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0. About

These notes are from a MATH213BR, a second-semester graduate algebraic topology class with
a free-floating curriculum taught at Harvard in spring of 2026. This particular course is modeled
off of Hirzebruch’s amazing 1962 text Neue topologische Methoden in der algebraischen Geometrie.
Theorem counters and page references refer to the 1995 reprinting in English [Hir78].

0.1. Overview. Part 1: We begin with the theory of sheaves of sets and discrete groups on
topological spaces, developing their cohomology and comparing it with singular and de Rham
cohomology. We continue with fiber bundles and develop their basic theory. We then discuss vector
bundle theory and Chern and Pontryagin classes.

Part 2: We discuss oriented and complex cobordism, genera, the L-genus and Todd genus, and
the index of a 4n-manifold. We prove Hirzebruch’s signature theorem as well as Riemann-Roch for
algebraic manifolds.

0.2. References. Aside from the main text, which we deviate from at various points, some other
references which have informed the presentation here include:

▷ sheaf theory : Godement’s original work [God58], and of course Serre’s [Ser55]
▷ fiber bundles: Steenrod’s 1951 printing [Ste51]
▷ Kähler manifolds: Michael Wong’s 2013 course notes
▷ cobordism: Dan Freed’s notes [Fre12] and Haynes Miller’s notes [Mil]
▷ genera: Hirzebruch’s book [HBJ94]
▷ complex manifolds: Griffiths and Harris [GH78]

0.3. Acknowledgements. Thank you to Zoë Batterman, Vincent Costa, and Gabe Ong for offering
suggestions and changes to the notes. Thanks to Sidhanth Raman for helpful correspondence in
preparing this class.

1. Sheaves

The definition of a sheaf in Hirzebruch is perhaps a bit different from what we’re used to. He
wants to think of sheaves as living over a space X, whereas we might be comfortable thinking about
sheaves as local data across a space. We’ll see how these perspectives are equivalent.

Definition 1.1. A sheaf of abelian groups over a topological space X is a topological space S with
the data of a surjective continuous map π : S → X, for which
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▷ π is a local homeomorphism, meaning for every point s ∈ S there is an open neighborhood
U ∋ s for which

π|U : U → π(U)

is a homeomorphism
▷ for every x ∈ X, the stalk Sx := π−1(x) has the structure of an abelian group
▷ the abelian group structure on Sx is continuous in x. Precisely, forming inverses in each
fiber defines a continuous function:

S → S

s 7→ −s,

and if we denote by S ×X S the subspace

S ×X S := {(s1, s2) ∈ S × S : π(s1) = π(s2)} ⊆ S × S,

then the operation of addition is a continuous function:

S ×X S → S

((α, x), (β, x)) 7→ (α+ β, x).

We should think about a sheaf of abelian groups as being a space where we can do abelian group
operations (addition, subtraction), but where the abelian group in which we’re working is changing
according to the topology of X.

Example 1.2 (Zero sheaf). The identity map X → X can be considered a sheaf, where the abelian
group structure on each stalk is just the trivial group with one element.

Example 1.3 (Constant sheaves). For any abelian group A and any space X, we get a constant
sheaf

X ×A → X,

where π is the projection onto X. When A = {0}, this recovers the zero sheaf above.

Example 1.4 (Skyscraper sheaves). If we want build a sheaf with some prescribed fiber A over a
point x ∈ X (we want a name for the map of the inclusion of a point, so let’s call it i : {x} → X),
we have an nice way to do this – namely, we can take the discrete set underlying the abelian group
A, and build the space which we call i∗A, defined as

i∗A =
X ×A

(y, a1) ∼ (y, a2) for y ̸= x
.

That is, we identify all the points of A together over every point in X except our specified point x.
We call it a skyscraper sheaf because it has this big tall stalk at x and is flat everywhere else. This
space comes equipped with a projection back to X which is a continuous local homeomorphism,
and the abelian group structure on the stalks over points other than x are just the structure on the
one-element group. Note that this resulting space i∗A is very much not Hausdorff.

Example 1.5 (c.f. [Bre97, 1.3]). The line with doubled origin is the skyscraper sheaf over R defined
by i∗(Z/2), where i : {0} ↪−→ R is the inclusion of the origin.

Notation 1.6. For any sheaf of abelian groups π : S → X, we have the so-called zero section
z : X → S, sending each element x ∈ X to the zero element in Sx. This map is continuous and has
the property that

π ◦ z = idX .

Exercise 1.7. Let π : X → S be any sheaf and z : X → S the zero section. Then im(z) ⊆ S is
open.
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Example 1.8. The projection R → S1 cannot be given the structure of a sheaf of abelian groups.

Proof. We’re tempted to say it looks like a sheaf, since each fiber looks like Z, however it turns out
there is no way to endow these fibers simultaneously with the additive structure of the integers.
Suppose towards a contradiction there was. Then composing with the zero section, we get a
composite which is the identity:

S1 z−→ R π−→ S1.

Applying π1 or H1 for instance, we have that the identity on Z factors through zero, which is a
contradiction. □

Remark 1.9. Just as we have a sheaf of abelian groups, we can have a sheaf with other structures
as well — we could have a sheaf of R-modules for instance. All that’s important is that:

(1) our structure is a set with extra data
(2) we have that data in every stalk
(3) the data varies continuously in the stalks

Definition 1.10. A morphism of sheaves between π : S → X and π̃ : S̃ → X is a continuous map

f : S → S̃ satisfying the following properties:

▷ π̃ ◦ f = π, that is, we have a commutative diagram

S S̃

X

π

f

π̃

Note this implies that f restricts to a map on each stalk, that is, we get maps fx : Sx → S̃x

for each x ∈ X
▷ for each x ∈ X, the induced map on stalks

fx : Sx → S̃x

is an abelian group homomorphism.

Exercise 1.11. Show that every morphism between sheaves of abelian groups is a local homeomor-
phism.

Definition 1.12. We say a morphism of sheaves f : S → S̃ is:

(1) injective if each fx is injective
(2) surjective if each fx is surjective.

We say a sequence of maps of sheaves

S
f−→ T

g−→ U

is short exact if Sx
fx−→ Tx

gx−→ Ux is a short exact sequence of abelian groups for every x ∈ X.

1.1. Sheaves and presheaves. Given any sheaf S → X, we can ask when we have sections, which
are maps X → S that are right inverses to the projection map π.

Definition 1.13. We define the set of sections by

Γ(X,S) := {s : X → S continuous | π ◦ s = idX} .

Note that Γ(X,S) is an abelian group by adding sections pointwise. The zero element of Γ(X,S) is
the zero section.
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Note that we don’t need sections to be defined on all of X — we could look at sections defined
on subspaces. For instance if U ⊆ X is an open subspace, we can define

Γ(U, S) := {s : U → S | π ◦ s = idU} .

If V ⊆ U is an open subspace, there is a natural restriction map

resUV : Γ(U, S) → Γ(V, S)

s 7→ s|V .

Notation 1.14. For X a topological space, we denote by Open(X) the category whose objects are
open subspaces of X and whose morphisms are inclusions. Then the constructions above tell us
that Γ(−, S) defines a functor

Γ(−, S) : Open(X)op → Ab.

This is called the presheaf associated to S.

Terminology 1.15. If S → X is a sheaf, an element of Γ(X,S) will be called a global section. This
is to indicate it is defined globally, i.e. everywhere on X, in contrast with sections only defined
locally on some open subspace U .

Let’s think about what structures of S we can recover from its presheaf.

Question 1.16. Can we recover the stalk Sx from the presheaf Γ(−, S)?

We can’t just take Γ and evaluate it on the one-point set {x} since this won’t be open in most
reasonable topological spaces. Instead, we can take elements in Γ(U, S) for any U ∋ x, and glue
sections together along restriction of open sets containing x. This is called a colimit (in classical
terminology, a direct limit):

colimU∋sΓ(U, S).

Proposition 1.17. For every sheaf of abelian groups S → X and every x ∈ X, the canonical
“evaluation at x” map

evx : colimU∋sΓ(U, S) → Sx

is an isomorphism of abelian groups.

Proof. If s1(x) = s2(x) = a, then since π is a local homeomorphism, there is some small neighborhood
V ∋ a on which π|V : V → π(V ) is a local homeomorphism. In particular since s1|π(V ) and s2|π(V )

are both sections (right inverses) of π|V they must agree. Since they agree on a sufficiently small
open neighborhood around x, they agree in the colimit. This establishes injectivity.

To see surjectivity, if a ∈ Sx, we want to create a section s defined in a neighborhood U of x
for which s(x) = a. We again leverage the fact that π is a local homeomorphism to find some

neighborhood V ∋ a for which π : V
∼−→ π(V ) is a homeomorphism. Then the inverse to this map

satisfies π−1(x) = a. □

This gives us an alternative way to look at stalks. Now we know we can recover stalks from the
underlying presheaf.

Question 1.18. Can we recover the sheaf S from the presheaf Γ(−, S)?
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That is, suppose someone hands you a functor

F : Open(X)op → Ab,

and tells you it is of the form Γ(−, S) for some sheaf S, but they don’t tell you what S is. Can you
rebuild S? Let’s denote by

Fx := colimU∋xF (U)

the stalk at a point x ∈ X. Then we know how to construct the sheaf as a set, namely it is

⨿x∈XFx → X.

The question then becomes how to topologize the thing on the left. Each Fx has the discrete
topology as an abelian group, and the disjoint union has the discrete topology a priori – but if we
accept this topology, then in general we won’t have the property that the projection map is a local
homeomorphism. So we need to hunt for a different topological structure. The trick to finding it is
that we know how to write down sections, and we want to force sections to be continuous.

We denote by

germx : F (U) → Fx

the structure map (part of the data of the colimit) to the stalk (c.f. Proposition 1.17; we called this
an evaluation map earlier when we knew F (U) was comprised of actual sections. We don’t know
that a priori now). For any s ∈ F (U), we then get a composite

U → ⨿xFx

x 7→ germx(s).

This should be like a section of the sheaf, so we want it to be continuous. We want the preimage of
opens to be open, and since U is indeed open, an easy way to try to force continuity is to ask for
the image of this map above to be open.

Definition 1.19. We define a basis1 for a topology on ⨿xFx by

[(s, U)] := {germx(s) | x ∈ U}

for any s ∈ F (U).

It now suffices to verify that this satisfies the axioms for a basis:

B1 The basis elements cover our space: Take some x ∈ X and a ∈ Fx. We want to argue there is
a basis element containing it. By the construction of Fx as a colimit of abelian groups, there
is some V ∈ Open(X) and some s ∈ F (V ) for which germx(s) = a. That is, by definition,
a ∈ [(s, V )].

B2 Common refinement : Suppose we have [(s1, U1)] and [(s2, U2)] and a ∈ [(s1, U1)] ∩ [(s2, U2)].
Then we want to find another basis element contained in the intersection of these two and
containing a. Let x = π(a), then x ∈ U1 ∩ U2 by definition. So we can look in F (U1 ∩ U2).
By the construction of the colimit, since we have a commutative diagram

F (U1)

F (U1 ∩ U2) Fx

F (U2)

1See [Mun00, II§13] if this is an unfamiliar term.
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since germx(s1) = germx(s2), their images in F (U1 ∩U2) agree. Call that image s. Then we
have that

a ∈ [(s, U1 ∩ U2)] ⊆ [(s1, U1)] ∩ [(s2, U2)] ⊆ ⨿x∈XFx.

So we’ve checked that we get a basis for a topology.

Remark 1.20. In general, the sheaf ⨿x∈XFx constructed in this way will be very far from being
Hausdorff ([Bre97, p. 3], [Ser55]).

It turns out we have in fact built a sheaf! That is, the projection map will be a local homeomor-
phism.

Lemma 1.21. Let F : Open(X)op → Ab be a presheaf, and topologize ⨿x∈XFx by giving it the
basis of Definition 1.19. Then the natural projection

π : ⨿x∈X Fx → X

is a local homeomorphism.

Proof. Pick any a ∈ Fx. Then by construction, there exists some open set U and some s ∈ F (U) so
that germx(s) = a. In particular, we claim the map

π|[(s,U)] : [(s, U)] → U

is a local homeomorphism. It is clearly continuous, and it admits a continuous inverse given by
s : U → F (U) → [(s, U)] by construction. □

We now have a way to build a sheaf out of a presheaf! So we have a way to go from presheaves
to sheaves. I think we’ve answered Question 1.18, which was if someone hands you a presheaf
F : Open(X)op → Ab, and tells you it is of the form Γ(−, S) for some sheaf S, then we can
reconstruct S.

Let’s now give a slightly different question pandering to a more cynical worldview. Suppose
someone hands you a presheaf F : Open(X)op → Ab and tells you it is the presheaf of sections
attached to some sheaf, but we don’t believe them. How might we argue that this cannot come
from any sheaf?

Here’s an idea of how we might find a way to disagree:

▷ if F was of the form Γ(−, S) for some S, then F (U) would be equal to Γ(U, S)
▷ we now know how we would reconstruct S: it is ⨿x∈XFx equipped with the topology defined
in Definition 1.19

▷ so we can check: is the canonical map F (U)
θU−→ Γ(U,⨿xFx) a bijection?

Let’s recall how this map θU worked — each s ∈ F (U) determines a function U → ⨿x∈UFx given by

(1.22)
θU : F (U) → Γ(U,⨿xFx)

s 7→ [x 7→ germx(s)] .

If θU is not a bijection for some open U , then F cannot have come from a sheaf. So let’s see when
θU could fail to be a bijection - that is, when is it injective and when is it surjective? We phrase the
following as lemmas, although there’s no mathematical content, it’s just unwinding definitions.

Lemma 1.23 (When is θU a monomorphism?). Let U, θU as above. Let’s first see what it means
for θU to send two elements in F (U) to the same thing in Γ(U,⨿x∈XFx).

(1) We have that θU (s) = θU (t) if and only if s and t agree locally – that is, for every x ∈ U
there is some open V ∋ x for which s|V = t|V .

This tells us the content of being a monomorphism is that “being equal locally implies you are
equal.” In other words:
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(2) θU is a monomorphism if and only if, for every x ∈ X, if there is a neighborhood V ∋ x with
s|V = t|V ∈ F (V ), then s = t in F (U).

As the V ’s chosen this way form an open cover of U , we can reword this as:

(3) θU is a monomorphism if and only if, for every open cover {Ui} of U , if s, t ∈ F (U) satisfies
s|Ui

= t|Ui
for all i, then s = t.

Proof. For the first point, we have that θU (s) = θU (t) if and only if the functions u 7→ germu(s) and
u 7→ germu(t) agree, that is, only if germu(s) = germu(t) in Fu for all u ∈ U . By construction of Fu

as a colimit, we have that there must exist some neighborhood V ∋ u for which s|V = t|V in F (V ).
The second point is a rephrasing of the first, and (3) is a rephrasing of the second point. □

Lemma 1.24 (When is θU an epimorphism?). Let U, θU be as above, and suppose Lemma 1.23(3)
holds. We want to know when θU hits some element a ∈ Γ(U,⨿x∈XFx)

(1) Let a ∈ Γ(U,⨿x∈XFx). Then for each x ∈ U , we have that a(x) ∈ Fx. By the construction
of Fx as a colimit, this means there is some open neighborhood Ux ∋ x, and some element
sx ∈ F (Ux) so that, under the structure map F (Ux) → Fx, we have that sx 7→ a(x). Another
way to say that is that the section θUx(sx) agrees with a at the point x. Since π is a local
homeomorphism, we have that a and θUx(sx) must agree on some open neighborhood Vx ∋ x
which, without loss of generality, we may assume to be a subspace of Ux. So we have that
θVx(sx) = a|Vx

and θVy(sy) = a|Vy
, so under restriction we ge

θVx∩Vy(sx) = aVx∩Vy = θVx∩Vy(sy).

If we assumed that the θ’s were injective, Lemma 1.23(3), this says that

sx|Vx∩Vy
= sy|Vx∩Vy

.

And we have that a is in the image of θU if and only if there is some s ∈ F (U) so that
s|Vx

= sx for each x ∈ U . In other words, θU is surjective if, any time locally defined sections
agree on overlaps, there is a section defined on all of U restricting to them.

(2) With the hypotheses above, we have that θU is surjective if and only if, for every cover
{Ui}i∈I of U , and elements si ∈ F (Ui) satisfying si|Ui∩Uj

= sj|Ui∩Uj
, there exists an element

s ∈ F (U) so that s|Ui
= si for each i.

So what conditions were essential to showing that θU was a bijection for every U? It was
Lemma 1.23(3), which tells us if sections agree locally then they agree globally, and Lemma 1.24(2),
which told us that sections defined locally and agreeing on overlaps can be glued together to get a
global section. These two conditions are called locality and gluing. Let’s summarize our observations:

Theorem 1.25. A presheaf F : Open(X)op → Ab is the presheaf of sections attached to a sheaf if
and only if the two conditions hold:

Sh1 (Locality) For any open set U ⊆ X and any open cover {Ui}i∈I of U , if s, t ∈ F (U) satisfy
sUi = tUi for each i ∈ I, then s = t. Phrased differently, the map

F (U) →
∏

F (Ui)

is injective.
Sh2 (Gluing) If {Ui}i∈I is an open cover of U , and we have elements si ∈ F (Ui) for each i so that

si|Ui∩Uj
= sj|Ui∩Uj

for all i, j, then there exists some s ∈ F (U) so that s|Ui
= si for each i.

Phrased differently, F (U) surjects onto the equalizer of the parallel restriction maps∏
F (Ui) ⇒

∏
F (Ui ∩ Uj).

Remark 1.26. Let E denote the equalizer E = eq (
∏

F (Ui) ⇒
∏

F (Ui ∩ Uj)). By functoriality,
the map F (U) →

∏
F (Ui) factors through E, and E →

∏
F (Ui) is always a monomorphism. So for
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presheaves of abelian groups, locality reduces to the statement that F (U) → E is injective, while
gluing restricts to the statement that F (U) → E is surjective. Hence altogether the sheaf condition
can be compressed to the assertion that, for any U ⊆ X and any open set {Ui} of U , the sequence
is an equalizer:

F (U) →
∏

F (Ui) ⇒
∏

F (Ui ∩ Uj).

Remark 1.27. In an abelian category, an equalizer of two maps f, g : A ⇒ B is the same as the

kernel of their difference A
f−g−−→ B. So the locality and gluing conditions can be condensed into the

statement that, for every open subspace U ⊆ X and every open cover {Ui} of U , the sequence

0 → F (U) →
∏

F (Ui) →
∏

F (Uij)

is exact, where that rightmost map is the difference of the two restrictions. If we ever want to talk
about sheaves of sets we can’t do this, because subtracting two functions doesn’t make sense unless
they are group homomorphisms.

Corollary 1.28. There is an isomorphism of categories between

{sheaves on X} ≃
{
the full subcategory of presheaves on X

satisfying locality and gluing

}
.

Proof. We have shown a bijection on objects, so it suffices to verify that there is also a bijection on
morphisms of each type.

Let S and S′ be sheaves. Then a map of sheaves f : S → S′ clearly induces a map of presheaves,
since any section U → S can be postcomposed with f to get a section U → S′, hence we get an
induced map Γ(U, S) → Γ(U, S′) which is easily seen to be compatible with restriction.

Conversely, suppose we have two presheaves F,G ∈ Fun(Open(X)op,Ab) which satisfy locality
and gluing, and a morphism of presheaves F → G. We want to see how this induces a morphism of
sheaves ⨿xFx → ⨿xGx. We first observe that, by taking colimits, there is a natural induced map
on stalks Fx → Gx for every X, so we get a commutative diagram of sets

⨿x∈XFx ⨿x∈XGx

X.

f

We now want to check that this induced map f is actually continuous. Since we can check continuity
on a basis of the target space (reference needed), we can take some [(t, U)] ⊆ ⨿x∈XGx and try to
see its preimage is open in ⨿x∈XFx. We can check that

f−1([(t, U)]) = {germx(s) | x ∈ U and germx(f ◦ s) = germx(t)} .

Pick one such point germx(s) ∈ f−1([(t, U)]). Since germx(f ◦ s) = germx(t), there is some open
neighborhood V ∋ x for which (f ◦ s)|V = t|V . This means every germ of s over V lies in the
preimage of f , that is,

germx(s) ∈ [(s, V )] ⊆ f−1([(t, U)]).

In particular this implies that f−1([(t, U)]) is open and therefore that f is continuous.
Verifying these two assignments are inverse is immediate by construction in one direction, and is

the content of θU being bijective in the other direction direction. □

Remark 1.29 (Important). What we have been calling sheaves (following Hirzebruch, Bredon,
Serre) are now more commonly called the éspace étalé of a sheaf, while the associated presheaf,
satisfying locality and gluing, is what is known contemporarily as a sheaf. The equivalence of
categories above tells us it doesn’t quite matter which one we talk about, but it’s important to keep
in mind our definition is technically different than the modern one.
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Remark 1.30. The big advantage now is that we can describe a sheaf in terms of its sections ! We
don’t even need the sections to form a sheaf, we can always construct a sheaf out of a presheaf if
need be.

Example 1.31 (Orientation sheaf). Let M be an n-dimensional manifold, and define a sheaf by
the presheaf

oM : Open(M)op → Ab

U 7→ Hn(M,M − U ;Z).
We call this the orientation sheaf of M (something to check: relative homology classes satisfy locality
and gluing). Then an orientation of M is exactly a global section ω ∈ Γ(M,oM ) with the property
that the stalk of ω at each x ∈ M is a generator of the abelian group oM,x = Hn(M,M−{x};Z) ∼= Z.
This is just a rephrasing of [Hat01, pp. 233–236].

Remark 1.32. The éspace étalé of the orientation sheaf is not the double cover of M , since
this will not be a sheaf of abelian groups, only a sheaf of Z/2-torsors. The éspace étalé of oM
will have fiber Z (if we are defining oM by homology with integral coefficients) and will be the
infinite-sheeted cover corresponding to the orientation character π1(M) → Aut(Z) = Z/2 given by
the first Stiefel-Whitney class. We’ll learn more about this later on.

1.2. Digression: big and small sites. To briefly tie what we’ve been doing into the language of
Grothendieck topologies, we have the slice category Top/X of spaces over X, which comes equipped
with a Grothendieck topology given by open subsets. We could call Top/X the big site, and in this

terminology Open(X) ⊆ Top/X is the small site, which is the full subcategory on open subsets of X.

1.3. Sheaves of functions. The following is a space-level analogue of the idea that representable
presheaves are sheaves.

Example 1.33 (Representable sheaves). Let X and Y be any spaces. Then the assignment

Open(X)op → Set

U 7→ HomTop(U, Y )

is a sheaf of sets. We call this the representable sheaf attached to Y , although this is maybe a slight
abuse of terminology?2

Proof. We just have to verify that the presheaf of functions valued in Y satisfies locality and gluing,
which is immediate. □

Question 1.34. When would this be a sheaf of groups or of abelian groups? That is, when we can
endow HomTop(U, Y ) with a group structure compatibly for all U . One way to insist on this is to
consider HomTop(−, Y ) by extending its domain to all of Top, and then ask for it to be valued in
groups rather than sets. This is the same data (by the Yoneda lemma) as asking for Y to come
equipped with continuous multiplication and inversion maps which turn Y into a group compatibly
with its topology. This is the data of being a topological group, which we’ll define in ??.

Example 1.35. Let X be any space, and denote by

Cc : Open(X)op → Ab

the sheaf sending U ⊆ X to the abelian group of complex-valued continuous functions U → C. This
is the “representable sheaf” attached to C, in the sense of Example 1.33. We call Cc the sheaf of
germs of local complex-valued continuous functions, following [Hir78, p. 23].

2Technically speaking, Y should be viewed as a representable sheaf on Top = Top/∗, which is the big site over the

one-point space. We can pull this back along the projection X → ∗ and we get a sheaf HomTop/X
(−, X × Y ), which,

when restricted to the small site Open(X), agrees with HomTop(−, Y ) by adjunction.
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In general for spaces, we can take a sheaf of continuous functions valued in R, in C, in some other
space, whatever we like. If X has more structure, we can ask for these functions to respect the
additional structure!

Example 1.36. Let X be a differentiable manifold. We denote by Cb the sheaf of local complex-
valued differentiable functions.3

Example 1.37. Let X be a complex manifold. We let Cω denote the sheaf of local holomorphic
functions. We will prefer the notation OX in this class.

Proposition 1.38. If X is any complex manifold and p ∈ X is any point, there is an isomorphism
between OX,p and the ring of convergent power series in n variables.

Proof. An element of OX,p is an equivalence class of tuple (f, U) where U ∋ p is open and f is
holomorphic on U . By cofinality we can assume that (U, p) is homeomorphic (B, 0) where B is some
open ball around the origin in Euclidean space. In particular f can be identified with its Taylor
series expansion on the open ball given by its radius of convergence. We note that (f1, U1) ∼ (f2, U2)
if the Taylor series expansions of f1 and f2 agree in a neighborhood of p. □

Example 1.39. Similarly the stalks of the sheaf MX of germs of meromorphic functions are given
by the ring of convergent Laurent series with finitely many negative variables (finite principal parts)
[For81, p. 42].

Exercise 1.40. If X is a compact connected complex manifold, show that Γ(X,Cω) = C.

1.4. Sheafification. Let Ab(X) denote the category of sheaves of abelian groups. It is clearly a
full subcategory of Fun(Open(X)op,Ab). Our goal is to show the following:

Theorem 1.41. The category Ab(X) is a localization of Fun(Open(X)op,Ab), that is, the inclusion
admits a left adjoint called sheafification. Moreover sheafification preserves stalks.

Our goal is to define the sheafification of a presheaf F over X. We claim we’ve already seen this
construction, it’s simply the space ⨿x∈XFx → X we built previously.

Definition 1.42. Let F : Open(X)op → Ab be a presheaf. We will define the sheafification of F to
be the sheaf F ♯ defined as ⨿x∈XFx, topologized as in Definition 1.19.

Remark 1.43. We can interpret F ♯(U) = Γ(U,⨿x∈XFx) as the set of those tuples (fx)x∈U ∈∏
x∈U Fx for which, for any x ∈ U there exists an open neighborhood V ∋ x and a section s ∈ F (V )

satisfying sv = fv for all v ∈ V (see e.g. [Aut, 007X]).

There is clearly a natural map of presheaves F → F ♯, and we’ve already seen it! We called it θU
in Equation (1.22). It induces an isomorphism on stalks by definition. The thing to check is that
the sheafification construction is functorial (omitted) and defines a left adjoint to the inclusion of
sheaves in presheaves. Adjunction follows from the following universal property:

Proposition 1.44. Let F ∈ Fun(Open(X)op,Ab) and G ∈ Ab(X). Then any map F → G factors
uniquely through F ♯.

Proof. By construction there is a commutative diagram

F F ♯

G G♯,

3Recall a complex-valued function is differentiable if and only if both its real and imaginary parts are.
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so it suffices to check that G → G♯ is an equivalence of sheaves, but this is true because it is a
stalkwise isomorphism.4 □

Exercise 1.45 (Constant sheaf). Let A ∈ Ab. Then there is a silly presheaf on X which sends
every open subset U ⊆ X to A, and every restriction map to the identity on A. We call this the
constant presheaf valued at A. We will denote by A the sheafification of this presheaf, and call this
the constant sheaf valued at A. By construction.

(1) Verify that, under the isomorphism of categories Corollary 1.28, the constant sheaf A
corresponds to the sheaf defined as X ×A → X, where A has the discrete topology.

(2) Show that Γ(U,A) can be described as locally constant functions valued in A.

1.5. Subsheaves, kernels and cokernels.

Notation 1.46. For a topological space X, we denote by Ab(X) the category of sheaves of abelian
groups on X, and morphisms between them. Again following the isomorphism of categories of
Corollary 1.28 we’re allowed to work with local homeomorphisms of abelian groups over X or
presheaves on X satisfying the sheaf condition. So every definition and statement we make here will
have two equivalent formulations in each model of sheaves. We will provide both at the start but
will begin dropping one for convenience as we continue.

Definition 1.47 (Subsheaf). Let F : Open(X)op → Ab be a sheaf. We say that a sheaf G is a
subsheaf of F if G(U) ≤ F (U) is a subgroup for each U ∈ Open(X), and for any V ⊆ U , the
restriction map resVU : F (U) → F (V ) is equal to the restriction map G(U) → G(V ) for G.

Definition 1.48 (Subsheaf, éspace étalé model). We say that a sheaf π1 : S1 → X is a subsheaf of
π2 : S2 → X if

(1) S1 ⊆ S2 is an open subspace
(2) π1 = π2|S1

(3) The stalk (S1)x is a subgroup of the stalk (S2)x for all x ∈ X.

Example 1.49. Let X be a complex manifold.

(1) We can think of subsheaves

OX ⊆ Cb ⊆ Cc

as the subsheaves of complex valued continuous functions of differentiable, and then holo-
morphic sections.

(2) Let MX denote the sheaf of local meromorphic sections. Then OX ⊆ MX is a subsheaf,
since every holomorphic function is meromorphic.

(3) Let O∗
X denote the sheaf of germs of nowhere-vanishing holomorphic functions:

O∗
X(U) := {f : U → C holomorphic, and f(p) ̸= 0 for all p ∈ U} .

Note that, while we have a subset inclusion O∗
X(U) ⊆ OX(U) for every U , this is only a

subsheaf of sets. It is not a subsheaf of groups because the group operation in O∗
X(U) is

multiplicative, while in OX(U) it is additive.

Example 1.50. For X a complex manifold and p ∈ X, we have that the stalk O∗
X,p can be identified

with the multiplicative group of convergent power series around p whose constant term is nonzero
(c.f. Proposition 1.38).

Just as subgroups of abelian groups are kernels of group homomorphisms, we can construct
subsheaves as kernels of abelian sheaf homomorphisms.

4This wouldn’t work if G was just a presheaf, as although G → G♯ is a stalkwise isomorphism that does not imply
it is an isomorphism of presheaves, only of sheaves.
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Proposition 1.51. If f : A → B is a morphism of sheaves over X, we denote by ker(f) the kernel,
defined to be the sheaf of A consisting of those points a ∈ A so that fπ(a)(a) = 0 in Bπ(a).

Proof. We have to verify this is a subsheaf. Let K denote the kernel of f , and let’s write out the
diagram so we can picture it:

K A B

X.

πK
πA

f

πB

It is clear that πK is just πA restricted to K by construction, and moreover the stalks Kx are
subgroups of Ax, again by construction. So the only thing to verify is that K ⊆ A is an open
subspace. To see this, we note that the kernel of f is the preimage of zero in B, which is the image
of the zero section zB : X → B. This is open in B by Exercise 1.7, and K = f−1(im(zB)), which
will also be open since f is continuous. □

Exercise 1.52.

(1) Let f : S1 → S2 be a morphism of sheaves over X. Give a reasonable definition of an image
subsheaf im(f) ⊆ S2.

(2) Give a reasonable definition of a cokernel sheaf coker(f) over f .
(3) Prove an analogue of the first isomorphism theorem for sheaves of abelian groups over spaces.
(4) How does your first iso theorem look on stalks? (c.f. Definition 1.12)

This allows us to find exact sequences of sheaves.

Example 1.53. Let C∗
c be the sheaf of germs of locally never zero complex valued continuous

functions. There is a morphism of sheaves exp, defined on sections by

Cc(U) → C∗
c (U)

f 7→ exp(2πi · f).
The kernel of this is isomorphic to the constant sheaf Z, because f and f +n map to the same thing
for any n ∈ Z. We claim that we get a short exact sequence of sheaves

0 → Z → Cc
exp−−→ C∗

c → 0,

where as a reminder Z denotes the constant sheaf at the integers (Exercise 1.45). The fact that
exponentiation is an epimorphism of sheaves is a stalkwise condition, saying that for every value
x ∈ X, we can find a sufficiently small neighborhood in which we can take a branch and define
log(z).

Example 1.54. Let X be any complex manifold. Let OX ⊆ MX be the subsheaf of holomorphic
sections inside meromorphic sections, as in Example 1.49. Then we can define the sheaf of principal
parts (see e.g. [Gun18, (4.2)]) as

0 → OX → MX → PX → 0.

The terminology comes from the principal part of a meromorphic function around a pole [SS03,
p. 75].

Proposition 1.55. If X is a Riemann surface, and p ∈ X is any point, we have that PX,p is given
by the ring of finite negative Laurent expansions in a local coordinate around p.

Proof. As taking stalks is exact, we can describe PX,p as the cokernel of the natural map OX,p →
MX,p. This inclusion sits a Taylor series inside the world of convergent Laurent series, so the
quotient is exactly those terms which do not come from Taylor series, i.e. the principal part of a
convergent Laurent expansion. □
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Example 1.56. For X a complex manifold we define the sheaf of divisors DivX to be the cokernel

0 → O∗
X → M∗

X → DivX → 0.

By our understanding of the stalks of the first two sheaves we can understand the stalks of the
latter.

Exercise 1.57. If X is a Riemann surface, show that DivX,p
∼= Z for every point p ∈ X.

2. Sheaf cohomology

A big result here that we won’t prove is the following:

Theorem 2.1. We have that Ab(X) is an abelian category.

Proof. This is a standard example of an abelian category. See [God58, II§2] or [Gro57]. □

An abelian category is a setting in which we can do homological algebra. In particular, we will be
allowed to resolve sheaves by nicer sheaves, or ones which are easier to deal with in some respect.

Remark 2.2. For technical reasons, we’re going to restrict our attention to sheaf cohomology over
paracompact spaces. This is due to the presence of partitions of unity subordinate to open covers
(Theorem A.10).

Example 2.3 (Representability of sections). Let U ⊆ X be an open set. Then the functor

Γ(U,−) : Ab(X) → Ab

S 7→ Γ(U, S)

is corepresentable, meaning there exists a sheaf we will denote by ZU for which HomAb(X)(ZU ,−) ∼=
Γ(U,−) are naturally isomorphic.5

Proof. Denote by hU = HomOpen(X)(−, U) the presheaf of sets6

hU (V ) =

{
∗ V ⊆ U

∅ V ⊊ U.

By the Yoneda lemma, we have a natural bijection

HomFun(Open(X)op,Set)(hU , F ) ∼= F (U) ∈ Set

for any sheaf of sets F .
Let’s now bootstrap to abelian groups. Let Z[hU ] be the free presheaf of abelian groups on the

sheaf of sets hU — by this we mean it is defined as

Z[hU ](V ) =

{
Z V ⊆ U

{0} V ⊊ U.

It is clear then that we have a natural group isomorphism

HomFun(Open(X)op,Ab) (Z[hU ], F ) ∼= F (U) ∈ Ab

for any presheaf of abelian groups F . Finally if F was a sheaf, then any morphism of presheaves
Z[hU ] → F factors uniquely through the sheafification of Z[hU ] by Proposition 1.44. We denote this
by

ZU := (Z[hU ])♯.
It is clear now that we have a natural isomorphism ZU

∼= Γ(U,−) (c.f. [Aut, 03CP,03CQ]. □

5This is poor notation. Better notation is to let j : U ↪−→ X denote the inclusion, and write j!ZU .
6Note this is different than the “representable” presheaf we defined in Example 1.33. There we looked at all

continuous maps into U , whereas here we only want the natural inclusion of V in U , if it exists.
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Remark 2.4. We can describe ZU (V ) explicitly via our understanding of sheafification in Re-
mark 1.43 — it is exactly given as the abelian group of locally constant functions f : U ∩ V → Z
which extend to a locally constant function on all of V , but where the function satisfies f(v) = 0
if v ∈ V ∖ (U ∩ V ). This latter condition is equivalent to the statement that the support of f is
closed in V , which is often how you’ll see ZU (V ) described:

ZU (V ) =
{
locally constant functions U∩V→Z

with support closed in V

}
Observe that if U1 ⊆ U2 then there is a natural morphism of sheaves ZU2 → ZU1 . This extends

to a functor

(2.5)
Open(X)op → Ab(X)

U 7→ ZU

We’ll use this later on.

Exercise 2.6. Verify the claim in [Gro57, 1.9.2] that the collection {ZU}U∈Open(X) forms a system

of generators for the category Ab(X).

2.1. Čech cohomology. Let U = {Ui}i∈I be a cover of X, let F be a sheaf, and define

(2.7) Cq(U , F ) =
∏

i0,...,iq∈I
F (Ui0 ∩ · · · ∩ Uiq).

We call this the group of cochains. We can define a coboundary map

(2.8) δq : Cq(U , F ) → Cq+1(U , F ),

defined as

(δqf)(i0, . . . , iq+1) =

q+1∑
j=0

(−1)kf(i0, . . . , îk, . . . , iq+1).

Remark 2.9.

(1) As a remark, f(i0, . . . , îk, . . . , iq+1) is naturally valued in Ui0 ∩· · ·∩Uik−1
∩Uik+1

∩· · ·∩Uiq+1 ,

but we want to think about it as being valued in
⋂q+1

j=0 Uij under the restriction map in order
to form the sum above. We’ve chosen to suppress this restriction from the notation, but
Hirzebruch includes it (c.f. [Hir78, p. 26].

(2) The coboundary condition in Equation (2.8) is written additively, since we are assuming F
is a sheaf of abelian groups. In later contexts we might write it multiplicatively (if F isn’t
assumed to be abelian),

Exercise 2.10. Show that δq+1 ◦ δq = 0, so that we get a cochain complex

(2.11) · · · → Cq−1(U , F )
δq−1

−−−→ Cq(U , F )
δq−→ Cq+1(U , F )

δq+1

−−−→ · · ·

Definition 2.12. We define the Cech cohomology of F ∈ Ab(X) over the cover U to be

Ĥq(U , F ) = ker(δq)/im(δq−1).

Example 2.13. Consider the sphere S2, equipped with an open cover U = {Un, Us}, where Un and
Us denote the northern and southern hemispheres, respectively, plus a little overlap on the equator.
Let’s compute the sheaf cohomology in the constant sheaf Z which we defined in Exercise 1.45:
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UN

US

UN ∩ US

We have that:

▷ Č0(U ,Z) = Z(Un)× Z(Us). Since each of these open sets is connected, a locally constant
function Un → Z is just constant – so we get that Z(Un) ∼= Z by evaluation at the north
pole, say, and similarly for Us. Hence Č0(U ,Z) ∼= Z× Z.

▷ Č1(U ,Z) = Z(Un ∩ Us), since there is only one double overlap to consider. Again since it is
connected, we get that Č1(U ,Z) ∼= Z.

▷ Čq(U ,Z) = 0 for q ≥ 2 since there are no triple overlaps in our cover.

So our chain complex looks like

0 → Z⊕ Z → Z → 0.

We want to understand the differential δ0. Given f ∈ Č0(U ,Z), it consists of two functions which
we’ll call fn : Un → Z and fs : Us → Z. They are both locally constant, hence constant. The
differential is then of the form

δ0(f) : Un ∩ Us → Z
u 7→ fn(u)− fs(u).

Altogether we get the chain complex

0 → Z⊕ Z

(
1
−1

)
−−−−→ Z → 0.

So we get

Ȟq(U ,Z) =


Z q = 0

Z q = 1

0 q ≥ 2

Definition 2.14. Let X be a space, and let U = {Ui}i∈I and {Vj}j∈J be two open covers of X.

We say that V is a refinement of U if for every V ∈ V there exists some U ∈ U so that V ⊆ U .
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Exercise 2.15. Recall the cover U of the 2-sphere we constructed in Example 2.13. Find a
refinement V of U for which the Čech cohomology is exactly

Ȟq(V,Z) =


Z q = 0

0 q = 1

Z q = 2

0 q > 2.

Definition 2.16. Let X be a topological space. We denote by Cov(X) the poset (category) of
open covers of X under refinement. That is, an object of Cov(X) is an open cover U of X, and
for any two covers U ,V ∈ Cov(X), we have exactly one morphism V → U if V refines U , otherwise
there are no morphisms from V to U .

Exercise 2.17. If X is a space, F ∈ Ab(X), and U ,V are open covers of X for which V is a
refinement of U , define a natural restriction morphism

Ȟq(U , F ) → Ȟq(V, F ).

Hint : You should need to make choices in your construction – argue that the map ultimately doesn’t
depend on the choices you make.

In particular, the exercise above indicates that Čech cohomology is functorial in the cover. This
motivates the following definition:

Definition 2.18. We define the Čech cohomology of F ∈ Ab(X) by

Ȟq(X,F ) := colimU∈Cov(X)Ȟ
q(U , F ).

That is, it is the colimit of the Čech cohomology along all possible covers, filtered by refinement.

Example 2.19. On S1, we can take a simple cover consisting of only all of S1, letting F = Z be the
constant sheaf Z. Then the Čech cochains complex for this is the chain complex Z[0] concentrated
in degree zero. This gives Ȟ0(U , F ) = Z and vanishing cohomology elsewhere. On the other hand,
we can take a cover S1 = U0 ∪ U1, where U0 and U1 are the upper and lower semicircle, plus a little
extra so that they overlap:

U0

U1

U01U01

Note that Č1(U , F ) = Z×2 in this instance, since U0 ∩ U1 has two connected components. The
chain complex here then looks like

Č•(U , F ) : 0 → Z⊕ Z

(
1 −1
1 −1

)
−−−−−−−→ Z⊕ Z → 0 → · · ·

so we get cohomology in degrees 0 and 1, as expected. This is an example of how refining the cover
can detect more cohomological features.
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Exercise 2.20. Give an example of noise in Čech cohomology. That is, find a cover which creates
a cohomology class which vanishes under refinement.

Proposition 2.21. For any space X and any F ∈ Ab(X), we have a canonical isomorphism

Ȟ0(X,F ) ∼= Γ(X,F ).

Proof. Given any open cover U = {Ui}, an element f ∈ Ȟ0(U , F ) is an element fi ∈ F (Ui) for each
i (this is the condition of lying in C0(U , F )), which lies in the kernel of δ0 : C0 → C1. This means
that fi|Ui∩Uj

= fj|Ui∩Uj
for each i, j. Since F is a sheaf, by gluing, the fi’s glue together to give a

well-defined global section f ∈ Γ(X,F ). This is easily seen to be an isomorphism. □

Exercise 2.22. Verify that Čech cohomology is functorial in the sheaf, that is for any X and any
q ≥ 0 we have a functor

Ȟq(X,−) : Ab(X) → Ab.

Proposition 2.23. If

0 → F1 → F2 → F3 → 0

is a short exact sequence of sheaves in Ab(X), it induces a long exact sequence

0 → Ȟ0(X,F1) → Ȟ0(X,F2) → Ȟ0(X,F3)

→ Ȟ1(X,F1) → Ȟ1(X,F2) → Ȟ1(X,F3)

→ Ȟ2(X,F1) → · · ·

Sketch. We first show, for any cover U , that Čq(U ,−) is an exact functor on Ab(X). A diagram
chase then implies we get a long exact sequence on Ȟ∗(U ,−). Then we take a colimit over all U in
the filtered category of covers Cov(X), and use that filtered colimits preserve exactness to conclude
(Example B.4 and Corollary B.7). The details are spelled out in [Hir78, pp. 28–29]. □

Remark 2.24. The definition of Čech cohomology in Definition 2.18 doesn’t require F to be a
sheaf — it makes sense for F any presheaf. In particular we didn’t use the sheaf condition in setting
up this theory, aside from using gluing to argue that Ȟ0(X,F ) ∼= Γ(X,F ). We can make sense of
Čech cohomology in any presheaf, which begs the question: when do the Čech cohomology of a

sheaf F and of its sheafification F̃ agree?

Proposition 2.25. Let F be a presheaf over a space, and suppose F ♯ = 0. For any point x ∈ X,
any open U ∋ x and any f ∈ F (U), there exists some smaller open neighborhood V ⊆ U containing
x for which f|V = 0.

Proof. This is because the stalk Fx must be zero. □

Lemma 2.26. Let X be a paracompact space, and F a presheaf on X. Then if F ♯ is the zero sheaf,
we claim that Ȟn(X,F ) = 0 for all n ≥ 0.

Proof. We show that no cochains survive refinement. That is, if f ∈ Čq(U , F ) for some cover
U = {Ui}i∈I , we will find a refinement of the cover which kills f . Without loss of generality assume
that U is locally finite. By the Dieudonné shrinking theorem (Theorem A.7), we may find a cover
W = {Wi}i∈I for which Wi ⊆ Ui.

Let J = X as a set— we will produce a refinement of the cover U , now indexed over J . For each
x ∈ X, we pick an open neighborhood Vx ∋ x for which:

▷ if x ∈ Ui then Vx ⊆ Ui and if x ∈ Wi then Vx ⊆ Wi

▷ if Vx ∩Wi ̸= ∅ then Vx ⊆ Ui

▷ if x ∈ Ui0 ∩ · · · ∩ Uiq then f(i0, . . . , iq) restricts to zero in F (Vx).
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Since U and W are locally finite, there are only finitely many Ui and Wi containing x to worry about,
so the first two conditions can be fulfilled. Why are we allowed to guarantee the last condition can
hold? By Proposition 2.25 some sufficiently small neighborhood of x in Ui0 ∩ · · · ∩ Uiq will have the
property that f(i0, . . . , iq) restricts to zero in it. We can pick Vx to be that neighborhood, perhaps
intersecting it further finitely many times to make it satisfy the first two conditions.

We now claim that f refines to zero in this new cover {Vx}x∈X . Pick any tuple (x0, . . . , xq), and
let ij be such that xj ∈ Wij ⊆ Uij for each j. By (1), this tells us that Vxj ⊆ Wij ⊆ Uij . We want
to argue that the image of f(i0, . . . , ip) under the restriction map

F (Ui0 ∩ · · · ∩ Uiq) → F (Vx0 ∩ · · · ∩ Vxq)

is zero. If the intersection of the Vxi ’s is empty, there is nothing to show, so suppose it is nonempty.
Then Vx0 ∩ Vxk

is nonempty for each k. Since Vxk
⊆ Wik , we have that Vx0 ∩ Wik ≠ ∅, and by

point (2) this implies that Vx0 ⊆ Uik . Since this is true for all k, we have that Vx0 ⊆ Ui0 ∩ · · · ∩ Uiq .
However by (3), we have that f(i0, . . . , iq) restricts to zero on Vx and therefore on the smaller subset
Vx0 ∩ · · · ∩ Vxq . □

Theorem 2.27. If X is paracompact, and F is a presheaf with corresponding sheaf F̃ , then the

natural map Ȟq(X,F ) → Ȟq(X, F̃ ) is an isomorphism for all q ≥ 0.

Proof. Consider the sheafification map F → F ♯ and take its kernel and cokernel

0 → K → F → F ♯ → C → 0.

As F → F ♯ sheafifies to an isomorphism, and since sheafification is an exact functor, we have that
K and C sheafify to zero. Hence their higher cohomology vanishes by Lemma 2.26, and using the
long exact sequence on cohomology attached to short exact sequences of sheaves, we obtain that the
induced maps Ȟq(X,F ) → Ȟq(X,F ♯) are all isomorphisms. □

So over paracompact spaces, there is no difference between the cohomology of a presheaf and of
its resulting sheafification.
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Appendix A. Point-set topology

Definition A.1. A paracompact space is a space for which every open cover admits an open
refinement which is locally finite (each point in the space intersects only most finitely many of the
spaces in the refinement).

This is strictly weaker than being compact, since compactness requires the entire cover to be
finite, not just locally finite.

Example A.2. Euclidean space Rn is paracompact but not compact.

Theorem A.3 (Dieudonné, [Hir78, 2.8.2]). Every locally compact space with a countable basis is
paracompact.

A.1. Normal spaces. The idea of a normal space can be thought of (loosely) as a strengthening
of the Hausdorff condition. On T1-spaces (spaces in which singletons are closed) this is a literal
strengthening of the Hausdorff condition – it says that not only can points be separated by open
neighborhoods, actually any disjoint closed subspaces can be separated by open neighborhoods.

Definition A.4. A space is normal if any two disjoint closed subsets can be separated by disjoint
open neighborhoods. Explicitly if Z1, Z2 ⊆ X are each closed and Z1 ∩ Z2 = ∅, then there exist
open subspaces U1 ⊇ Z1 and U2 ⊇ Z2 so that U1 ∩ U2 = ∅.

Theorem A.5 (Dieudonné, [Hir78, 2.8.1]). Every paracompact space is normal.

In particular since our manifolds are Hausdorff with countable bases, they are in particular
normal.

Lemma A.6 (Urysohn’s lemma). A space X is normal if and only if, for every two disjoint closed
subsets A,B ⊆ X, there exists a continuous function

f : X → [0, 1]

so that f(A) = 0 and f(B) = 1.

The following crucial result implies that, over a normal space, locally finite covers can always be
“shrunk.” It is a crucial ingredient for the existence of partitions of unity.

Theorem A.7 (Shrinking theorem, [Hir78, 2.8.3]). Let X be normal, and {Ui}i∈I a locally finite7

cover. Then X admits an open cover {Vi}i∈I , indexed over the same set, so that Vi ⊆ Ui.

Definition A.8. Let {Ui}i∈I be an open cover of a space X. We say that a system of continuous
functions {ϕi : X → R}i∈I is a partition of unity subordinate to the cover if:

(1) ϕi(x) ≥ 0 for all x ∈ X
(2) supp(ϕi) ⊆ Ui

(3) Each point has an open neighborhood meeting supp(ϕi) for only finitely many i ∈ I
(4) We have that ∑

i∈I
ϕi(x) = x

for all x ∈ X. Note that sum is defined because of the previous point.

Definition A.9. We say an open cover of a space is numerable if it admits a subordinate partition
of unity. We say a fiber bundle is numerable if the base admits a numerable cover over which the
total space is trivialized [Dol63, 7.1].

Theorem A.10. A space is paracompact if and only if it is Hausdorff and every open cover admits
a partition of unity.

7Hirzebruch says point finite.
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Proof. For a proof see [Hir78, pp. 30–31]. □

The following result is originally due to Stone? An elegant reproof is due to Mary Ellen Rudin in
the 60’s. We can find the following in [Mun00, 41.4], for instance.

Theorem A.11. Every metric space is paracompact.

Another crucial example is that CW complexes are paracompact. Miyazaki, Dugundji, Bourgin all
separately proved in 1952 that simplicial complexes were paracompact. Miyazaki shortly thereafter
extended this result to all CW complexes

Theorem A.12 ([Miy52]). Every CW complex is paracompact.

Sketch. There’s a nice outline on the nLab – we can induct on the skeleton, leveraging that disks
and spheres are paracompact, and that paracompact Hausdorff spaces are closed under coproducts
and pushouts along closed embeddings. □
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Appendix B. Category theory

If you are unfamiliar with colimits I really recommend reading Chapter 3 of [Rie16].

B.1. Filtered colimits.

Definition B.1. A category is filtered if every finite diagram admits a cocone. Dually a category
C is cofiltered if every finite diagram admits a cone.

Example B.2. The category Open(X) is cofiltered.

Proof. We don’t have to worry about morphisms commuting, so it suffices to see, for finitely many
U1, . . . , Un ∈ Open(X), there is a U mapping to them. Clearly we can take U = U1 ∩ · · · ∩ Un. □

Example B.3. For x ∈ X, the category of open subspaces of X containing x is cofiltered.

Example B.4. For a space X, the category Cov(X) of open covers under refinement (defined in
??) is cofiltered. This is precisely the assertion that two covers admit a common refinement, and
therefore by induction finitely many covers admit a common refinement.

The important thing about filtered categories is that colimits computed over them are very well
behaved.

Proposition B.5. Filtered colimits valued in Set or Ab or any other reasonable concrete category
(see SE2143601 for details for instance) commute with finite limits.

Corollary B.6. Filtered colimits (valued in Ab, let’s say) preserve monomorphisms.

Proof. The property of a morphism f : x → y being a monomorphism is equivalent to the statement
that the diagram

x x

x y

id

id
⌟

f

f

is a pullback. This is a finite limit, hence commutes with filtered colimits. □

An interesting question in the setting of abelian categories is the interaction between exactness
and filtered colimits. Indeed exactness of filtered colimits is a consequence of Grothendieck’s axiom
AB5 for abelian categories [Gro57, 1.8.1]. We will leverage the following corollary a handful of times:

Corollary B.7. Let A be an abelian category, and let Funex(A,Ab) be the full subcategory of
exact functors from A to abelian groups. Then Funex(A,Ab) is preserved under filtered colimits.

Proof. Filtered colimits in this category are computed levelwise, hence they commute with finite
limits. Being right exact is a colimit, hence commutes with (filtered) colimits in any context.
Being left exact is a pullback condition, hence a finite limit, and therefore commutes with filtered
colimits. □

As a remark, this is not true if the colimits are not filtered, as illustrated by the following example:

Example B.8. Let F = idAb : Ab → Ab be the (clearly exact) identity functor on the category of
abelian groups, and consider the (non-filtered!) equalizer diagram

0, 2: F ⇒ F,

where 0 is the natural transformation given levelwise by the zero homomorphism, and 2 is multipli-
cation by 2. Then we have that the colimit of this diagram is computed by the pointwise coequalizer
of 0 and 2. In particular if C : Ab → Ab is the colimit of the above diagram, then

C(A) = A/2A

for every abelian group A. But this is not an exact functor Ab → Ab.

https://math.stackexchange.com/a/2143601
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B.2. Cofinality.

Definition B.9. Let J be a category, and I ⊆ J a subcategory. We say I ⊂ J is cofinal if, for any
functor F : J → C , the induced map on colimits

colimIF → colimJF

is an isomorphism in C . We say I ⊆ J is final if Iop ⊆ Jop is cofinal.

The key reductive step of the Poincaré lemma relies on a recognition of cofinality (really finality,
but the category gets “opped” when we take a contravariant functor out of it):

Proposition B.10. Let M be an n-dimensional manifold and let x ∈ M be an arbitrary point.
Then the category of open sets of M containing x admits a final system given by those open sets
U ⊆ M so that U ∋ x and U is homeomorphic to Rn.

Proof. Fix a chart (U0, ϕ) around x. For any V ∋ x open, we can intersect it with the chart to get
V ∩ U0. In the image ϕ(V ∩ U0) we can find some open ball containing ϕ(x), and the preimage of
this in M is both homeomorphic to Rn and contained in V . □

The following result is a categorical rephrasing of an important result in differential topology.
Before we can phrase it we need a definition.

Definition B.11. Let U be an open cover of X. We say that it is a good cover if all the U ∈ U and
all the nonempty intersections of finitely many elements in U are contractible spaces.

Proposition B.12. Let M be a Riemannian manifold, and denote by Covgood(M) the category of
good open covers of M . Then Covgood(M) ⊆ Cov(M) is a final subcategory.

Proof. The content of this is showing every cover refines to a good one. Fix a cover U of M , and
now pick any point x ∈ M , and any U ∋ x. Since every point on a Riemannian manifold admits a
positive convexity radius, we can obtain a geodesically convex neighborhood around each point, and
by potentially shrinking the radius we may assume it is contained in U . This is clearly convex, and
it yields a good cover since the intersection of geodesically convex spaces is geodesically convex,
hence contractible. □

In particular, any colimiting construction we want to pursue over covers of a Riemannian manifold
can be reduced to good open covers.

A wild fun fact is that the poset of open sets and refinement for a good cover can be used to
recover the homotopy type of the manifold (or space) you started out with! This is the content of
the nerve lemma.
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