ⇒ y⊕x is a natural transformation between functors C×C → C ,
and Fiedorowicz associates a map Z× C × C → C which gives

BZ×BC ×BC = S1 ×BC ×BC → BC .
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We gave a simplicial formula for QE1

L X, QE2

L X. Take hocolim : Fun(C , sSet) → sSet
sending t 7→ BC , where t is the terminal functor sending everything to a point.

We want to calculate TE1 , TE2 ∈ Fun(C , sSet). We get that TE1(x) has vertices of
the form (x0, x1, x1 ⊕ x1

∼−→ x) modulo isomorphisms of triples. A one-simplex is
(x0, x1, x2, x0 ⊕ x1 ⊕ x2) modulo isomorphisms, etc.

Theorem. If AutC (x) × AutC (y)
⊕
↪→ AutC (x ⊕ y) is an injection of groups for each

x, y ∈ C , then

hocolimx∈C |TE1(x)| ' DecE1

L (X).

If we want indecomposables instead, we take the pointed spaces

hocolimx∈C Σ|TE1(x)| ' QE1

L X.

Example. Say Γ is the category of surfaces, whose morphisms are given relative the
boundary ∂Σ. Then we have that TE1(Σ) has vertices which are triples Σ0,Σ1 and a
map from a space wit Σ0 and Σ1 glued in down to Σ modulo isomorphism, which in this
category is diffeomorphism relative to isotopy on the boundary. These correspond to
separating arcs (up to isotopy) between two specified points on ∂ dividing the surface
so that it has positive surface on each side.

Theorem. We have that

|TE1Σg,1| '

{
∨Sg−2 g ≥ 2

∅ g = 1
.

This high connectivity tells us how to build BΓ ' qg≥1BΓg,1 as an E1-space up to
weak equivalence. We only need cells whose dimension is g − 1 or above.

Let C = VectF be a category of finite-dimensional vector spaces, not including vec-
tor spaces of dimension 0. Then for V ∈ C , we have that TE1(V ) has vertices

(V0, V1, V0 ⊕ V1

∼=−→ V ) modulo isomorphism. This is in bijection with subspaces with
their orthogonal complement. We think of this as V0 ↪−→ V with a retraction whose
kernel is V1. The p-simplices are of the form

0 ⊆ V0 ⊆ V1 ⊆ · · · ⊆ V,

with retracts in each direction. This is the flag with a choice of splitting. Charney’s
“split building.” proved that this is highly connected, that is,

|TE1(Fn)| '

{
∨Sn−2 n > 1

∅ n = 1.

This is related to TE1(V )→ T (V ), where T (V ) is the Tits building. This is obtained
by forgetting the splitting. We have that T (V ) is also highly connected, and we get a
map

|TE1(V )| → |T (V )| = ∨Sn−2,
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where n = dimV . The homology is H̃n−2(T (Fn)) = Stn, called the Steinberg module.
This comes equipped with an action of GLn(F ). Taking homology of TE1 we get a
split Steinberg module which comes with a map

Ŝtn = H̃n−2(|TE1(Fn))→ H̃n−2(T (Fn)) = Stn.

We now get

H∗(Q
E1

L (X)) =
⊕
n,d

Hd−(n−1)(BGLn(F ); Ŝtn).

Proposition. If F is infinite, the kernel of the map Ŝtn → Stn is acyclic, i.e. the
canonical map is an isomorphism:

H∗(BGLn(F ); Ŝtn)
∼=−→ H∗(BGLn(F ); Stn).

This latter term measures E1-cells. Thus in rank n you only need n−1 cells and above.
Then in degree n, the n− 1 cells you need are exactly H0(GLn(F ); Stn).

How does this change for E2?

Simplicial formula for QE2

L X: Let X = BC . Then we get

QE2

L X = hocolimx∈C Σ|TE2(X)|.

If C = VectF as before, then we get TE2 as a subcomplex of the join:

TE2(V ) ↪−→ TE1(V ) ∗ TE1(V ).

Then the pair
(
(v0, . . . , vp+1), (v′0, . . . , v

′
q+1)

)
∈ TE1 ∗ TE1 (with vi ∈ Vi and v′i ∈ V ′i )

live in TE2 if they arise as splittings ⊕Vi,j = V with 1 ≤ i ≤ q + 1 and 1 ≤ j ≤ p+ 1
and we have that

⊕iVi,j = V ′j

⊕jVi,j = Vi.

Theorem. The pointed homotopy colimit hocolimV ∈VectF ΣTE2(V ) is a model for the
E2-indecomposables QE2

L (X).

Theorem. If F is infinite, then the inclusion into the join

|TE2(V )| ↪−→ |TE1(V )| ∗ |TE2(V )|,

becomes an isomorphism after taking homotopy colimits then homology.

Note if we intend to take homology, we could look at |T (V )| ∗ |T (V )| which is a wedge
sum of spheres, and its homology is the Steinberg module tensored itself. Then

H∗(Q
E2

L X) =
⊕
d,n

Hd−(2n−2)(BGLn(F ); Stn ⊗ Stn).
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These summands on the right measure E2-cells. Again as above, we see that for rank
n, we only need 2n − 2 cells and higher for E2 cells of qnBGLn(F ). Moreover, the
(2n− 2)-cells we need are exactly H0(BGLn(F ); Stn ⊗ Stn).

We know what this group is.

Theorem. We have that

1. H0(BGLn(F ); Stn ⊗ Stn) ∼= Z.

2. there is a pairing Stn ⊗ Stn → H0(GLn(F ); Stn ⊗ Stn) ∼= Z which is symmetric,
positive-definite, and non-degenerate after applying −⊗ k over k any field.

Corollary. We have that Stn ⊗Q is indecomposable as a representation.

Conjectures, heuristics, and theorems in arithmetic statistics:
Part 2

Wei Ho

Last time:

• interested in distributions/statistics/asymptotics for arithmetic/algebraic objects

• try to model them — as linear algebra objects

• prove theorems about distribution/statistics/asymptotics for random such linear
algebra objects

• make predictions/conjectures about the original objects.

Today we will talk about how to actually prove theorems.

Example theorems:

Theorem (Gauss conjecture, Lipschitz/Martens, 1860s). Let Cl(d) denote the class
group of the quadratic ring with discriminant d. Then:∑

−x<d<0

#Cl(d) ∼ c · x3/2,

where the constant is about π
18ζ(3) for rings.

Theorem (Davenport-Heilbronn 1971). We have that

# {cubic fields with discriminant 0 < d < X} ∼ 1

12ζ(3)
X

# {cubic fields with discriminant 0 > d > −X} ∼ 1

4ζ(3)
X.

The average size of 3-torsion subgroups of Cl for quadratic fields is 4
3 if d > 0 and 2 if

d < 0.
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Theorem (Bhargava-Shakar, 2010s). The average size of the 2-Selmer group of elliptic
curves over Q (works over global fields) ordered by height11 we have that

avgE/Q|Sel2(E)| = 3.

For Sel3, this is 4, for Sel4 this is 7, and for Sel5 this is 6.

This theorem provides an immediate corollary:

Theorem. The average rank is bounded. In particular, the average rank is bounded
by 0.885.

Proof idea for Davenport-Heilbronn: Count points on a moduli space for whatever
objects (will actually be a stack, not a scheme).

1. Find an explicit description of moduli space.

We can think about cubic rings as corresponding to a degree 3 subscheme of
P1
Z. This corresponds to a binary cubic form ax3 + bx2y + cxy2 + dy3, where
a, b, c, d ∈ Z. These live in Sym3(Z2)/GL2(Z) (we will write this V/G), which is
the correct moduli space to look at.

2. Count points on this orbit space.

Specifically, we want to count integral points V (Z)/G(Z). We also need to worry
about how we want to order things. Here we use the discriminant12.

3. Take G(Z) acting on the real points V (R). We see that V (R) looks approximately
like G(R), since it has this one polynomial invariant13. Now we can think about
G(Z) acting on G(R), for which we have a fundamental domain F . Then we want
to “count” (up to discriminant) lattice points in F using geometry of numbers,
i.e. we estimate its volume.

4. We have to deal with cusps and “bad” points.

5. Finally, we may have to sieve to deal with local conditions.

Using class field theory, we can relate cubic rings with certain local conditions with
order 3 elements in the class group of quadratic fields. Since we know how to count
quadratic fields, we just look at the fiber of:

{order 3 elts. in Cl of quad. fields} → {quad. fields} .

In the Selmer case, we have {p-Selmer elts. of E} ⊆ {genus 1 curve C and degree p line bundles E ∼= Jac(C)}
so we look at the fiber of:

{genus 1 curve C and degree p line bundles E ∼= Jac(C)} → {E} .
11For y2 = x3 +Ax+B, with A,B ∈ Z, the height is max

{
4|A|3, 27|B|2

}
.

12We have that SL2(Z) acts on this space of polynomials, and polynomial invariants are generated by one
invariant, the discriminant. Thus we have one polynomial invariant we are forced to count by. We could
count by non-polynomial invariants e.g. the Julia invariant, but this is much harder.

13G(C) acting on V (C) has one orbit, thus they look very similar.
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The Grothendieck ring of varieties, and stabilization in the
algebro-geometric setting: Part 2

Aaron Landesman

How many covers of P1 are there?

Definition. The Hurwitz space Hd,g parametrizes smooth proper geometrically con-

nected curves C
π−→ P1, genus of C is g and deg π = d, and with Galois group of the

closure Sd.

The simply branched Hurwitz space H0
d,g ⊆ Hd,g parametrizes those same curves where

π is also simply branched — that is, every fiber is smooth or has one ramification point
of order 2.

Context Function fields
Fq(t)

Number fields Cohomology Grothendieck
ring

Question How many covers of
P1
Fq

? That is, what is

the size of Hur(Fq)?

How many covers
of SpecZ?

What is
H∗(Hd,g)?

What is [Hd,g]?

What do
we know?

In d = 3, Datskovsky
Wright, d ≤ 5
Bhargava-Shankar-
Wang, d = 3 Zhao,
Gunther, d = 3, 4
Gunther, Hast, Matei

d = 3 Davenport-
Heilbronn, d ≤ 5
Bhargava

d = 3 stabilizes,
Ellenberg-
Venkatesh-
Westerland

d ≤ 5 Landesman-
Vakil-Wood.

Question: Let d ≥ 2 and assume char(Fq) - d! What is the limit14

lim
g→∞

[H0
d,g]

LdimH0
d,g

?
= lim
g→∞

[Conf2g+2d−2(P1)]

LdimHd,g
= 1− L−2.

Question: Do we have that

lim
g→∞

[Hd,g]

LdimHd,g

?
=

1

1− L−1

((
1− L−1

)(∑
λad

Ld−|λ|
))P1

.

In order to make sense of this we work not inK0(Vark) but inK0(Vark)
[
L−1,

{
(Ln − 1)−1

}
n≥1

]
.

And here “limit” means that Xn → Y if dim(Xn − Y )→∞.

Theorem (Landesman-Vakil-Wood). These questions are true for d ≤ 5.

14In the Grothendieck ring, L = [A1].
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Notation: We will denote (1− L−2)P
1

=
∏
x∈P1(1− L−2).15

Understanding how to count smooth curves: Recall that Weil zeta functions are
defined as

1

ZX(q−s)
=

∏
x∈X

x closed

(
1− q−sx

)
,

and we can write

1

ZX(L−s)
=
∏
x∈X

(
1− L−s

)
.

Lemma. We have that16

lim
d→∞

#
{

smooth elts of H0(P1,O(d))
}

#H0(P1,O(d))
=

1

ZP1(q−2)
.

Idea 1:

(A) What is the chance that f ∈ H0(P1,O(d)) is smooth at x? We write f locally
as f = f(x) + εf ′(x). This is singular if f(x) = f ′(x) = 0, which happens with
probability 1

q2x
. Thus the chance of smoothness is 1− q−2

x .

(B) These chances are independence, so the chance of smoothness, which is the ratio
written in the above lemma, is∏

x∈P1

(
1− q−2

x

)
=

1

ZP1(q−2)
.

Idea 2: Inclusion-exclusion.

Theorem. We have that

lim
d→∞

[smooth f ∈ H0(P1,O(d))]

Ld+1
=

1

ZP1(L−2)
.

Notation by example: Let S2,2,1 denote polynomials with two blue marked points,
two green marked points, one red marked point, and which is singular exactly at these
points. We let S≥,2,2,1 denote polynomials with the same marked points at above, and
the polynomial is singular at these points and possibly elsewhere.

In order to set up inclusion-exclusion, we note that

{smooth sections} = {all sections}r ∪n≥1 {sections singular at exactly n points}
= all sections− S1 − S2 − . . .

15This is analogous to
∏

x∈P1(1− q−2
x ) where qx = #k(x).

16Think of H0(P1,O(d)) as degree d squarefree homogeneous polynomials in 2 variables.
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We note that we can write S1 = S≥,1 − S1,1 − S1,2 − . . . thus

{smooth} = {all} − S≥,1 + S≥,1,1 − S≥,2, . . .

Putting this together, we get17

[smooth polys] =
∑
λ

(−1)#colors in λS≥,λ

=
∑
λ

(−1)#colorsConfλ(P1)Ld+1−2·#{sing. pts}

=
∑
λ

(−1)#colorsSymλ(P1)Ld+1−2·#{sing. pts}

=
Ld+1

ZP1(L−2)
.

Counting hyperelliptic curves: We have that18

lim
g→∞

[H2,g] : = lim
g→∞

[Conf2g+2(P1)]

=
[smooth sections H0(P1,O(2g + 2))]

L− 1

=
1

1− L
L2g−3[proportion of smooth]

=
L2g−3

L− 1

∏
x∈P1

[chance of smooth at x]

=
L2g−3

L− 1

∏
x∈P1

(
1− L−2

)
=

L2g−3

L− 1
· 1

ZP1(L−2)

=
L2g−3

L− 1

(
1− L−2

) (
1− L−1

)
= L2g−2 − L2g.

17Since we can expand the zeta function in terms of symmetric powers.
18Note that Conf2g−2(P1) has branch locus with degree 2g − 2.
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