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Abstract

These notes are adapted from the Homotopy Theory Summer School, Berlin 2018, and are
based on lectures given by Florian Strunkand Georg Tamme, as well as recitation sections by
Elden Elmanto.
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1 Introduction

1.1 Assumptions

We take SmS to be the category of smooth schemes of finite type over a base scheme S, where
S is always assumed to be Noetherian and finite dimensional, unless otherwise indicated.

Throughout these notes, “∞-category” refers to a quasi-category.
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1.2 Motivation

We want to do homotopy theory in SmS [KV71]. If we have two maps f : X → Y and
g : X → Y , we might say that they are A1-homotopic if they factor as

X

X × A1 Y

X

however this is a little too naive. For example, it is not transitive on hom-sets.

Therefore one considers “universal A1-homotopy theory on SmS ,” and then one imposes the
wanted relations by “localization.” Consider the following categories

SmS
Y oneda
↪−−−−−→ PSh(SmS)←−↩ Sh(SmS)

we have two full subcategories ShNis(SmS),PShA1

(SmS) of PSh(SmS), whose inclusions have

left adjoints LNis : PSh(SmS) → Sh(SmS), and LA1 : PSh(SmS) → PShA1

(SmS). Taking the

intersection, we get ShA1

(SmS) = Sh(SmS)∩PShA1

(SmS), which is the unstable A1-homotopy
category.

We additionally obtain a map − : Spc → PSh(SmS) which interprets a space as a constant
presheaf over our category SmS . This will be defined further later.

An example of a calculation in our category would be the pushout

Gm A1 ' ∗

A1 ' ∗ P1

o

o

p

which shows that S1 ∧Gm ' P1, this is is effectively (up to A1-contractibility) a loop object in
our category.

1.3 Why the Nisnevich topology?

The big reason is that algebraic K-theory does not satisfy étale descent, so the étale topology
is not right for our theory.

We could try the Zariski topology, but this ends up being too coarse. For manifolds X, we can
form the homotopy quotient

X/X r {x} = Rn/Rn r {0} ' Sn.

This doesn’t work in the Zariski topology.
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Example 1.3.1. Take a field k = k, S = Spec(k), and x ∈ X ∈ SmS a closed point.

X U

S AmS

o

et

so subtracting a point we get

U r {x} U U/U r {x}

X r {x} X X/X r {x}

o

o o '

o

Shrink U such that only x is in the preimage of 0 ∈ AmS . Then we have that

U r {∗} U U/U r {x}

AmS r {0} AmS AmS /AmS r {0}

o

'

o

is a Nisnevich square.

2 Preliminaries

A good definition for our ∞-category of spaces is Spc = N∆(Kan).

We have various constructions of new ∞-categories from old ones:

• full subcategories spanned by objects

• functor categories.

There is a fully faithful functor from a small infinity category C as follows

C
y
↪−→ Fun(Cop,Spc) = PSh(C)

X 7→ MapC(−, X)

where y is called the Yoneda embedding for C an (essentially) small∞-category [Lur09, 5.1.3.1].

We also get that
MapPSh(C)(y(X), E) ' E(X).

Every E ∈ PSh(C) is a colimit of representables

E ' colimy(U)→E y(U)

and y preserves all small colimits in C. Note that limits and colimits are given “objectwise”
[Lur09, 5.1.2.3].
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An∞-category C is called presentable if it is cocomplete and accessible, where accessible means
that

Indκ(C′) '−→ C
for a small∞-category C′. We could think of this as meaning that there is a small subcategory
C0 ⊆ C, which generates C under sufficiently filtered colimits. We refer to [Lur09, §5.4] for more
information.

Example 2.0.1.

• Spc is presentable [Lur09, 5.3.5.12].

• Fun(C,D) is presentable if D is presentable (and C is small). In particular, for any small
∞-category C, the presheaf category PSh(C) is presentable. In fact, every presentable
category arises as the localization of a presheaf category on a small ∞-category [Lur09,
5.5.1.1].

Presentable ∞-categories have all limits [Lur09, 5.5.2.4].

Theorem 2.0.2. (Adjoint functor theorem [Lur09, 5.5.2.9]) If F : C → D is a functor between
presentable infinity categories, then

1. F has a right adjoint if and only if F preserves all small colimits.

2. F has a left adjoint if and only if F preserves all small limits and is accessible.

Definition 2.0.3. Let C be a presentable ∞-category, and M a set of morphisms in C. An
object Z ∈ C is called M-local if the associated map

Map(Y,Z)
f∗−−→ Map(X,Z)

is an equivalence for all f ∈ M . The full subcategory C′ spanned by all M -local objects is
representable and fits into an adjunction

L : C � C′ : incl

where incl : C′ ⊆ C is the inclusion map [Lur09, 5.5.4.15].

2.1 Sheaves

A large issue is that y : SmS ↪→ PSh(SmS) does not preserve colimits. To see this, take∐
α Uα ∈ SmS , and A ∈ Spc, then

Map

(∐
α

y(Uα), A

)
'
∏

Map(y(Uα), A) '
∏

A(Uα) '
∏

A

by the Yoneda lemma and the fact that A is a constant sheaf. However if we take the coproduct
inside, we see

Map

(
y

(∐
α

Uα

)
, A

)
' A

(∐
α

Uα

)
' A.

Definition 2.1.1. Let C always be an (essentially) small category. For a morphism Y
f−→ X

in an infinity category P with fiber products, the Čech nerve is a simplicial object

Č(f)• ∈ Fun(∆op, P )
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whose evaluation at [n] ∈ ∆op is given by the (n+ 1)-fold fiber product

Č(f)n = Y ×X · · · ×X Y.

This comes with an augmentation
Č(f)• → X

which becomes, after taking the geometric realization (a colimit),

|Č(f)•| → X.

Definition 2.1.2. Suppose we are given for every object X ∈ C a collection T ′(X) = {Uα
fα−−→

X}α of C-morphisms. Then E ∈ PSh(C) is called a (Čech) sheaf for T ′ if for every X ∈ C and
every fα ∈ T ′(X):

Map(X,E)→ Map(|Č(fα)•|, E)

is an equivalence. Equivalently, E is a Čech-sheaf if it is M -local with respect to

M :=
{
|Č(fα)•| → X : X ∈ C, fα ∈ T ′(X)

}
,

in which case the Bousfield localization yields an adjunction

L : PSh(C)� Sh(C) : i.

Here we call L the Čech-sheafification for T ′.
Definition 2.1.3. A family U = {Uα

pα−−→ X} in SmS is called a Nisnevich covering on X if

• Every pα is étale

• For every field k and Spec(k)→ X, there exists a lift

Uα

Spec(k) X

pα

Or, trivially, we obtain a Nisnevich covering if X = ∅ or if U = ∅.

We now have PSh(SmS) ↪−→ Sh(SmS). We could further localize at morphisms of the form

y(U × A1)→ y(U), and obtain the category ShA1

(SmS) of A1-invariant sheaves.

Definition 2.1.4. A sieve R on X ∈ C is a full subcategory of C/X such that if

Z Y

X

is a morphism in C/X and (Y → X) ∈ R, then (Z → X) ∈ R.

5



Proposition 2.1.5. [Lur09, 6.2.2.5, 6.2.3.4, 6.2.3.18]

Let U = {Uα → X} ∈ T 1(X), and let

RU := {Y f−→ X : f factors through some Uα → X}.

Then there is a bijection

{Sieves on X} ↔ {subobjects [U → y(X)] ∈ PSh(C)}

{Y → X : ∃! y(U)
!−→ U → y(X)} 7→[U → y(X)]

R 7→ [colim(Y→X)∈R y(U)→ y(X)]

RU 7→ [|Č(U)| → y(X)].

Let τ be a (Grothendieck) topology on C. Let (C, τ) be a site. Then a presheaf E ∈ PSh(C)
is called a sheaf (for τ) if for every X ∈ C and every R ∈ τ(X) with a correlating subobject
[U ↪→ y(X)], the map

Map(X,E)→ Map(U,E)

is an equivalence. Let τ ′ be a collection as above. We have an axiom from [Hoy17, C1] given
as

(PT2) If f : X ′ → X is a morphism and {Uα → X} ∈ τ ′(X), then {f∗ : Uα → X ′} ∈ τ ′(X ′)

Let τ denote the generated topology. Then for E ∈ PSh(C), we have that E is a sheaf for τ if
and only if E is a (Čech) sheaf for τ ′.

Remark. The Nisnevich coverings satisfy (PT2) 2.1.

Definition 2.1.6. A Nisnevich distinguished square is a pullback square Q in SmS of the form

V Y

U X

y
pQ

jQ

where we have that

1. jQ is an open immersion

2. pQ is étale

3. pQ induces an isomorphism Y r V
'−→ X r U .

Definition 2.1.7. The collection P of those squares is called the Nisnevich-cd-structure, where
the associated topology τP is the topology on SmS generated by

R{jQ,pQ} ∈ τ(X) R∅ ∈ τ(∅).

Theorem 2.1.8. (Voevodsky, [Hoy17, Prop I, 3.2.5]) A presheaf E ∈ PSh(SmS) is a τP -sheaf
if and only if E is P -excisive. That is,

1. E takes each distinguished square Q ∈ P to a pullback square E(Q) in Spc.

2. E(∅) = ∗.
Remark.

6



• τP ⊆ τ .

• Let k be a field of characteristic 6= 2, and let a 6= 0 in k, then consider the two maps

A1
k r {a}

o−→ A1
k

A1
k r {0} → A1

k

z 7→ z2.

This is a Nisnevich covering if a is a square in the field k. And if we remove one of the
two roots, say b, of a, we obtain a Nisnevich square

A1 r {∗} A1
k r {0, b}

A1 r {a} A1.

y

Definition 2.1.9. A map E → F in PSh(SmS) is a local equivalence if L(E → F ) is an
equivalence.

Definition 2.1.10. A Nisnevich neighborhood of a point x ∈ X ∈ SmS is a pair (Y
f−→ X, y)

consisting of an étale map p where Y is connected and a lift

Y

Spec(k(x)) X

y

Morphisms of those are morphisms over X respecting the lifts. This defines a category I(X,x).

Lemma 2.1.11. Iop
(X,x) is filtered. The collection p = (X,x) : Iop

(X,x) → SmS via (Y, y) 7→ y

of filtered diagrams is called the standard Nisnevich points (NPts). And the stalk functor at
p ∈ NPts is

(−)P : PSh(SmS)→ Spc

E 7→ colim(Y,c)∈Iop
(X,x)

E(y)

A map E → F in PSh(SmS) is called a stalkwise equivalence if Ep → Fp is an equivalence for
all p ∈ NPts.
Example 2.1.12. For E ∈ Sh(SmS) we have that

E ' ∅⇔ ∀p ∈ NPts, Ep = ∅

Remark. The limit lim(Y,y)∈I(X,x) Y exists as a scheme and is given by the Henselization OhX,x
of the local ring OX,x.

Warning. The “quasi-representable” presheaf of spaces

ỹ(Spec(OhX,x)) := MapSch/S(i(−), Spec(OhX,x)) ∈ PSh(SmS)

where i : SmS ↪→ Sch/S, has the issue that usually, the stalks do not agree, i.e. E(X,x) 6'
Map(ỹ(Spec(OhX,x)), E).
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2.2 Local equivalences are equivalent to stalkwise equivalences

We would like to prove that local equivalences of presheaves are equivalent to stalkwise equiv-
alences. In order to do this, we first must discuss truncated objects.

Definition 2.2.1. Let n ≥ −1 an integer, and Σ an ∞-category. We say that X ∈ Spc is
n-truncated if πi(X,x) = ∗ for all i > n and for each basepoint x ∈ X.

Extending this definition, we say that an element of an ∞-category X ∈ Σ is n-truncated if
Map(A,X) is n-truncated for all A ∈ Σ.

Let τmΣ be the full subcategory on these objects. If Σ is presentable, then there exists a left
adjoint

Lm : Σ� τnΣ : incl

[Lur09, 5.5.6.18]

A limit (in Spc) of n-truncated spaces is again n-truncated [Lur09, 5.5.6.5], therefore E ∈
τnSh(SmS) if and only if E ∈ Shτn(SmS) (i.e. E is objectwise n-truncated and a sheaf).

If n ≥ 0, then πn : τnSpc∗ → Set∗ preserves limits.

Theorem 2.2.2. (Voevodsky) Recall that S is a Noetherian, finite dimensional scheme. For
a map of presheaves f : E → F in PSh(SmS), we have that f is a local equivalence if and only
if it is a stalkwise equivalence.

Proof.

⇒: complicated

⇐: For n ≥ 0, E ∈ PSh, X ∈ SmS , and x ∈ E(X) a section, we consider the presheaf

πXn (E, x) : (SmS/X)op → Set

U 7→ πn(E(U), X|n).

For E ∈ τnSh, this is a sheaf.

Hence E ∈ τnSh and the fact that all πXm(E, x) ' ∗ implies that E ∈ τn−1Sh. So inductively, a
stalkwise equivalence in τnSh is a local equivalence.

Definition 2.2.3. For E ∈ Σ = Sh, we have the tower

E

limn∈Nop Ln(E) · · · Ln(E) Ln−1(E) · · · L−1(E)

tE

called the Postnikov tower of E. We say that these converge in Σ if tE is an equivalence for all
E ∈ Σ.

In particular, we have that this is true for Sh(SmS) [Lur04, XI - Descent theorems]. Therefore
a stalkwise equivalence is a local equivalence. We show this as follows:
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F

limLn(F ) E Ln(F ) Ln−1(F ) · · ·

limn∈Nop Ln(E) · · · Ln(E) Ln−1(E) · · · L−1(E)

tF

tE

Let E → F be a stalkwise equivalence, then the objectwise truncation functor gives that
Lobj
n (E)→ Lobj

n (F ) is again a stalkwise equivalence. Now Ln = LLobj
n (via the explicit formula

for E). Then we see that G → LG is a stalkwise equivalence, so Ln(E) → Ln(F ) is a
stalkwise equivalence. This is a local equivalence by the argument before. Note that a limit
of equivalences is then an equivalence, and therefore by equivalence, this is a local equivalence
E → F that we started with.

2.3 Adjoint functors on presheaves

Remark. (Gluing for étale sheaves) Let S be a scheme, with U
j
↪−→ S

i←−↩ Z = S r U where j
is an open immersion. For any abelian sheaf F on Set, there is an exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0,

which may be verified by checking on stalks. We can also reformulate this in the following way,

j!j
∗F F

0 i∗i
∗F

y

p

is both a pushout and a pullback square.

Ideally, we would like an analog of this functor for F ∈ Sh(SmS).

Basic functoriality: let f : T → S be a morphism of base schemes (which are Noetherian and
finite-dimensional). We get a functor SmS → SmT , where X 7→ X ×S T =: XT . This induces

f∗ : PSh(SmT )→ PSh(SmS) (f∗F )(X) = F (XT )

Note. f∗ preserves all limits and colimits (in particular filtered colimits, so it is accessible).
By the Adjoint Functor Theorem 2.0.2, this implies that f∗ has a left adjoint PSh(SmS) →
PSh(SmT ), which we denote by f∗pre. (Note that this does not preserves sheaves in general).

If U = {Uα → X} is a Nisnevich covering of X ∈ SmS , then U ×S T := {Uα ×S T → XT } is
also a Nisnevich covering. This implies that f∗ preserves sheaves.

Thus we have a functor f∗ : Sh(SmT )→ Sh(SmS).
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Lemma 2.3.1. f∗ : Sh(SmT )→ Sh(SmS) also has a left adjoint, given by the composite

Sh(SmS)
incl
↪−−→ PSh(SmS)

f∗pre−−−→ PSh(SmT )
L−→ Sh(SmT ).

Proof. For G ∈ Sh(SmT ), we have

MapSh(f∗F,G) = MapSh(L ◦ f∗pre ◦ incl(F ), G) ' MapPSh(f∗pre ◦ incl(F ), incl(G))

' MapPSh(incl(F ), f∗ ◦ incl(G)) ' MapSh(F, f∗(G))

where the last line holds because PSh←↩ Sh is a full subcategory.

Lemma 2.3.2. For X ∈ SmS , we have that f∗pre(X) ' X ×S T ' f∗(X)

Proof. For any F ∈ PSh(SmT ), we check that

Map(f∗X,F )
adj
' Map(X, f∗F )

Y on.' (f∗F )(X)
defn
' F (X ×S T )

' Map(X ×S T, F )

Now assume, in addition, that f : T → S is smooth. We then obtain the following functor:

SmT → SmS

(X/T ) = (X → T ) 7→ (X → T
f−→ S) = (X/S).

This induces

f# : PSh(SmS)→ PSh(SmT ) (f#F )(X/T ) = F (X/S).

Note. f# has a left adjoint fpre
# . Additionally, f# preserves sheaves, so we obtain an adjunc-

tion at the level of sheaves
f# : Sh(SmT )� Sh(SmS) : f#.

Where we define f# := L ◦ fpre
# ◦ incl.

Exercise 2.3.3. For X ∈ SmT , we have fpre
# (X/T ) ' f#(X/T ) ' X/S.

Lemma 2.3.4. If f is smooth, then

f# ' f∗pre : PSh(SmS)→ PSh(SmT ).

In particular, f∗pre preserves sheaves and f∗ ' f∗pre

∣∣
Sh(SmS)

.

Proof. Since f# and f∗ both commute with colimits, and since each presheaf is built as a colimit
of representables, it suffices to show this on representable presheaves, that is, f#(X/S) '
f∗pre(X/S). Note that we have already computed f∗pre(X/S) ' X ×S T . So for any U ∈ SmT ,
we have that

f#(X/S)(U/T )
Y on.' Map((U/T ), f#(X/S))

adj
' Map(fpre

# (U/T ), X/S) ' Map(U/T,X ×S T ).

So for f smooth, we will identify f∗ ' f#.
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2.4 Towards the gluing theorem

As before, let U
j
↪−→ S

i←−↩ Z = S r U where j is an open immersion, and i is closed. We recall
the induced maps

PSh(SmS) PSh(SmU )

PSh(SmZ)

i∗, i#
j∗, j#

j∗, j#

i∗, i#

Take F ∈ Sh(SmS). Then we have a square of the form

j#j
∗F F

U = j#(U/U) i∗i
∗F

counit

unit

where the map along the left is j#(j∗F → U ' ∗), as we note that U is the final object

in Sh(SmU ). There is a unique map ∅ !−→ i∗F , so by adjunction we get the bottom map
U → i∗i

∗F .

Q: Is the above square (labeled G) a pushout square?

Assume that the sheaf F is represented by some X ∈ SmS . Then we have j∗X ' X×SU ' XU ,
j#(XU ) ' (XU/S), and i∗X = X ×S Z = XZ , so we are asking whether the following square
is a pushout

XU X

U i∗(XZ)

that is, whether U
∐
XU

X → i∗(XZ) is an equivalence. So we first look at it in presheaves,
then check if it is an equivalence after sheafification (a local equivalence).

We first compute the left hand side. For any Y ∈ SmS , we have

(U

pre∐
XU

X)(Y ) ' U(Y )
∐

XU (Y )

X(Y ) '



X(Y ) U(Y ) = ∅

∗ U(Y ) = ∗, that is,

Y

U S

which implies the square factors through Y → XU

and the right hand side is computed as

(i∗XZ)(Y ) ' XZ(YZ) ' X(YZ) = ∗ if U(Y ) = ∗

however we must see what happens if U(Y ) = ∅. Assume S is irreducible, U 6∈ {∅, S}, and
look at the stalks at a point z ∈ Z ⊂ S:
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(
U
∐
XU

X
)
S,z

X(Spec(OhS,z))

(i∗XZ)S,z X(Spec(OhS,z)×S Z)

(∗)

This map (∗) is an isomorphism if X → S is étale, but in general it is not an isomorphism, e.g.
if X = A1

S .

Conclusion: the square (G) is generally not a pushout.

In the square:

j#j
∗ F

U i∗i
∗F

counit

unit

all the functors (j#, j
∗, i∗) are left adjoints and commute with colimits, except for i∗. We will

see that it somehow commutes with “enough” colimits.

Lemma 2.4.1. Let i : Z ↪→ S be a closed immersion. Then for F ∈ PSh(SmZ), such that
F (∅) = ∗, we get a map Li∗(F )→ i∗L(f) is an equivalence.

Proof. We can check on stalks again. Take any X ∈ SmS , and x ∈ X. We then have two cases

Case 1: x 6∈ X ×S Z
X
↪−→

Case 2: x ∈ XZ
X
↪−→.

In Case 1, the Nisnevich neighborhoods (V, v) of (X,x) with the property that V ×S Z = ∅
are cofinal in all Nisnevich neighborhoods. So we compute the stalks

Li∗(F )X,x ' i∗(F )X,x ' colim (V,v)
as above

i∗(F )(V )

' colim(V,v)F (V ×S Z) ' colim(V,v)F (∅) ' colim(V,v)∗ ' ∗.

We can also go backwards to see that

∗ ' · · · ' (i∗L(F ))X,x.

In Case 2, this is an exercise. Use that any Nisnevich neighborhood of x ∈ XZ can be extended
to a Nisnevich neighborhood of x ∈ X. Then use cofinality argument as in the case above.

Proposition 2.4.2. For i : Z ↪−→ S closed immersion, then i∗ : Sh(SmZ)→ Sh(SmS) commutes
with weakly contractible colimits. (The geometric realization of the indexing category is weakly
equivalent to a point, e.g. filtered colimits)
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Proof. A colimit in Sh is computed as L ◦ colimpre. Note the geometric realization of A is
colimα∈A, so weak contractibility gives that this is a point, and thus that we can reverse L and
i∗.

i∗ ◦ colimα∈AFα ' i∗ ◦ L ◦ colimpre
α∈AFα

Lem.' L ◦ i∗ ◦ colimpre
α∈AFα

' L ◦ colimpre
α∈Ai∗(Fα) ' colimα∈Ai∗(Fα).

Now back to smooth morphisms f : T → S.

Consider a pullback square in schemes of the following form

T̃ S̃

T S

f̃

p̃ p

f

with f, f̃ smooth. Then f̃∗ ◦ p∗ ◦ p∗
f̃∗◦(counit)−−−−−−−→ f̃∗. Using the commutativity of the above

diagram, this induces a map
f∗ ◦ p∗ → p̃∗ ◦ f̃∗.

Proposition 2.4.3. (Smooth base change) the map f∗ ◦ p∗ → p̃∗ ◦ f̃∗ is an equivalence of
functors (P )Sh(SmS̃)→ (P )Sh(SmT ).

Proof. Recall f# = f∗. We have a commutative square

SmT̃ SmS̃

SmT SmS

where, by the commutativity of the diagram we get X×S S̃ ' X×T T̃ . We see that the functors
in this diagram are in fact

SmT̃ SmS̃

SmT SmS

f̃#

f#

p̃∗ p∗

Proposition 2.4.4. (Smooth projection formula) Consider f : T → S smooth, E → F ∈
Sh(SmS), and G ∈ Sh(SmT ) with G → f∗F (which corresponds to a map f#G → F ). Then,
we have that (

f∗(E)×f∗(F ) G
)
' E ×F f#(G).

13



We can show this on representable presheaves (exercise), but we cannot apply this everywhere,
since the pullback on the left does not commute with colimits.

Proof. • Sheafification is left exact (i.e. commutes with finite limits) so we can reduce to
the corresponding statement for presheaves.

• Colimits in PSh (more generally in ∞-topoi) are universal, so we may replace G by a
representable X ∈ SmT .

• For U ∈ SmS we have that (note fpre
# (X/T )(U) ' X/S)

(E ×F fpre
# (X/T ))(U) ' E(U)×F (U) (X/S)(U/S) '

∐
x∈(X/S)(U/S)

E(U)×F (U) {x}.

• In order to compute the left hand side, we use the following formula for computing fpre
# :

take H ∈ PSh(SmT ). Take D to be the opposite category of those schemes V which
satsify:

V U

T S

sm

f

then
fpre

# (H)(U) ' colimDH(V )

so we have that

fpre
#

(
f∗(E)×f∗(F ) X

)
(U) = colimDE(V )×F (V ) (X/T )(V/T )

' colimD
∐

x′∈(X/T )(V/T )

E(V )×F (V ) {x′}

' colim
V U

X S

x′



opE(V )×F (V ) {x′} '
∐

x∈(X/S)(U/S)

E(V )×F (V ) {x}

where the last isomorphism is by cofinality.

2.5 f ∗ for essentially smooth maps

Consider X ∈ SmS , x ∈ X. Then the map

Xh
∗ = Spec(OhX,x)→ S

is in general not smooth, but it is a limit of smooth maps Xh
x ' lim(U,u) Nis. neighbhd

of (X,x)

U .

More generally, assume that (Xi)i∈I is a projective system in SmS with affine transition maps.
Then X̃ = limi∈I Xi exists.

Assume X̃ is Noetherian and of finite dimension. Then our map f : X̃ → S induces f∗pre :
PSh(SmS)→ PSh(SmX̃). This map f∗pre has an explicit description as follows:

14



Take Y → X̃ a smooth scheme. Then there exists i0 ∈ I and Yi0 → Xi0 smooth such that

Ỹ Yi0

X̃ Xi0

y

Set Yi equal to the pullback of Xi → Xi0 ← Yi0 , and we get limI Yi ' Ỹ .

Lemma 2.5.1.

(a) For F ∈ PSh(SmS), f∗pre(F )(Ỹ ) ' colimIF (Yi).

(b) f∗pre preserves sheaves, in particularf∗ = f∗pre

∣∣
Sh

.

In particular, fx : Xh
x → S, yields f∗x,pre(F )(Xh

x ) ' F(X,x).

Proof. For (a), reduce to representables. For (b), check that for a sheaf F , f∗pre(F ) is excisive
(and hence also a sheaf), since you can also approximate Nisnevich squares.

3 A1-Invariance

Definition 3.0.1. A presheaf F ∈ PSh(SmS) is called A1-invariant if F (X)
pr∗−−→ F (X × A1)

is an equivalence for all X ∈ SmS .

We have that PShA1

(SmS) ⊆ PSh(SmS) is the full subcategory on A1-invariant presheaves.

Definition 3.0.2. ShA1

(SmS) := PShA1

(SmS) ∩ Sh(SmS) is the ∞-category of motivic spaces
(that is, this is the unstable motivic homotopy category).

Example 3.0.3.

• S is reduced, then Gm is in ShA1

(SmS)

• S regular, then every smooth scheme also S is also regular, in particular Ω∞K(−) ∈
ShA1

(SmS), that is, algebraic K-theory.

• A1 is not A1-invariant.

Note. F is A1-invariant if and only if F is local with respect to the family of maps

{X × A1 pr−→ X : X ∈ SmS}.

There exist Bousfield localizations

LA1 : PSh(SmS)� PShA1

(SmS) : incl

Lmot : PSh(SmS)� ShA1

(SmS) : incl.

Explicit description: for any n ∈ N, take ∆n = Spec(Z[x0, . . . , xn]/(
∑
xi − 1)) gives a cosim-

plicial scheme ∆• (with usual faces and degeneracies). Define a functor H : PSh(SmS) →
PSh(SmS) via

H(F )(X) := colim∆opF (X ×∆op)

which we claim is exactly the A1 localization LA1 . There is an obvious natural transformation
α : id⇒ H.

15



Proposition 3.0.4. We have an equivalence H ' LA1 (really we are looking at i ◦LA1 so that
both functors have codomain PSh(SmS)).

Proof. We will show below:

(A) If F ∈ PSh(SmS) then H(F ) is A1-invariant.

(B) If F ∈ PShA1(SmS) then F
α−→ H(F ) is an equivalence.

Note that (A) and (B) imply that, for any F ∈ PSh(SmS), we have that H(F ) → H(H(F ))
has two natural transformations, which yield maps

H(αF ), αH(F ) : H(F )→ H(H(F )),

and we claim they are both equivalences.

We use the following proposition of Lurie:

Proposition 3.0.5. [Lur09, 5.2.7.4] Let C be an ∞-category, and let L : C → C be a functor
with essential image LC ⊆ C. Then the following are equivalent:

1. There exists a functor f : C → D with a fully faithful right adjoint f a g such that
g ◦ f ' L.

2. Regarded as a functor C → LC, we have that L is left adjoint to the inclusion LC ⊆ C.
3. There is a natural transformation α : idC ⇒ L such that, for all c ∈ C, we have that

L(αc), αLc : Lc→ LLc

are equivalent.

Therefore H is the left adjoint of the inclusion of its essential image

H : PSh(SmS)� im(H) : incl.

Moreover,

PShA1

(SmS)
(B)

⊆ im(H)
(A)
' PShA1

(SmS),

therefore they are all equal.

(B) follows directly from F (X)
'−→ F (X ×∆n) for an A1-invariant presheaf.

For (A), we want to prove that for anhy F ∈ PSh(SmS) and X ∈ SmS ,

H(F )(X)
pr∗−−→ H(F )(X × A1)

is an equivalence. Let σ : X → X × A1 be the zero section, then σ∗ ◦ pr∗ ' id. It remains to
prove that pr∗◦σ∗ ' id on H(F )(X×A1). So we will construct an explicit simplicial homotopy.

If C is any ∞-category, we may talk about simplicial objects in it as sC = Fun(∆op, C), which
consists of “simplicial objects in C,” which we denote X•, Y•, etc. To define a simplicial
homotopy, we can define

∆
i0
⇒
i1

∆/[1]
δ−→ ∆

[n] 7→ ([n] 7→ ∗
0
7→
7→
1

[1]) 7→ [n]

16



Definition 3.0.6. A simplicial homotopy between f, g : X• → Y• is a map h : δ∗(X•)→ δ∗(Y•)
in Fun((∆/[1])op, C) such that i∗0(h) = f and i∗1(h) = g.

Note. Any functor C → D preserves simplicial homotopies.

Lemma 3.0.7. Assume C is cocomplete. If f, g : X• → Y• in sC are simplicially homotopic,
then the induced maps |f |, |g| : |X•| → |Y•| are homotopic in C.

The reason is that

colim(∆/[1])opδ
∗(X•) |X•| colim∆opX•

δ

i1

i0

we may show δ is an equivalence.

Claim: For X ∈ SmS , the maps

X × A1 ×∆• X × A1 ×∆•
id

σ◦pr

are simplicially homotopic.

Proof. Write t coordinate on A1. Then take

h : δ∗(X × A1 ×∆•)→ δ∗(X × A1 ×∆•)

where ([n]
π−→ [1]) maps to h(π) : X × A1 ×∆n → X × A1 ×∆n, and we have that

h(π) : t 7→

 ∑
j∈π−1(1)

xj

 · t.

Thus i∗0(h) is given by t 7→ 0 and i∗1(h) is given by t 7→ t.

Example 3.0.8. LA1 does not preserve sheaves, nor does it preserve A1-invariant objects.

An explicit counter example is given in [MV99, Ex. 3.2.7]. Let S = Spec(k), where k is a
field. Then Let U0 = A1 r {0}, and U1 = A1 r {1}. Then the intersection U01 = U0 ∩ U1 is
A1-invariant, since we may see that σ∗ is an isomorphism in the following diagram:

U01(X) U01(X × A1)

U0(X) U0(X × A1)

σ∗

'
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Choose a closed immersion U01
cl
↪→ A1, and construct a non-smooth scheme

F = (U0 × An)
∐
U01

(U1 × An)

If X ∈ SmS is connected, then

Hom(X,F ) = Hom(X,U0 × An)
∐

Hom(X,U01)

Hom(X,U1 × An).

That is, F (X) ' (U0 × An)
∐pre
U01

(U1 × An)(X). Now we identify LA1F (X) with HF (X), and
we may explicitly give this as

LA1F (X) ' LA1(U0 × An)

pre∐
U01

LA1(U × An)(X) ' (U0

pre∐
U01

U1)(X)

since LA1 commutes with coproducts. However we claim that this thing we ended with is not
a sheaf. If it were, then it would be equivalent to its sheafification, that is, since sheafification
commutes with coproducts,

U0

pre∐
U01

U1 ' U0

∐
U01

U1 ' A1.

But A1 was not A1-invariant.

(Another example would be A1∐
0 A

1, which looks like the x-axis union the y-axis, which is
singular.)

Proposition 3.0.9. We have an equivalence

Lmot ' colimpre(id→ L ◦ LA1 → (L ◦ LA1)2 → · · · )

Proof. Denote the right hand side by H′.

• For F ∈ PSh(SmS), we have that H′(F ) is a sheaf. (Can check on Nisnevich squares, and
use thsat filtered colimits of pullback squares in spaces is again a pullback square.

• H′(F ) is A1-invariant). This is because we can rewrite:

H′ ' colimpre(id→ LA1 → LA1 ◦ (L ◦ LA1)→ · · · )

which stays A1-invariant by a cofinality argument.

To check left adjointness, we have to show that Map(H′(F ), E) ' Map(F,E). But by the
formula, the left hand side is just

Map(H′(F ), E) ' lim
N

Map((L ◦ LA1)n(F ), E) ' lim
N

Map(F,E) ' Map(F,E)

since E is A1-invariant and a sheaf.
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4 A1-invariance and base change functors

Consider a map f : T → S of base schemes, then

f∗ : PSh(SmT )→ PSh(SmS)

preserves A1-invariance, so we get induced adjunctions

f∗A1 := LA1 ◦ f∗pre ◦ incl : PShA1

(SmS)� PShA1

(SmT ) : f∗

and similarly on the level of sheaves

f∗mot := Lmot ◦ f∗pre : ShA1

(SmS)� ShA1

(SmT ) : f∗.

Proposition 4.0.1. If i : Z
cl
↪−→ S is a closed immersion, then

Lmot ◦ i∗(F )→ i∗ ◦ Lmot(F )

is an equivalence for any F ∈ PSh(SmZ) if F (∅) = ∗.

Proof. (1)

(LA1 ◦ i∗)(F ) ' colimpre
∆op(i∗F )(−×∆•) ' i∗colimpre

∆opF (−×∆•)

' i∗LA1F

(2) We have that
L ◦ LA1 ◦ i∗(F ) ' L ◦ i∗ ◦ LA1(F ) ' i∗L ◦ LA1(F )

where the second isomorphism is by Lemma 2.4.1. Additionally, we have that

Lmot ◦ i∗ ◦ F = colimpre
N (L ◦ LA1)n ◦ i∗(F ).

Since i∗ commutes with all presheaf colimits, and using 1), we obtain that this is isomor-
phic to i∗ ◦ Lmot(F ).

Proposition 4.0.2. Analogously to Proposition 2.4.2, if Z
cl
↪−→ S is a closed immersion, then

i∗ : ShA1

(SmZ)→ ShA1

(SmS)

commutes with weakly contractible colimits. The proof is completely analogous.

4.1 Smooth maps

If f : T → S is smooth, then f∗ ' f∗pre, since the map is given by restriction. Moreover, the
map f∗pre ' f# : PSh(SmS) → PSh(SmT ) preserves A1-invariant (pre)sheaves, so we get an
adjunctions:

f# a f∗ = f# a f∗.
Additionally, we get

fmot
# := Lmot ◦ fpre

# ◦ incl : ShA1

(SmT )� ShA1

(SmS) : f∗ = f#.
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In particular, we also have
f∗mot ' f∗ ' f∗pre

for smooth maps. And additionally,

Lmot ◦ f∗
∼−→ f∗ ◦ Lmot.

To see this, we look at the series of adjunctions

PSh(SmT ) PSh(SmS)

ShA1

(SmT ) ShA1

(SmS)

f∗

Lmot

f∗

Lmotincl

f∗

incl

f∗mot

and note the commutativity of the red arrows.

4.2 Stalkwise detection of motivic equivalences

Definition 4.2.1. A map E
ϕ−→ F in PSh(SmS) is called a motivic equivalence if Lmot(ϕ) is

an equivalence.

Recall: For X ∈ SmS , x ∈ X, f∗ : Xh
x → S essentially smooth, we saw that f∗x,pre preserves

sheaves, therefore we write f∗x for f∗x,pre.

Lemma 4.2.2. A map E
ϕ−→ F in PSh(SmS) is a motivic equivalence iff ∀ X ∈ SmS and

∀ x ∈ S, we have that f∗x (ϕ) is a motivic equivalence in PSh(SmXhx
).

Proof. As for smooth maps, f∗x preserves A1-invariant sheaves. This implies that Lmot ◦ f∗x
∼−→

f∗x ◦ Lmot.

⇒: We have that ϕ is a motivic equivalence implies Lmot(ϕ) is a motivic equivalence, which
gives that f∗xLmot(ϕ) = Lmot ◦ f∗x (ϕ) is a motivic equivalence. Therefore f∗x (ϕ) is a motivic
equivalence.

⇐: Let f∗x (ϕ) motivic equivalence for all X ∈ SmS and for all x ∈ X This implies that
Lmot ◦ f∗x = f∗x ◦ Lmot(ϕ) is a motivic equivalence. This is now a map of presheaves over our
scheme, so we may take global sections to see that f∗x ◦ Lmot(ϕ)(Xh

x ) is an equivalence.

This is exactly Lmot(ϕ)X,x, so we see that Lmot(ϕ) is a stalkwise equivalence between sheaves,
and therefore an equivalence.

We have an even stronger version of the lemma as follows.

Lemma 4.2.3. A map E
ϕ−→ F in PSh(SmS) is a motivic equivalence if and only if f∗s (ϕ) is a

motivic equivalence in PSh(SmShs
) for s ∈ S.

The reason is that in the diagram

Xh
x X ×S Shs X

Shs Sg

sm sm

fs
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where g is essentially smooth, then we have that Lmot ◦ g∗ ' g∗ ◦ Lmot.

4.3 Gluing

Let Z
i
↪→ S

o←−↩ U := S r Z, where i is a closed immersion. We want to show that, for

E ∈ ShA1

(SmS), the square

jmot
# j∗E E

jmot
# (∗) i∗i

∗
motE

is a pushout square.

First we want to reduce to the case where E is representable.

Lemma 4.3.1. The ∞-cat Sh(SmS) is generated by representables under weakly contractible
colimits.

Proof. Let E ∈ Sh(SmS), then we may write it as a colimit of representables E ' colimy(X)→E y(X),
and we have that y(−)/E has an initial object y(∅). Moreover, we have seen that all functors
involved commute with weakly contractible colimits.

Now it suffices to show that Lmot(−) applied to the diagram of presheaves

jmot
# j∗X E

U/S i∗i
∗
motX

is a pushout.

Note that Lmot commutes with pushouts, and that for formal reasons, we have seen that the
following hold:

Lmot ◦ j# ' jmot
# ◦ Lmot

Lmot ◦ i∗ ' i∗mot ◦ Lmot.

Also we have that Lmot commutes with j∗ as j is smooth, and Lmot commutes with i∗ (for ..
F with F (∅) = ∗).

So it remains to show that X
∐
XU

U → i∗XZ is a motivic equivalence in PSh(SmS) (where
XU = X ×S U → S and XZ := X ×S Z → Z).

Lemma 4.3.2. A morphism E → F in PSh(SmS) is a motivic equivalence if and only if for
all Y ∈ SmS , and maps ∅ : Y → F ,

Y ×F E E

Y F

(∗)

∅
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the induced map (∗) is a motivic equivalence.

Proof. Let F ' colimY→FY , then

colimY→F (Y ×F E) (colimY→FY )×F E F ×F E ' E

colimY→FY F

' '

'

and apply Lmot(−).

Hence we must show that, for all ∅ : Y → i∗XZ in PSh(SmS), we have that the map

(X
∐
XU

U)×i∗XZ Y → Y

is a motivic equivalence.

We want to reduce to the case Y = S. Consider the diagram of pullback squares

Z′ Y U ′

Z S U

p′

cl

p p′′

i, cl

j, o

which gives

(X
∐
XU

U)×i∗XZ p#(Y )→ p#(Y )

which is equal to

p#(p∗(X
∐
XU

U)×p∗i∗XZ Y → Y ) = p#(p∗X
∐

(p∗X)U′

U ′ ×i′∗(p∗X)Z′
Y → Y ).

Smoothness implies that

p∗i∗XZ ' i′∗p′∗XZ ' i′∗p′∗i∗X ' i′∗i′∗(p∗X) ' i′∗(p∗X)Z′

so we can reduce to S = Y in (∗).

Now we want to reduce to S being Henselian local. Conider, for all s ∈ S, the map f :
Spec(OhS,s) → S. Then it suffices, by the lemma, to show that f∗(∗) is a motivic equivalence.
This is essentially a “smooth base change.”

So we may assume Y = S is the spectrum of a Henselian local ring. Note that, by our
adjunctions, we have bijections between the sets of morphisms

{∅ : Y → i∗XZ} ↔


Z XZ

Z


↔


Z X

S

s
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Consider the map

Ψ : (SmS , plus sections)→ Fun(Smop
S ,Set) ↪→ PSh(SmS)

(X, s) 7−→ Ψ(X, s) := (X
∐
XU

U)×i∗XZ S
ϕ(X,s)−−−−→ S

We now need two lemmas to finish the proof

Lemma 4.3.3. For (X, s) → (X ′, s′) with X → X ′ étale, we have that the map Ψ(X, s) →
Ψ(X ′, s′) is a local equivalence.

Lemma 4.3.4. If s′′ : Z ↪−→ AmZ → AmS is the “zero section,” then ϕ(AmS , s′′) is a motivic
equivalence.

Suppose we had these two lemmas, and let x ∈ Spec(A/I) = Z closed point, and S = Spec(A).
Then

U

X AmS

Z S

o
et

sms

cl

s′

s(x) ∈ X, s(Z) ⊆ U , s−1(U) ⊇ D(a) 3 x, for a 6∈ X, so a unit, Z = D(a).

Without loss of generality, s′′ : Z → AmS is the zero section, and we get

(X, s)← (U, s′)→ (AmS , s′′)

applying Lemma 4.3.3, since these maps are étale, and applying Lemma 4.3.4, we get the
equivalences

L(Ψ(X, s)) L(Ψ(U, s′)) L(Ψ(AmS , s′′))

S

' '

ϕ(AmS ,s
′′)

and we are done.

Proof of Lemma 4.3.3: Prove it “stalkwise.”

Let Y ∈ SmS . Then

Ψ(X, s)(Y ) = ((X
∐
XU

U)×i∗XZ S)(Y ) =

{
∗ YZ = ∅
HomS(Y,X)×HomZ(YZ ,XZ) ∗ YZ 6= ∅

where the inclusion of the point is given by YZ → Z
∅−→ XZ .
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If YZ =, then Y lives completely over U (that is, Y = YU ), and we have that

XU (Y ) U(Y ) ' ∗

X(U) (X
∐
XU

U)(Y ) ' ∗

then (i∗XZ)(U) = XZ(YZ) = XZ(∅) = ∗, and therefore S(Y ) = ∗.

If YZ 6= ∅ then we get

XU (Y ) = ∅ U(Y ) = ∅

X(Y ) (X ∪XU U)(Y )

If YZ 6= ∅ look at the following diagram in Ψ(X ′, s′)(Y ):

Y X ′

YZ Z X ′Z

f ′

cl

∅′
cl

where

Z X Z XZ

X ′ X ′Z

s

s′

∅

∅′

and we want to find a unique preimage in Ψ(X, s)(Y ). So we have a diagram

YZ Z XZ X

X ′Z

Y X ′

∅′

∅

et

f ′

f

As Y is Henselian, YZ 6= ∅, there exists a lift f , indicated in green, such that f ∈ HomS(Y,X).
This is actually a map in Ψ(X, s)(Y ) by construction.

As Y is connected, X → X ′ unramified, this f is unique [GR71, I, Cor. 5.4], if X → X ′ were
separated. We can extend our diagram
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YZ Z XZ X U U

X ′Z U ′

Y X ′

∅′

∅

et

et

o

o

f ′

f

Without loss of generality, we may restrict to X ′ affine, and may restrict to X affine. Therefore
we are done.

Proof of Lemma 4.3.4: Let Y ∈ SmS . Again the case YZ = ∅ is trivial. So we construct a
homotopy

(Ψ(AmS , s′′)× A1
S)(Y )→ Ψ(AmS , s′′)(Y )

via

Y Ψ(AmS , s′′)× A1
S Ψ(AmS , s′′)

AmS × A1
S AmS

YZ Z AmS

⊆

(∗)

0

id×{t}

Where the map (∗) is given by (x1, . . . , xm, t) 7→ (x1t, . . . , xmt). If t = 1 this is the identity,
and if t = 0 this is S.

4.4 Brief sketch of Cisinski’s proof of cdh-descent for KH

This is a pointed version of ShA1

∗ (SmS) =: H·(S). f# a f∗ a f∗.

The gluing theorem implies here, that

j#j
∗E → E → i∗i

∗E

is a cofiber sequence (here we ignored the “mot”)

(P1,∞) ∈ H∗(S). Note that H∗(S) is a symmetric monoidal category with respect to ∧.

There is a “universal construction”

Σ∞P1 : H∗(S)→ SH(S)

which gives us stable motivic homotopy theory.

Note that the sequence above is also a cofiber=fiber sequence in SH(S).

Lemma 4.4.1. The unit id
η−→ j∗j# is an equivalence.
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Proof.

V V

U S
p

Corollary 4.4.2. j# is fully faithful.

Proof. Map(j#A, j#B) ' Map(A, j∗j#B) ' Map(A,B).

Lemma 4.4.3. The pair (j∗, i∗) : SH(S)→ SH(U)× SH(Z) reflects equivalences.

Proof. Use the cofiber sequence

j#j
∗E E i∗i

∗E

j#j
∗F F i∗i

∗F

' '

Exercise 4.4.4.

1. i∗i∗ → id is an equivalence, and hence i∗ is fully faithful.

2. SH(S) ' SH(Sred) (for this we use ∅
o
↪−→ S

cl←−↩ Sred).

Theorem 4.4.5. (Ayoub, Proper Base Change Theorem) For the diagram of the form

X ′ Y ′

X Y

p q

i′

q
i

where p is proper, then we obtain i∗p∗ ' q∗i′∗.

For the Smooth Base Change Theorem, we let p be anything, and require i to be smooth.

An abstract blowup square is

X ′ r Y ′ U ′ X ′ Y ′

X r Y U X Y

'

o

proper

i′

q

o

i

The cdh topology is the topology given by {p, i} of all abstract blowup squares and the Nisnevich
topology.
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Proposition 4.4.6. Given an a.b.s. as above, where ` denotes the composite Y ′ → X, we
have that

E p∗p
∗E

i∗i
∗E `∗`

∗E

is a cartesian square in SH(S).

Proof. Test this after applying j∗, i∗. For the first one, we get

j∗E j∗p∗p
∗E

j∗i∗i
∗E j∗`∗`

∗E

Recall our cofiber sequence remains a cofiber sequence after applying j∗(−). However recall
that j∗j# ' id, so we have that

j∗j#j
∗E ' j∗E '−→ j∗E → j∗i∗i

∗E ' 0.

By SBC, we get that the top right corner is

j∗p∗p
∗E ' j′∗p∗E ' j∗E,

and therefore the top map is the identity. Finally, we also get that the bottom right corner is

j∗`∗`
∗E ' j∗i∗q∗i∗q∗E

0 ' j#j∗i∗(...)→ i∗(...)
'−→ i∗(i

∗i∗)(...)

therefore we get that the bottom row is all ' 0.

After applying i∗, we get

i∗E i∗p∗p
∗E

i∗i∗i
∗E i∗`∗`

∗E

we first see the bottom left is i∗i∗i
∗E ' i∗E, so the left map is an equivalence. Since the p is

proper, we may use PBC to see that the upper right corner is

i∗p∗p
∗E ' q∗i′∗p∗E

but the bottom corner is

i∗`∗`
∗E ' i∗(iq)∗(pi′)∗E ' (i∗i∗)q∗i

′∗p∗E ' q∗i′∗p∗E

so the map along the right is also an equivalence.
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This implies, for E = KH ∈ SH(S), we have that f∗KH ' KH (cartesian object).

BGL× Z “specific model.”

Evaluate on X

KH(X) KH(X ′)

KH(Z) KH(Y ′)
p

this shows that homotopy K-theory KH satisfies cdh-descent. For details, see Cisinski’s article
[Cis13].
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