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1. Sets

A set is a collection of things, and these things are called elements. We won’t give a formal definition
of a set, since this gets us too deep into mathematical logic, so we’ll kind of take a set as a given
and build mathematics on top of it.

We denote by {1, 2, 3} the set whose elements are the numbers 1, 2, and 3. These curly braces are
used to list the elements of a set.

Example 1.1. The set

S = {a, b, c, d}
is a set consisting of four elements, which are letters a, b, c, and d.

Note 1.2. Elements are not allowed to be repeated! For instance, {a, b, a, c, d} is not a valid set.1

Notation 1.3. We use the symbol ∈ to denote if an element is in a set. So if T = {0, 4, 1, 6}, we
might write

1 ∈ T

to mean that 1 is an element of T . We will write /∈ to say something is not an element of a set. So
for instance

2 /∈ T.

Example 1.4. We denote by N the set of all natural numbers, meaning counting numbers including
zero:

N = {0, 1, 2, 3, 4, . . .}.
We denote by Z the set of all integers2 meaning all positive and negative counting numbers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
We denote by Q the set of all rational numbers, meaning numbers of the form p

q where p and q are

integers, and q ̸= 0.

Example 1.5. We don’t just need to have numbers and letters be elements of sets. We can really
let anything be an element in a set. For instance

S = {⃝,△,□}.

1This is a convention that we’re not allowing for repeated elements. We can build a different type of set theory where
you can have repeated elements in sets, these are called multisets. The math that you build with these becomes a lot
more complicated though.
2This letter comes from the German Zahlen, meaning “numbers.”
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We can also have sets being elements of sets. For instance we can take

B = {N,Z, 3, {4}}.
This is a set with four elements – the set of natural numbers, the set of integers, the number 3, and
the set with one element which is the number 4. This might feel weird but we’ll get used to it soon
enough.

In the above examples, we didn’t list out every element of a set when we wrote it, instead we did a
. . . when the pattern became clear. For instance what is the following set:

A = {0, 3, 6, 9, 12, 15, . . .} .
It is the set of all multiples of three! Instead of listing it out, we might build it, meaning give a rule
for elements to be a part of it. This is done using set builder notation:

A = {3n : n ∈ N}.
This means A is the set of all numbers of the form 3n where n is an element of N.3

A special set is the empty set, which has no elements. We could write it as {} if we wanted, but we
use special notation for it, namely ∅.

1.1. Cardinality. If A is a set, we denote by |A| the cardinality of the set, roughly meaning its
size. It is the number of elements in the set, possibly infinite.

Example 1.6. The cardinality of some sets we’ve discussed are:

|{a, b, c, d}| = 4

|N| = ∞
|Z| = ∞

|{⃝,△,□}| = 3

|{N,Z, 3, {4}}| = 4

|∅| = 0.

1.2. Subsets. Note that every element in N is an element of Z. When this happens, we write ⊆,
and we say one set is a subset of the other.

Definition 1.7. Given two sets A and B, we write A ⊆ B if x ∈ A implies that x ∈ B. In words,
every element in A is also an element in B. We write A ⊊ B if A is not a subset of B.

Example 1.8. We have that N ⊆ Z.
Question 1.9. Given two sets A and B, how would you argue that A is not a subset of B?

You just have to find some element in A that is not in B.

Example 1.10. To argue that A = {3, 6, 8, 1} is not a subset of B = {2, 6, 8, 1, 5}, we see that
3 ∈ A but 3 /∈ B. Therefore A ⊊ B.

Example 1.11. Let A = {1, 2, 3}. Is it true that ∅ ⊆ A?

Yes! The condition that ∅ ⊆ A means that for every x ∈ ∅ we have that x ∈ A. Since ∅ has no
elements, this is true.4 In fact ∅ ⊆ S for any set S.

3People who know a little CS, we might think about this as an infinite for loop (for all n ∈ N, add 3 · n to the set
we’re building, and let A be the resulting output). Obviously this wouldn’t terminate on a computer, but we’re
mathematicians so we can let things happen infinitely many times and keep moving!
4We refer to statements like this as vacuously true – they’re true because no elements exist to check the conditions on.
For example I might say “every number which is both even and odd is equal to 7.” This is a true statement, not
because 7 is both even and odd, but because no numbers are both even and odd.
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1.3. Set equality.

Question 1.12. What does it mean for two sets to be equal?

Example 1.13. We claim that {4, 1, 0} = {0, 1, 4}.

Answer 1.14. Two sets A and B are equal if they have the same elements. Phrased differently,
x ∈ A implies x ∈ B and x ∈ B implies x ∈ A. That is, A ⊆ B and B ⊆ A.

1.4. Operations with sets. Given two sets A and B we denote by A ∪B their union, meaning
the set of all elements in A or in B.

A ∪B = {x : x ∈ A or x ∈ B}.

Example 1.15. We have that

{1, 2, 3} ∪ {4, 5, 6} = {1, 2, 3, 4, 5, 6}.
Note we don’t allow repeats, so

{1, 2, 3} ∪ {3, 4} = {1, 2, 3, 4}.

Given two sets A and B, we denote by A ∩B their intersection, meaning the set of all elements in
both A and B:

A ∩B = {x : x ∈ A and x ∈ B}.

Example 1.16. We have

{1, 2, 3, 4} ∩ {3, 4, 5, 6} = {3, 4}.

Question 1.17. What is

{1, 2, 3} ∩ {4, 5, 6}?
It is the empty set! There are no elements in both sets.

Finally we denote by A−B their difference, meaning

A−B = {x : x ∈ A and x /∈ B}.
For instance

{1, 2, 3} − {3, 4, 5} = {1, 2}.
Note that difference depends on the order of sets! We always have that A ∪ B = B ∪ A and
A ∩B = B ∩A, but A−B and B −A might be different sets.

Venn diagrams are a great way to visualize sets and their overlaps:

A B

C
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1.5. Power sets. Given a set A, we denote by

P(A) := {X : X ⊆ A}
the power set of A, meaning the set of all subsets of A.

Question 1.18. What is the power set of {1, 2}?

It is the set

P({1, 2}) = {∅, {1}, {2}, {1, 2}}.
Don’t forget that ∅ ⊆ S and S ⊆ S for every set S.

Question 1.19. If S has cardinality n, what do you think the cardinality of the power set P(S) is?
Think about this.

1.6. The real numbers. We denote by R the set of real numbers. These are numbers we think
about as lying on the number line, but need not be rational. For instance π ∈ R but π /∈ Q.5 It’s
not super easy to define R formally, so we’ll come back to this later in the class.

We define intervals to be subsets of R. You may have seen the notation [0, 1] before. This refers
to the closed interval between zero and one. Explicitly in terms of set builder notation, we would
write:

[0, 1] = {x ∈ R : 0 ≤ x and x ≤ 1}.
We also have open intervals, denoted by (a, b). For instance

(2, 3) := {x ∈ R : 2 < x and x < 3}.

1.7. Cartesian products.

Definition 1.20. An ordered pair is a tuple of two things (x, y).

Definition 1.21. Given two sets A and B, we define their (Cartesian) product denoted A×B by

A×B = {(a, b) : a ∈ A and b ∈ B}.

Example 1.22. If A = {x, y, z} and B = {1, 2} then

A×B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)} .

Example 1.23. When we graph things on the xy-plane, we are thinking about a subset of R2

R2 = {(x, y) : x ∈ R and y ∈ R} .
In particular if y = f(x) is a function, we could graph the subset{

(x, y) ∈ R2 : y = f(x)
}
.

This is most of what we do in high school algebra - studying subsets of R2 of this form.

Observe: For any two finite sets A and B, we have that

|A×B| = |A| · |B|.

We can iterate multiplying sets, for instance if A1, A2, . . . , An are all sets, then we denote by

A1 × · · · ×An = {(x1, . . . , xn) : xi ∈ Ai for each i = 1, . . . , n} .
We might use shorthand notation for this:

n∏
i=1

Ai = A1 × · · · ×An.

5This is not super easy to prove, but we’ll see examples later of irrational numbers.
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This type of notation is common also for unions and intersections of more than two sets:
n⋃

i=1

Ai = A1 ∪ · · · ∪An

n⋂
i=1

Ai = A1 ∩ · · · ∩An.

1.8. Index sets. If we have sets A1, A2, . . . , An, another way to phrase this is that we have sets
indexed over the set I = {1, 2, . . . , n}. In other words for each i ∈ I we have a set Ai. In that way
we can rewrite the operations above as∏

i∈I
Ai,

⋃
i∈I

Ai,
⋂
i∈I

Ai.

From this perspective it’s not really important that I was a set of natural numbers. We can have
sets Ai indexed over any index set I.

1.9. Complements. If B ⊆ A is a subset, we denote by Bc the complement of B in A, meaning
everything that is in A and not in B:

Bc = {x ∈ A : x /∈ B} .
Note that Hammack writes this as B̄.

2. Axiomatic rules for sets

We’ve mentioned that it’s hard to define sets, but that they satisfy certain rules. We’ll lay these
out now. These rules were developed by Zermelo and Fraenkel in the first few decades of the 20th
century, building on work in formal logic and set theory in the 19th century. We call these axioms
ZF after Zermelo and Fraenkel, and there are 8 axioms in total.

Definition 2.1. A set X is a pure set or a hereditary set if all of its elements are themselves sets,
and all of the elements of those sets are sets, and so on.

Example 2.2. The empty set ∅ is vacuously a pure set. The set {∅} or {∅, {∅}}, are also pure,
for instance.

Pure set theory: Let’s treat this like a game, and temporarily forget everything we’re allowed to
do with sets. Our pieces are pure sets, and here are the rules.

(1) given any two sets A and B, you are allowed to ask if they are equal, and the answer is either
true or false.6

(2) given any two sets A and B you’re allowed to ask if A ∈ B, and the answer is either true or
false.

(3) you’re allowed to use as many variables as you want to represent sets
(4) you’re allowed to negate any statement and ask if it is true or false (i.e. is it true that A ̸= B)
(5) you can make “for all” and “implies”statements, like “for all X ∈ A” this “implies” that

X ∈ B (meaning A ⊆ B)
(6) you can make “there exists” statements like “there exists x ∈ A so that X /∈ B” (meaning

A ̸⊆ B).

6Just like anything in math, we could ask what happens if we remove some of the basic building blocks. What happens
if we let statements like A ∈ B admit another truth value - not true or false but something else? What if, for instance,
the truth of a statement is a number in the interval [0, 1] where 0 is absolutely false and 1 is absolutely true, but we
can have intermediate stages? These kinds of questions lead us to something called fuzzy logic, a fascinating detour we
sadly won’t explore in this class.
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On top of these ground rules we’re going to have some axioms. An axiom is like a mathematical
rule. They are some base facts that you take for granted, and build mathematics off of. By no
means are the axioms we’re laying out here the only axioms you could build mathematics off of,
and we’re not even necessarily saying they’re “true.” They just end up leading to a convenient
formulation of a lot of things we want to do in math.

Note 2.3. The numbering here is not a standard thing, I’m just using it to keep track of stuff
easier.

ZF1: (Axiom of extensionality) Two sets are equal if they have the same elements.

ZF2: (Axiom of union) Unions of sets exist.7

ZF3: (Axiom of power set) Power sets exist – if A is a set then P(A) is a valid set.

ZF4: (Axiom of pairing) If A and B are sets, then the set {A,B} exists.

Corollary 2.4. If A is a set then {A} is a set.

Proof. Since A is a set, we can apply the axiom of pairing to A and itself to form the set {A,A}.
Since sets can’t have repeated elements, this set {A,A} guaranteed by the axiom of pairing only
has one element, so we abbreviate it {A}. □

ZF5: (Axiom of regularity) If S is a nonempty set, then it contains an element T ∈ S so that T
and S are disjoint sets (have no elements in common).

This is maybe nonintuitive but it has some important applications.

Corollary 2.5. No set can contain itself as an element.

Proof. Let A be any set, and consider the set S = {A}. By ZF5, S contains an element that is
disjoint from itself, and since S only has one element, this implies that S is disjoint from A. In
other words A and {A} have no elements in common, so in particular A /∈ A. □

ZF6: (Axiom schema of specification) You can build sets with set builder notation.8

Explicitly, ZF6 says that the following type of set building is allowed:9

{x ∈ A : something about x is true} .
But this type of set building is not allowed:

{x : something about x is true} .
Why can’t we let the latter exist?

Russell’s paradox: Suppose we’re allowed to build sets of that form, and we take

S = {x : x /∈ x} .
We’ve already seen that no set can contain itself, so x /∈ x for every set x. In particular S contains
every set. But S itself is a set, which means S ∈ S. But also S /∈ S. These can’t both be true, so
we’ve broken math!

7The precise statement is if A is a pure set, there exists a set ∪B∈AB which is a union of all the elements of A (the
most precise statements says there is a set containing ∪B∈AB, and we can shorten this to ∪B∈AB using the axiom of
pairing). For CS people, this is an axiomatization of the process of flattening a set or a list.
8We’re being vague here – ZF6 tells you more concretely what kinds of formulas you’re allowed to use in set builder
notation, but let’s treat this as a black box for the time being.
9We’re being intentionally vague with this “something about x.” The precise things that are allowed to be here are
what are called first order formulas. We’ll get into these more next week.
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It’s generally advisable not to break math, so we exclude sets built like this. The point is not
whether S ∈ S or whether S /∈ S, the point is such a set S cannot be allowed to exist if we want a
logically consistent framework of math.

Barber’s paradox (a common application of Russell’s paradox): A barber cuts everyone’s hair
who doesn’t cut their own hair. Does the barber cut their own hair?

ZF7: (Axiom schema of replacement) The domains of functions are sets (roughly speaking).

ZF8: (Axiom of infinity) There exists a set with infinitely many elements.

There is a 9th mysterious axiom, called the axiom of choice. This isn’t one of the ZF axioms, so
when we use it we often refer to ZFC which is ZF + Choice. We won’t go into this as much in this
class, but it will become super important later in proof-based mathematics.

3. Logic

A statement is any mathematical sentence that can definitively evaluated as true or false.

Here are some examples of statements:

(1) It is Monday today
(2) The number 2 is even
(3) The number 2 is not even
(4) There exists a finite subset of X.
(5) Every natural number is divisible by a prime number
(6) Every subset of an infinite set is infinite.

We can evaluate each of these as true or false.

Let P be a mathematical statement. Then we can assign it a truth value meaning an element of the
set {T, F} where T stands for true and F stands for false.

We can negate mathematical statements, which swaps the truth value of the statement. We denote
this new statement by ¬P (Hammack writes ∼ P )

P ¬P
It is Monday today It is not Monday today
The number 2 is even The number 2 is not even
The number 2 is not even The number 2 is even

Pause – what happened here? Let P be “the number 2 is even.” Then we just said

¬¬P is the same statement as P.

This is called double negation elimination.10 It’s an admissible rule in our logical framework that we
can cancel two negation symbols when they appear right next to each other.

Let’s keep negating:

P ¬P
There exists a finite subset of X There does not exist a finite subset of X
or For every subset of X, it is not finite.

Interesting – when we negate a “there exists” statement, we get a “for every” statement.

Let’s keep negating:

10There exist frameworks of logic that explicitly reject this, but classical logic accepts it and so will we in this class.
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P ¬P
Every natural number is divisible by a prime number Not every natural number is divisible by a prime number
or There exists a natural number which is not divisible by a prime number
or even clearer: There exists a natural number which is not divisible by any prime number

Same deal – negating an “every” statement gets us a “there exists” statement. Finally:

P ¬P
Every subset of an infinite set is infinite Not every subset of an infinite set is infinite.
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