
A ROUGH INTRO TO THE HERMITIAN K-THEORY SPECTRA

KO AND KSp

Abstract. If/when you find any errors, send me an email at brazelton@math.harvard.edu

0. About

Notes from a talk at AMTRaK1 on 2/28/25. The theme was Hermitian K-theory, despite the fact
that I should be the last person people think of when looking for an authority on the subject. In
an attempt to connect this theme with upcoming work of myself, Morgan Opie, and Tariq Syed, I
wanted to give a rough overview of the ideas of Hermitian K-theory with the goal of defining KSp
and KO as motivic spectra, and then discussing how we can leverage these to access information
about stable and unstable motivic homotopy groups of spheres (as in [RSO19; AF14; ABH23] and
similar work). This information is crucial in order to carry out explicit computations in motivic
obstruction theory.

0.1. References used. Beyond the standard papers you’d expect, I consulted a few other refer-
ences, including Fabien Hebestreit’s 2020/2021 lecture notes on algebraic and Hermitian K-theory,
Alexander Kupers’ notes on Hermitian K-theory, and Arun Kumar’s fantastic PhD thesis [Kum].

1. Why unimodular forms

We recall what algebraic K-theory is, at least in a classical sense – it is the process by which we
take the category Vect(R) of algebraic vector bundles (finitely generated projective modules) over
a ring R, consider its groupoid core Vect(R)≃, and then group complete:

K(R) := (Vect(R)≃)gp .

Variants on K-theory come from trying to replicate this setup, with a little more structure added
into the mix. An example this crowd might be familiar with is when R is a G-ring – in this case
we can ask for a group completion that incorporates this action in some way, leading to equivariant
algebraic K-theory.

Often in mathematics, a vector space or module comes handed to us with some kind of form on it.
This could be a quadratic form, a symmetric bilinear form, a Hermitian form, a skew-symmetric
form, etc. Let’s recall some of these definitions from linear algebra.

Definition 1.1. We will say a form on a module M over a commutative base ring R to be any
abelian group homomorphism

β : M ×M → R.

We can ask for this to satisfy various properties, so we say that β is...

(1) ...bilinear if β is a morphism of R-modules
(2) ...symmetric if β(v, w) = β(w, v) for all v, w ∈ M
(3) ...skew-symmetric if β(v, w) = −β(w, v) for all v, w ∈ M
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(4) ...alternating if β(v, v) = 0 for all v ∈ M
(5) ...even if β takes values in 2R

In the special case where R = C and M is some complex vector space, we can ask for the form to
interact with complex conjugation in various ways. We then say β is...

(6) ...sesquilinear if β(av, bw) = ab̄β(v, w) for a, b ∈ C and v, w ∈ M

(7) ...Hermitian if β is sesquilinear and β(v, w) = (β(w, v))

(8) ...skew-Hermitian if β is sesquilinear and β(v, w) = −β(w, v).

Example 1.2. The prototypical situation is when the base ring is Z. In this case, a bilinear form
is represented by a matrix over Z. The columns of such a matrix span a lattice Zn ⊆ Rn which
are topics of immense interest in mathematics.2 We say a bilinear form over Z is unimodular if its
determinant is ±1.3

Example 1.3. If M is a real oriented manifold of dimension 2n, then the cup product induces
what’s called its intersection form

Hn(M,Z)/tors×Hn(M,Z)/tors → H2n(M,Z) ∼= Z.
This is symmetric and bilinear, and often non-degenerate.

Definition 1.4. The signature of any symmetric bilinear form over Z (or any subring of R) is
defined by tensoring up to R, diagonalizing so that only −1, 0, 1 appear on the diagonal, and then
summing up these entries. The signature of an even-dimensional oriented manifold of its intersection
form.

Definition 1.5. If β is a form over Z represented by some matrix B ∈ Mn(Z), we say β is even if
vTBv ∈ 2Z for every v ∈ Zn

Theorem 1.6 (Arf). Any even unimodular lattice has signature divisible by 8.

Theorem 1.7 (Rokhlin). If M is a smooth orientable closed 4-manifold with a spin structure
(w2(M) = 0) then its signature is divisible by 16.

Proof. π3S = Z/24 □

In 4-manifold topology there is an incredibly close relationship between the intersection form and
the manifold in question.

Theorem 1.8 (Freedman). If Q is a unimodular symmetric bilinear form over Z, there exists a
simply connected closed 4-manifold M with Q as its intersection form. If Q is even, then M is
uniquely determined up to homeomorphism.

For us here in algebraic topology, we’re always interested in manifolds, so we’re in particular curious
about encoding data about the intersection form

Hn(M ;R)×Hn(M ;R)
∪−→ H2n(M ;R) ∼= R,

for whatever rings R and manifolds M we might be looking at. To that end, we’d like to take this
story and approach it via a more categorical lens.

2These appear in sphere packing, Galois and Lie theory, Hodge theory, and so many other fields. In more applied
math, lattice-based cryptography is a popular and well-studied area of research. This has been made even more
popular by the fact that it appears to be the leading contender for post-quantum cryptographic protocols (at least
according to NIST).

3Observe all changes of basis don’t affect the determinant over Z, since we can’t scale by anything except ±1, both
of which square to 1.
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2. Onwards to Hermitian K-theory

With a little motivation, we now might want to study modules over rings equipped with some kind
of form, and we might want to group complete this thing, analogous to how we built algebraic
K-theory.

An immediate issue we bump into is how to define the category we want to group complete. Do we
want to try to define a “morphism of symmetric bilinear forms”? Ultimately we’ll group complete
so maybe we only define isomorphisms?

Naive attempt number 1: We might want to study all flavors of forms on R-modules M . Our
naive idea might be saying that, since we’re studying R-modules M , we might attempt to carry out
this work in the category of R-modules. To see why this isn’t general enough, recall the following:

Example 2.1. Recall that the ordinary inner product on Rn, defined by

⟨x, y⟩ =
∑

xiyi,

extends to an inner product on Cn, given by

⟨w, z⟩ =
∑

wizi.

This latter product is a map

Cn × Cn → C
(w, z) 7→ ⟨w, z⟩

but this is not a map of complex vector spaces! This is precisely because of the appearance of
complex conjugation. Instead, the inner product on Cn is a Hermitian form.

This isn’t a choice we make, it’s kind of forced on us. For the first part, we want norms ||v|| to be
real-valued (i.e. we want a reasonable notion of length for complex vectors), which forces an inner
product on Cn not to be complex linear. Moreover, from our motivation of wanting ultimately to
do something K-theoretic or additive, we should potentially be aware of the following:

Exercise 2.2. Given a sesquilinear form β(−,−) on a complex vector space, write v ⊥β w if
β(v, w) = 0. In order to talk about orthogonal sums in a reasonable way, we would expect this
relation to be symmetric, i.e. v ⊥β w if and only if w ⊥β v. Verify that orthogonality with respect
to a non-degenerate sesquilinear form β is a symmetric relation if and only if β is a scalar multiple
of a Hermitian form.

So is there a category in which we can talk about alternating and symmetric forms over the real
and complex numbers, together with Hermitian forms? The answer is yes, and the trick is to work
in the world of C⊗ C-modules!

Notation 2.3. We want to consider C with two different C ⊗ C-module structures, we’ll denote
these by Cstd and CHer for standard and Hermitian module structures.4 We define them on pure
tensors (then extend additively) in the following way:

C⊗ C× Cstd → Cstd

(w1 ⊗ w2, z) 7→ w1w2z,

and

C⊗ C× CHer → CHer

(w1 ⊗ w2, z) 7→ w1w2z.

4This is nonstandard notation and terminology, but I’d perhaps like to advocate for its use in this context?
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We can then ask what it means to have a C ⊗ C-module map V ⊗ V → C with either module
structure, and we see we recover bilinear and sesquilinear forms.

Notation 2.4. For any complex vector space V , we then can define the sets of symmetric bilinear
and Hermitian forms, respectively, as the C2-equivariant maps

Bil(V ) := bilinear forms on V = HomC⊗C(V ⊗ V,Cstd)

Sesq(V ) := sesquilinear forms on V = HomC⊗C(V ⊗ V,CHer).

Let’s zoom in to bilinear forms for a second. Note C2 acts on V ⊗ V by swapping, and we can give
Cstd a trivial C2-action. Then if a form is C2-equivariant, this means it is symmetric, which is fairly
easy to see. Coinvariants require a bit more thought though. Recall:

Definition 2.5. A quadratic form q : M → R is a map so that q(rm) = r2q(m) and so that

q(m+ n)− q(m)− q(n)

is bilinear.

Proposition 2.6. The map

Bil(V )/
〈
f − f̄

〉
→ Quadk(V )

g 7→ q(v) = g(v, v)

is a bijection.

Proof. We first check the formula is well-defined, i.e. that q(v) is indeed a quadratic form. We
observe

q(rv) = f(rv, rv) = r2f(v, v) = r2q(v),

and that

q(v + w)− q(v)− q(w) = f(v + w, v + w)− f(v, v)− f(w,w)

= f(v, w) + f(w, v),

which is bilinear in v and w since f is. We further see that the map is well-defined, since it factors
through the quotient.

Moreover it is surjective, as any quadratic form is modeled by a bilinear form. To see it is injective,
we must verify that if g(v, v) = 0 for all v then g is symmetric. We first write

0 = g(v + w, v + w) = g(v, v) + g(w, v) + g(w,w) + g(v, w) = g(w, v) + g(v, w).

So g = −ḡ and g = ḡ, implying 2g = 0. If 2−1 ∈ k, we’re done. If char(k) = 2, we need a different
argument, but I believe the proposition statement is still true.5 □

Therefore we obtain

SymC(V ) := HomC⊗C(V ⊗ V,Cstd)C2

QuadC(V ) = HomC⊗C(V ⊗ V,Cstd)C2 .

There is always a norm map from the coinvariants to the invariants, and in this case it recovers the
polarization of a quadratic form

Nm: QuadC(V ) → SymC(V )

q 7→ [(v, w) 7→ q(v + w)− q(v)− q(w)] .

5If anyone knows a reference, let me know!
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This is because if q came from g, the norm map sends g to g + ḡ, and we see

(g + ḡ)(v, w) = g(v, w) + g(w, v) = g(v + w, v + w)− g(v, v)− g(w,w) = q(v + w)− q(v)− q(2).

Note 2.7. We similarly get Hermitian forms in this way, working with CHer instead of Cstd:

Her(V ) := HomC⊗C(V ⊗ V,CHer)C2 .

We can define Hermitian quadratic forms as coinvariants, and obtain a norm map in this context
as well.

Note 2.8. If we are interested in skew-symmetry, we can give Cstd or CHer a non-trivial C2-action,
given by z 7→ −z. Asking for C2-invariants or coinvariants in this setting yields the study of
skew-symmetricforms, or skew-Hermitian forms, respectively.

3. The general setup

Let’s replace C with an arbitrary base ring R, and Cstd with any R-module M , considered with
trivial C2-action.

6 We replace V by any finitely generated projective R-module P . Then we define

SymR(P,M) := HomR⊗R(P ⊗ P,M)C2

QuadR(P,M) = HomR⊗R(P ⊗ P,M)C2

AltR(P,M) = {f ∈ HomR⊗R(P ⊗ P,M) : f(p⊗ p) = 0 for all p ∈ P} .

This gives symmetric forms, quadratic forms, and alternating forms (respectively) valued in M .

Remark 3.1.

(1) When M is R equipped with the standard R ⊗ R-module structure coming from multipli-
cation, we will drop the notation for the module in which forms are valued, and just write
SymR(P ), QuadR(P ), and AltR(P ).

(2) If 2 is invertible, then being alternating is exactly the same as being skew-symmetric (see
[Kum, Remark 2.2.1]). If 2 isn’t invertible, we have to be a little more careful.

(3) There is always a norm map from coinvariants to invariants, and in the above it recovers
the polarization of a quadratic form. We refer to things in its image as even:

EvenR(P,M) = im
(
QuadR(P,M)

Nm−−→ SymR(P,M)
)
.

Again this subtlety only matters if 2 isn’t invertible.

For any f ∈ HomR⊗R(P ⊗ P,M), we can restrict scalars along the map R ∼= Z⊗R → R ⊗R, and
adjoint over to get a map from P to its “M -dual”

HomR⊗R(P ⊗ P,M)
resR⊗R

Z⊗R−−−−→ HomR(P ⊗ P,M) ∼= HomR(P,HomR(P,M)).

Definition 3.2. A form q ∈ HomR⊗R(P ⊗ P,M) is called unimodular if the induced map

P
∼−→ HomR(P,M)

is an equivalence.

6That’s only for the purposes of this talk. In general we want M to be an R⊗R-module, which is finite projective
as an R-module, and σ : M → M a flip-linear involution, i.e. σ2 = id and σ((x⊗ y)m) = (y ⊗ x)σ(m).
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As P varies, unimodular forms form a groupoid! We denote by Unimodλ(R,M) the groupoid of all
M -valued unimodular λ-forms over R, where λ is any of the adjectives we had before (symmetric,
quadratic, even, skew-symmetric,...). We get natural maps

Unimodq(R,M) → Unimode(R,M) → Unimods(R,M).

Remark 3.3 (Important). When 2 is invertible, these are equivalences of groupoids, and we will
drop the superscript and write Unimod(R,M) to mean any of them.

We now have some stuff we can try to group complete in an ∞-categorical way, and the resulting
objects will be different flavors of Hermitian K-theory. Before we do this, let’s give one other
classical perspective on this story.

4. Forms via categories with duality

The perspective we presented above is a specific case of a more general perspective, coming from the
nine-author work on Hermitian K-theory and Poincaré ∞-categories [Cal+23a; Cal+23b; Cal+21].
This is the most general perspective, and it’s what we should all probably learn. For our work we’ll
be content inverting two, so we can do away with a lot of these subtleties, and present the story
in a slightly different fashion, which was the historical way in which Karoubi, Balmer, and others
approached it.

Assumption: Let 2 always be invertible. Then quadratic form=symmetric bilinear form, alternat-
ing form=skew-symmetric form, etc.

Distilling the story for a minute, it seems that two things are particularly relevant to discuss forms
over rings in this manner — one is the category Vect(R) of finitely generated projective modules,
and the other is its duality. We recall that given an R-module P , a form P ⊗ P → R is adjunct to
a map P → HomR(P,R), which is an isomorphism if and only if the form is non-degenerate. This
module HomR(P,R) is the categorical dual of P if and only if P is finitely generated and projective.

To that end, we might try to extract the relevant data and generalize this to a more abstract
categorical setting. This leads to the idea of categories with duality.

Definition 4.1 (see [Hor05, p. 1.1], cf. [Kum, p. 2.4.3]). A category with (strict) duality is a triple
(C , D, η), where D : C → C op is a contravariant endofunctor, and η : idC ⇒ D◦2 is a natural
isomorphism with the property that

idDA = DηA ◦ ηDA.

Definition 4.2 (see [Hor05, p. 1.2], cf. [Kum, p. 2.4.4]). If C is a category with duality, we denote

by Ch its Hermitian category, whose objects are tuples of objects and isomorphisms (x, x
f−→ Dx) so

that f = f∗η.7 A morphism from (x, f) to (y, g) is a morphism h : x → y fitting into a commutative
diagram

x y

Dx Dy

h

f g

Dh

Definition 4.3. We define the Hermitian K-theory of a category with duality simply as

Kh(C ) := K(Ch).

7todo q: What does this translate to in the module sense?
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Why does this make sense? It turns out if C has some nice properties (it’s the type of category you
can apply K-theory to) then Ch does as well.

• If C is additive, then (C ,⊕) is symmetric monoidal under orthogonal sum [Hor05, p. 1.4]
• if C is exact then Ch is as well [Sch10].

Example 4.4. Let C = ModR let DM := HomR(−,M) for any R-module M , and let

ηM : id → HomR(HomR(−,M),M)

denote the double-dual for M . The sorts of modules for which we obtain a category with duality
are precisely those for which ηM is a natural isomorphism.

(1) The Hermitian category attached to the ordinary triple of data (Mod(R), DR, ηR) is exactly

(Mod(R), DR, ηR)h = Unimod(R).

(2) The Hermitian category attached to the triple with negative double dual (Mod(R), DR,−ηR)
is

(Mod(R), DR,−ηR)h = Alt(R)

(3) The Hermitian category attached to some modified duality, where M is an invertible rank
one R-module is

(Mod(R), DM , ηM )h = Unimod(R,M).

Remark 4.5. Where did rings with involutions go? We should think about the component of the
unit ηR : R → R on the base ring as encapsulating the data of the involution of our base ring, at
least in the case of alternating forms as above.

Definition 4.6. Given a ring R, we define its orthogonal K-theory and its symplectic K-theory to
be

KO(R) := Kh(Unimod(R))

KSp(R) := Kh(Alt(R)).

These deloop into spectra, letting us define negative Hermitian K-groups.

5. On plus constructions

Honest K-theory comes from looking at the groupoid Vect(R)≃ and seeing that it decomposes as
⨿P∈AutR(P )BAutR(P ), then group completing this via a plus construction.

We might ask whether an analogous thing is true for the Hermitian K-theories we’ve built above.
To do this we need to better understand what “automorphisms of a form” should mean, in both
the symmetric and alternating contexts.

Definition 5.1. (1) If q ∈ Unimod(R) is a unimodular form over some P ∈ Vect(R), then we
define its orthogonal group as

O(q) = {f ∈ AutR(P ) : f∗qf = q} .

This forms a group.8

(2) If q ∈ Alt(R) is an alternating/skew-symmetric form over some P ∈ Vect(R), we similarly
define its symplectic group as

Sp(q) := {f ∈ AutR(P ) : f∗qf = q} .
8It’s also a group scheme, but we don’t use that structure until we head into motivic land.
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Just as we have the “trivial” or “free” case of P = R⊕n where we recover the general linear group
as AutR(R

⊕n) in Mod(R), we have some free cases here as well:

Example 5.2. We use O(n) or On to refer to the trivial quadratic form on Rn. We denote by Sp2n
the symplectic group associated to the alternating form Ωn on R2n defined by the matrix

Ωn =

(
0 In

−In 0

)
.

Notation 5.3. We denote by

O := colimnOn

Sp := colimnSpn.

These colimits can be in discrete groups or group schemes.

We then get an analogous result to Quillen’s plus construction, due to Karoubi.

Theorem 5.4 ([Kar73]). Let R be a regular ring with 2 inverted. Then we have equivalences of
E∞-groups

KO(A) ∼= GW(A)× BO(A)+

KSp(A) ∼= KSp0(A)× BSp(A)+

Again there’s a more general notion when R has involution (see e.g. the discussion in the introduc-
tion of [HS04]).

Notation 5.5. Analogous to ordinary algebraicK-theory we denote by KOn := πnKO and similarly
for KSp.

Remark 5.6. The E∞-groups KO(A) and KSp(A) are infinite loop spaces as constructed above.
They can be delooped, and one can define negative KO and KSp-groups this way.

Remark 5.7. There are always forgetful functors

Unimod(R) → Vect(R),

Alt(R) → Vect(R)

which induce forgetful maps to algebraic K-theory. Similarly we can send any projective module
P to P ⊕ P equipped with the alternating form Ωn or the hyperbolic form. These give what are
called hyperbolic maps

K(R) → KO(R)

K(R) → KSp(R).

Asking what the composites of hyperbolic and forgetful are, in either order, is a really natural and
interesting question.

6. Promoting to motivic spectra

We now have an assignment (again working over Z[1/2]):
CRing = Affop → S

A 7→ KO(A)

A 7→ KSp(A).

We can ask whether these form motivic spectra – in other words,

• are they Nisnevich sheaves?
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• are they A1-invariant, i.e. are they sensitive to plugging in A[t] instead of A?
• are they P1-spectra, meaning do they have some kind of periodicity?

Proposition 6.1 ([Hor05, p. 1.14]). KO and KSp are Nisnevich excisive on regular affine schemes.

Proof sketch. If we have a square of rings (Nisnevich distinguished after Spec) of the form9

A B

Af Bϕ(f),

ϕ

then we obtain a cartesian square of stable ∞-categories

Perf(A) Perf(B)

Perf(Af ) Perf(Bϕ(f)).

⌟

SinceK is an additive invariant, the proof suffices to verifying that the above square is still Cartesian
on the associated Hermitian categories, with either symmetric or symplectic structures. □

Proposition 6.2 (Karoubi, Balmer, [Hor05, p. 1.12]). If R is a regular ring, we have homotopy
equivalences

KO(R)
∼−→ KO(R[t])

KSp(R)
∼−→ KSp(R[t].

Sketch. For KO, this follows from Quillen’s fundamental theorem of algebraic K-theory, together
with some analogue of Harder’s theorem, which says that quadratic forms are constant in a family,
at least over a field. The Harder-flavored result we’re referring to is [Bal01, p. 3.1]. For KSp, this
is somewhere in Karoubi, at least that’s the reference Matthias gives in MO197767. □

This still doesn’t tell us how to define Hermitian K-theory on arbitrary schemes, only affine ones.
We can use the Jouanalou device though!

Definition 6.3 ([Hor05, p. 2.2]). For X any regular scheme, we define KO(X) := Kh(W ) for
W → X any affine bundle torsor.

Hornbostel mentions this is well defined by the appendix and A.2 in Weibel’s KH paper.

Corollary 6.4. We obtain a motivic infinite loop space KO ∈ SH(R) for every regular base ring
R, (really every regular qcqs base scheme) in which 2 is invertible.

7. Periodicity and P1-spectra

We can think about KO(X) as KO(Perf(X)). To that end, we might consider bilinear or symplectic
forms valued in OX , concentrated in degree zero. However we might, alternatively, consider forms
valued in OX [k] for some k ∈ Z. We denote by KO[k](X) this Hermitian K-theory with shifted
duality.

9Here A → B is étale, f ∈ A and the induced map A/f
∼−→ B/ϕ(f) is a ring homomorphism

https://mathoverflow.net/a/197767
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There’s a notion of relative groups KO(X,U) for U ⊆ X open, which is due to Schlichting. We will
black box this, but note that by a dévissage argument, we can obtain weak equivalences

KO[k](X)
∼−→ KO[k+1](X × A1, X ×Gm),

which are adjoint to maps

KO[k](X)× P1 → KO[k+1](X).

Proposition 7.1. These form a P1-spectrum KO ∈ SH(S).

Additionally, any (V, ϕ) ∈ KO(X) gives rise to a nondegenerate symmetric bilinear form

V [n]⊗OX
V [n] → OX [4n],

inducing a map KO(X) → KO[4n](X) for any n.10 Similarly a symplectic form (E, ϕ) induces a
symmetric bilinear form

E[2n+ 1]⊗OX
E[2n+ 1] → OX [4n+ 2].

See for instance [PW18, p.6].

Theorem 7.2 (Schlichting). These induced maps

KO[n](X) → KO[4n](X)

KSp(X) → KO[4n+2](X)

are equivalences.

Corollary 7.3. Hermitian and symplectic K-theory are really periodic parts of one motivic spec-
trum, which is 4-fold periodic with respect to P1.

On complex points, the homotopy type of the fourfold smash product of P1 is S8, hence we should
think of this as analogous to ordinary Bott periodicity.

8. Accessing motivic homotopy groups of spheres

Let’s further simplify and work over a field k in which 2 is invertible. As a ring spectrum, KO ∈
SH(k) receives a unit map

S → KO.

This is an isomorphism on πA1

0 . Working with KO instead of the sphere spectrum has several
advantages, including that KO is SLc-oriented, so we can leverage this map to get GW(k)-valued
Euler classes. Another advantage is it helps us access the 1-stem.

Proposition 8.1. The unit map S → KO factors through its 1-effective cover f0KO.

Theorem 8.2 ([RSO19]). There is a short exact sequence

0 → KM
2−n/24 → πn+1,1S → πn+1,nf0KO.

The rightmost map is surjective for n ≥ −4.

10If we tried to do this for n instead of 2n, the resulting form wouldn’t be symmetric.
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This is the stable story, and there is also an unstable one. We have a filtration on Sp∞ by the even
Sp2n’s, giving rise to fiber sequences

Sp2n → Sp2n+2 → A2n ∖ 0

for each n, and these assemble into an exact couple spectral sequence

Es,t
1 = πA1

t (A2s ∖ 0) ⇒ πA1

t Sp = πA1

t+1BSp = KSp
t+1.

The edge maps here go from unstable homotopy groups of spheres to Hermitian K-theory, and
they are some unstable analogue of the unit map S → KSp. These allow us access to short exact
sequences of sheaves.

Theorem 8.3 ([AF14, Thm. 3, Cor. 4.9]). We have a short exact sequence of sheaves

0 → T′
4 → πA1

2 (A2 ∖ 0) → KSp
3 → 0,

where T′
4 is related to mod 12 Milnor KM

4 .11

References

[ABH23] Aravind Asok, Tom Bachmann, and Michael J. Hopkins. On Pˆ1-Stabilization in Un-
stable Motivic Homotopy Theory. June 2023. arXiv: 2306.04631 [math]. (Visited on
09/17/2023).

[AF14] Aravind Asok and Jean Fasel. “A Cohomological Classification of Vector Bundles on
Smooth Affine Threefolds”. In: Duke Mathematical Journal 163.14 (Nov. 2014). issn:
0012-7094. doi: 10.1215/00127094-2819299. (Visited on 07/19/2023).

[Bal01] Paul Balmer. “Witt Cohomology, Mayer–Vietoris, Homotopy Invariance and the Ger-
sten Conjecture”. In: K-Theory 23.1 (May 2001), pp. 15–30. issn: 15730514, 09203036.
doi: 10.1023/A:1017594924542. (Visited on 02/26/2025).

[Cal+21] Baptiste Calmès et al.Hermitian K-theory for Stable $\infty$-Categories III: Grothendieck-
Witt Groups of Rings. Dec. 2021. doi: 10.48550/arXiv.2009.07225. arXiv: 2009.
07225 [math]. (Visited on 02/26/2025).

[Cal+23a] Baptiste Calmès et al. “Hermitian K-theory for Stable $$\infty $$-Categories I: Foun-
dations”. In: Selecta Mathematica 29.1 (Feb. 2023), p. 10. issn: 1022-1824, 1420-9020.
doi: 10.1007/s00029-022-00758-2. (Visited on 02/25/2025).

[Cal+23b] Baptiste Calmès et al. Hermitian K-theory for Stable $\infty$-Categories II: Cobordism
Categories and Additivity. July 2023. doi: 10.48550/arXiv.2009.07224. arXiv: 2009.
07224 [math]. (Visited on 02/26/2025).

[Hor05] Jens Hornbostel. “A1-Representability of Hermitian K-theory and Witt Groups”. In:
(2005), p. 27.

[HS04] Jens Hornbostel and Marco Schlichting. “Localization in Hermitian $K$-Theory of
Rings”. In: Journal of the London Mathematical Society 70.01 (Aug. 2004), pp. 77–124.
issn: 0024-6107, 1469-7750. doi: 10.1112/S0024610704005393. (Visited on 02/26/2025).
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